Traktor/myenv/Lib/site-packages/torchvision/datasets/country211.py

59 lines
2.4 KiB
Python
Raw Permalink Normal View History

2024-05-23 01:57:24 +02:00
from pathlib import Path
from typing import Callable, Optional, Union
from .folder import ImageFolder
from .utils import download_and_extract_archive, verify_str_arg
class Country211(ImageFolder):
"""`The Country211 Data Set <https://github.com/openai/CLIP/blob/main/data/country211.md>`_ from OpenAI.
This dataset was built by filtering the images from the YFCC100m dataset
that have GPS coordinate corresponding to a ISO-3166 country code. The
dataset is balanced by sampling 150 train images, 50 validation images, and
100 test images for each country.
Args:
root (str or ``pathlib.Path``): Root directory of the dataset.
split (string, optional): The dataset split, supports ``"train"`` (default), ``"valid"`` and ``"test"``.
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
version. E.g, ``transforms.RandomCrop``.
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
download (bool, optional): If True, downloads the dataset from the internet and puts it into
``root/country211/``. If dataset is already downloaded, it is not downloaded again.
"""
_URL = "https://openaipublic.azureedge.net/clip/data/country211.tgz"
_MD5 = "84988d7644798601126c29e9877aab6a"
def __init__(
self,
root: Union[str, Path],
split: str = "train",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
self._split = verify_str_arg(split, "split", ("train", "valid", "test"))
root = Path(root).expanduser()
self.root = str(root)
self._base_folder = root / "country211"
if download:
self._download()
if not self._check_exists():
raise RuntimeError("Dataset not found. You can use download=True to download it")
super().__init__(str(self._base_folder / self._split), transform=transform, target_transform=target_transform)
self.root = str(root)
def _check_exists(self) -> bool:
return self._base_folder.exists() and self._base_folder.is_dir()
def _download(self) -> None:
if self._check_exists():
return
download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)