Traktor/myenv/Lib/site-packages/scipy/interpolate/_interpolate.py

2474 lines
86 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
__all__ = ['interp1d', 'interp2d', 'lagrange', 'PPoly', 'BPoly', 'NdPPoly']
from math import prod
import warnings
import numpy as np
from numpy import (array, transpose, searchsorted, atleast_1d, atleast_2d,
ravel, poly1d, asarray, intp)
import scipy.special as spec
from scipy._lib._util import copy_if_needed
from scipy.special import comb
from . import _fitpack_py
from . import dfitpack
from ._polyint import _Interpolator1D
from . import _ppoly
from .interpnd import _ndim_coords_from_arrays
from ._bsplines import make_interp_spline, BSpline
def lagrange(x, w):
r"""
Return a Lagrange interpolating polynomial.
Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating
polynomial through the points ``(x, w)``.
Warning: This implementation is numerically unstable. Do not expect to
be able to use more than about 20 points even if they are chosen optimally.
Parameters
----------
x : array_like
`x` represents the x-coordinates of a set of datapoints.
w : array_like
`w` represents the y-coordinates of a set of datapoints, i.e., f(`x`).
Returns
-------
lagrange : `numpy.poly1d` instance
The Lagrange interpolating polynomial.
Examples
--------
Interpolate :math:`f(x) = x^3` by 3 points.
>>> import numpy as np
>>> from scipy.interpolate import lagrange
>>> x = np.array([0, 1, 2])
>>> y = x**3
>>> poly = lagrange(x, y)
Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly,
it is given by
.. math::
\begin{aligned}
L(x) &= 1\times \frac{x (x - 2)}{-1} + 8\times \frac{x (x-1)}{2} \\
&= x (-2 + 3x)
\end{aligned}
>>> from numpy.polynomial.polynomial import Polynomial
>>> Polynomial(poly.coef[::-1]).coef
array([ 0., -2., 3.])
>>> import matplotlib.pyplot as plt
>>> x_new = np.arange(0, 2.1, 0.1)
>>> plt.scatter(x, y, label='data')
>>> plt.plot(x_new, Polynomial(poly.coef[::-1])(x_new), label='Polynomial')
>>> plt.plot(x_new, 3*x_new**2 - 2*x_new + 0*x_new,
... label=r"$3 x^2 - 2 x$", linestyle='-.')
>>> plt.legend()
>>> plt.show()
"""
M = len(x)
p = poly1d(0.0)
for j in range(M):
pt = poly1d(w[j])
for k in range(M):
if k == j:
continue
fac = x[j]-x[k]
pt *= poly1d([1.0, -x[k]])/fac
p += pt
return p
# !! Need to find argument for keeping initialize. If it isn't
# !! found, get rid of it!
dep_mesg = """\
`interp2d` is deprecated in SciPy 1.10 and will be removed in SciPy 1.14.0.
For legacy code, nearly bug-for-bug compatible replacements are
`RectBivariateSpline` on regular grids, and `bisplrep`/`bisplev` for
scattered 2D data.
In new code, for regular grids use `RegularGridInterpolator` instead.
For scattered data, prefer `LinearNDInterpolator` or
`CloughTocher2DInterpolator`.
For more details see
`https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html`
"""
class interp2d:
"""
interp2d(x, y, z, kind='linear', copy=True, bounds_error=False,
fill_value=None)
.. deprecated:: 1.10.0
`interp2d` is deprecated in SciPy 1.10 and will be removed in SciPy
1.14.0.
For legacy code, nearly bug-for-bug compatible replacements are
`RectBivariateSpline` on regular grids, and `bisplrep`/`bisplev` for
scattered 2D data.
In new code, for regular grids use `RegularGridInterpolator` instead.
For scattered data, prefer `LinearNDInterpolator` or
`CloughTocher2DInterpolator`.
For more details see
`https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html
<https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html>`_
Interpolate over a 2-D grid.
`x`, `y` and `z` are arrays of values used to approximate some function
f: ``z = f(x, y)`` which returns a scalar value `z`. This class returns a
function whose call method uses spline interpolation to find the value
of new points.
If `x` and `y` represent a regular grid, consider using
`RectBivariateSpline`.
If `z` is a vector value, consider using `interpn`.
Note that calling `interp2d` with NaNs present in input values, or with
decreasing values in `x` an `y` results in undefined behaviour.
Methods
-------
__call__
Parameters
----------
x, y : array_like
Arrays defining the data point coordinates.
The data point coordinates need to be sorted by increasing order.
If the points lie on a regular grid, `x` can specify the column
coordinates and `y` the row coordinates, for example::
>>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]]
Otherwise, `x` and `y` must specify the full coordinates for each
point, for example::
>>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,4,2,5,3,6]
If `x` and `y` are multidimensional, they are flattened before use.
z : array_like
The values of the function to interpolate at the data points. If
`z` is a multidimensional array, it is flattened before use assuming
Fortran-ordering (order='F'). The length of a flattened `z` array
is either len(`x`)*len(`y`) if `x` and `y` specify the column and
row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y`
specify coordinates for each point.
kind : {'linear', 'cubic', 'quintic'}, optional
The kind of spline interpolation to use. Default is 'linear'.
copy : bool, optional
If True, the class makes internal copies of x, y and z.
If False, references may be used. The default is to copy.
bounds_error : bool, optional
If True, when interpolated values are requested outside of the
domain of the input data (x,y), a ValueError is raised.
If False, then `fill_value` is used.
fill_value : number, optional
If provided, the value to use for points outside of the
interpolation domain. If omitted (None), values outside
the domain are extrapolated via nearest-neighbor extrapolation.
See Also
--------
RectBivariateSpline :
Much faster 2-D interpolation if your input data is on a grid
bisplrep, bisplev :
Spline interpolation based on FITPACK
BivariateSpline : a more recent wrapper of the FITPACK routines
interp1d : 1-D version of this function
RegularGridInterpolator : interpolation on a regular or rectilinear grid
in arbitrary dimensions.
interpn : Multidimensional interpolation on regular grids (wraps
`RegularGridInterpolator` and `RectBivariateSpline`).
Notes
-----
The minimum number of data points required along the interpolation
axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for
quintic interpolation.
The interpolator is constructed by `bisplrep`, with a smoothing factor
of 0. If more control over smoothing is needed, `bisplrep` should be
used directly.
The coordinates of the data points to interpolate `xnew` and `ynew`
have to be sorted by ascending order.
`interp2d` is legacy and is not
recommended for use in new code. New code should use
`RegularGridInterpolator` instead.
Examples
--------
Construct a 2-D grid and interpolate on it:
>>> import numpy as np
>>> from scipy import interpolate
>>> x = np.arange(-5.01, 5.01, 0.25)
>>> y = np.arange(-5.01, 5.01, 0.25)
>>> xx, yy = np.meshgrid(x, y)
>>> z = np.sin(xx**2+yy**2)
>>> f = interpolate.interp2d(x, y, z, kind='cubic')
Now use the obtained interpolation function and plot the result:
>>> import matplotlib.pyplot as plt
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
>>> ynew = np.arange(-5.01, 5.01, 1e-2)
>>> znew = f(xnew, ynew)
>>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
>>> plt.show()
"""
def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False,
fill_value=None):
warnings.warn(dep_mesg, DeprecationWarning, stacklevel=2)
x = ravel(x)
y = ravel(y)
z = asarray(z)
rectangular_grid = (z.size == len(x) * len(y))
if rectangular_grid:
if z.ndim == 2:
if z.shape != (len(y), len(x)):
raise ValueError("When on a regular grid with x.size = m "
"and y.size = n, if z.ndim == 2, then z "
"must have shape (n, m)")
if not np.all(x[1:] >= x[:-1]):
j = np.argsort(x)
x = x[j]
z = z[:, j]
if not np.all(y[1:] >= y[:-1]):
j = np.argsort(y)
y = y[j]
z = z[j, :]
z = ravel(z.T)
else:
z = ravel(z)
if len(x) != len(y):
raise ValueError(
"x and y must have equal lengths for non rectangular grid")
if len(z) != len(x):
raise ValueError(
"Invalid length for input z for non rectangular grid")
interpolation_types = {'linear': 1, 'cubic': 3, 'quintic': 5}
try:
kx = ky = interpolation_types[kind]
except KeyError as e:
raise ValueError(
f"Unsupported interpolation type {repr(kind)}, must be "
f"either of {', '.join(map(repr, interpolation_types))}."
) from e
if not rectangular_grid:
# TODO: surfit is really not meant for interpolation!
self.tck = _fitpack_py.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0)
else:
nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(
x, y, z, None, None, None, None,
kx=kx, ky=ky, s=0.0)
self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)],
kx, ky)
self.bounds_error = bounds_error
self.fill_value = fill_value
self.x, self.y, self.z = (array(a, copy=copy) for a in (x, y, z))
self.x_min, self.x_max = np.amin(x), np.amax(x)
self.y_min, self.y_max = np.amin(y), np.amax(y)
def __call__(self, x, y, dx=0, dy=0, assume_sorted=False):
"""Interpolate the function.
Parameters
----------
x : 1-D array
x-coordinates of the mesh on which to interpolate.
y : 1-D array
y-coordinates of the mesh on which to interpolate.
dx : int >= 0, < kx
Order of partial derivatives in x.
dy : int >= 0, < ky
Order of partial derivatives in y.
assume_sorted : bool, optional
If False, values of `x` and `y` can be in any order and they are
sorted first.
If True, `x` and `y` have to be arrays of monotonically
increasing values.
Returns
-------
z : 2-D array with shape (len(y), len(x))
The interpolated values.
"""
warnings.warn(dep_mesg, DeprecationWarning, stacklevel=2)
x = atleast_1d(x)
y = atleast_1d(y)
if x.ndim != 1 or y.ndim != 1:
raise ValueError("x and y should both be 1-D arrays")
if not assume_sorted:
x = np.sort(x, kind="mergesort")
y = np.sort(y, kind="mergesort")
if self.bounds_error or self.fill_value is not None:
out_of_bounds_x = (x < self.x_min) | (x > self.x_max)
out_of_bounds_y = (y < self.y_min) | (y > self.y_max)
any_out_of_bounds_x = np.any(out_of_bounds_x)
any_out_of_bounds_y = np.any(out_of_bounds_y)
if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y):
raise ValueError(
f"Values out of range; x must be in {(self.x_min, self.x_max)!r}, "
f"y in {(self.y_min, self.y_max)!r}"
)
z = _fitpack_py.bisplev(x, y, self.tck, dx, dy)
z = atleast_2d(z)
z = transpose(z)
if self.fill_value is not None:
if any_out_of_bounds_x:
z[:, out_of_bounds_x] = self.fill_value
if any_out_of_bounds_y:
z[out_of_bounds_y, :] = self.fill_value
if len(z) == 1:
z = z[0]
return array(z)
def _check_broadcast_up_to(arr_from, shape_to, name):
"""Helper to check that arr_from broadcasts up to shape_to"""
shape_from = arr_from.shape
if len(shape_to) >= len(shape_from):
for t, f in zip(shape_to[::-1], shape_from[::-1]):
if f != 1 and f != t:
break
else: # all checks pass, do the upcasting that we need later
if arr_from.size != 1 and arr_from.shape != shape_to:
arr_from = np.ones(shape_to, arr_from.dtype) * arr_from
return arr_from.ravel()
# at least one check failed
raise ValueError(f'{name} argument must be able to broadcast up '
f'to shape {shape_to} but had shape {shape_from}')
def _do_extrapolate(fill_value):
"""Helper to check if fill_value == "extrapolate" without warnings"""
return (isinstance(fill_value, str) and
fill_value == 'extrapolate')
class interp1d(_Interpolator1D):
"""
Interpolate a 1-D function.
.. legacy:: class
For a guide to the intended replacements for `interp1d` see
:ref:`tutorial-interpolate_1Dsection`.
`x` and `y` are arrays of values used to approximate some function f:
``y = f(x)``. This class returns a function whose call method uses
interpolation to find the value of new points.
Parameters
----------
x : (npoints, ) array_like
A 1-D array of real values.
y : (..., npoints, ...) array_like
A N-D array of real values. The length of `y` along the interpolation
axis must be equal to the length of `x`. Use the ``axis`` parameter
to select correct axis. Unlike other interpolators, the default
interpolation axis is the last axis of `y`.
kind : str or int, optional
Specifies the kind of interpolation as a string or as an integer
specifying the order of the spline interpolator to use.
The string has to be one of 'linear', 'nearest', 'nearest-up', 'zero',
'slinear', 'quadratic', 'cubic', 'previous', or 'next'. 'zero',
'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of
zeroth, first, second or third order; 'previous' and 'next' simply
return the previous or next value of the point; 'nearest-up' and
'nearest' differ when interpolating half-integers (e.g. 0.5, 1.5)
in that 'nearest-up' rounds up and 'nearest' rounds down. Default
is 'linear'.
axis : int, optional
Axis in the ``y`` array corresponding to the x-coordinate values. Unlike
other interpolators, defaults to ``axis=-1``.
copy : bool, optional
If ``True``, the class makes internal copies of x and y. If ``False``,
references to ``x`` and ``y`` are used if possible. The default is to copy.
bounds_error : bool, optional
If True, a ValueError is raised any time interpolation is attempted on
a value outside of the range of x (where extrapolation is
necessary). If False, out of bounds values are assigned `fill_value`.
By default, an error is raised unless ``fill_value="extrapolate"``.
fill_value : array-like or (array-like, array_like) or "extrapolate", optional
- if a ndarray (or float), this value will be used to fill in for
requested points outside of the data range. If not provided, then
the default is NaN. The array-like must broadcast properly to the
dimensions of the non-interpolation axes.
- If a two-element tuple, then the first element is used as a
fill value for ``x_new < x[0]`` and the second element is used for
``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g.,
list or ndarray, regardless of shape) is taken to be a single
array-like argument meant to be used for both bounds as
``below, above = fill_value, fill_value``. Using a two-element tuple
or ndarray requires ``bounds_error=False``.
.. versionadded:: 0.17.0
- If "extrapolate", then points outside the data range will be
extrapolated.
.. versionadded:: 0.17.0
assume_sorted : bool, optional
If False, values of `x` can be in any order and they are sorted first.
If True, `x` has to be an array of monotonically increasing values.
Attributes
----------
fill_value
Methods
-------
__call__
See Also
--------
splrep, splev
Spline interpolation/smoothing based on FITPACK.
UnivariateSpline : An object-oriented wrapper of the FITPACK routines.
interp2d : 2-D interpolation
Notes
-----
Calling `interp1d` with NaNs present in input values results in
undefined behaviour.
Input values `x` and `y` must be convertible to `float` values like
`int` or `float`.
If the values in `x` are not unique, the resulting behavior is
undefined and specific to the choice of `kind`, i.e., changing
`kind` will change the behavior for duplicates.
Examples
--------
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy import interpolate
>>> x = np.arange(0, 10)
>>> y = np.exp(-x/3.0)
>>> f = interpolate.interp1d(x, y)
>>> xnew = np.arange(0, 9, 0.1)
>>> ynew = f(xnew) # use interpolation function returned by `interp1d`
>>> plt.plot(x, y, 'o', xnew, ynew, '-')
>>> plt.show()
"""
def __init__(self, x, y, kind='linear', axis=-1,
copy=True, bounds_error=None, fill_value=np.nan,
assume_sorted=False):
""" Initialize a 1-D linear interpolation class."""
_Interpolator1D.__init__(self, x, y, axis=axis)
self.bounds_error = bounds_error # used by fill_value setter
# `copy` keyword semantics changed in NumPy 2.0, once that is
# the minimum version this can use `copy=None`.
self.copy = copy
if not copy:
self.copy = copy_if_needed
if kind in ['zero', 'slinear', 'quadratic', 'cubic']:
order = {'zero': 0, 'slinear': 1,
'quadratic': 2, 'cubic': 3}[kind]
kind = 'spline'
elif isinstance(kind, int):
order = kind
kind = 'spline'
elif kind not in ('linear', 'nearest', 'nearest-up', 'previous',
'next'):
raise NotImplementedError("%s is unsupported: Use fitpack "
"routines for other types." % kind)
x = array(x, copy=self.copy)
y = array(y, copy=self.copy)
if not assume_sorted:
ind = np.argsort(x, kind="mergesort")
x = x[ind]
y = np.take(y, ind, axis=axis)
if x.ndim != 1:
raise ValueError("the x array must have exactly one dimension.")
if y.ndim == 0:
raise ValueError("the y array must have at least one dimension.")
# Force-cast y to a floating-point type, if it's not yet one
if not issubclass(y.dtype.type, np.inexact):
y = y.astype(np.float64)
# Backward compatibility
self.axis = axis % y.ndim
# Interpolation goes internally along the first axis
self.y = y
self._y = self._reshape_yi(self.y)
self.x = x
del y, x # clean up namespace to prevent misuse; use attributes
self._kind = kind
# Adjust to interpolation kind; store reference to *unbound*
# interpolation methods, in order to avoid circular references to self
# stored in the bound instance methods, and therefore delayed garbage
# collection. See: https://docs.python.org/reference/datamodel.html
if kind in ('linear', 'nearest', 'nearest-up', 'previous', 'next'):
# Make a "view" of the y array that is rotated to the interpolation
# axis.
minval = 1
if kind == 'nearest':
# Do division before addition to prevent possible integer
# overflow
self._side = 'left'
self.x_bds = self.x / 2.0
self.x_bds = self.x_bds[1:] + self.x_bds[:-1]
self._call = self.__class__._call_nearest
elif kind == 'nearest-up':
# Do division before addition to prevent possible integer
# overflow
self._side = 'right'
self.x_bds = self.x / 2.0
self.x_bds = self.x_bds[1:] + self.x_bds[:-1]
self._call = self.__class__._call_nearest
elif kind == 'previous':
# Side for np.searchsorted and index for clipping
self._side = 'left'
self._ind = 0
# Move x by one floating point value to the left
self._x_shift = np.nextafter(self.x, -np.inf)
self._call = self.__class__._call_previousnext
if _do_extrapolate(fill_value):
self._check_and_update_bounds_error_for_extrapolation()
# assume y is sorted by x ascending order here.
fill_value = (np.nan, np.take(self.y, -1, axis))
elif kind == 'next':
self._side = 'right'
self._ind = 1
# Move x by one floating point value to the right
self._x_shift = np.nextafter(self.x, np.inf)
self._call = self.__class__._call_previousnext
if _do_extrapolate(fill_value):
self._check_and_update_bounds_error_for_extrapolation()
# assume y is sorted by x ascending order here.
fill_value = (np.take(self.y, 0, axis), np.nan)
else:
# Check if we can delegate to numpy.interp (2x-10x faster).
np_dtypes = (np.dtype(np.float64), np.dtype(int))
cond = self.x.dtype in np_dtypes and self.y.dtype in np_dtypes
cond = cond and self.y.ndim == 1
cond = cond and not _do_extrapolate(fill_value)
if cond:
self._call = self.__class__._call_linear_np
else:
self._call = self.__class__._call_linear
else:
minval = order + 1
rewrite_nan = False
xx, yy = self.x, self._y
if order > 1:
# Quadratic or cubic spline. If input contains even a single
# nan, then the output is all nans. We cannot just feed data
# with nans to make_interp_spline because it calls LAPACK.
# So, we make up a bogus x and y with no nans and use it
# to get the correct shape of the output, which we then fill
# with nans.
# For slinear or zero order spline, we just pass nans through.
mask = np.isnan(self.x)
if mask.any():
sx = self.x[~mask]
if sx.size == 0:
raise ValueError("`x` array is all-nan")
xx = np.linspace(np.nanmin(self.x),
np.nanmax(self.x),
len(self.x))
rewrite_nan = True
if np.isnan(self._y).any():
yy = np.ones_like(self._y)
rewrite_nan = True
self._spline = make_interp_spline(xx, yy, k=order,
check_finite=False)
if rewrite_nan:
self._call = self.__class__._call_nan_spline
else:
self._call = self.__class__._call_spline
if len(self.x) < minval:
raise ValueError("x and y arrays must have at "
"least %d entries" % minval)
self.fill_value = fill_value # calls the setter, can modify bounds_err
@property
def fill_value(self):
"""The fill value."""
# backwards compat: mimic a public attribute
return self._fill_value_orig
@fill_value.setter
def fill_value(self, fill_value):
# extrapolation only works for nearest neighbor and linear methods
if _do_extrapolate(fill_value):
self._check_and_update_bounds_error_for_extrapolation()
self._extrapolate = True
else:
broadcast_shape = (self.y.shape[:self.axis] +
self.y.shape[self.axis + 1:])
if len(broadcast_shape) == 0:
broadcast_shape = (1,)
# it's either a pair (_below_range, _above_range) or a single value
# for both above and below range
if isinstance(fill_value, tuple) and len(fill_value) == 2:
below_above = [np.asarray(fill_value[0]),
np.asarray(fill_value[1])]
names = ('fill_value (below)', 'fill_value (above)')
for ii in range(2):
below_above[ii] = _check_broadcast_up_to(
below_above[ii], broadcast_shape, names[ii])
else:
fill_value = np.asarray(fill_value)
below_above = [_check_broadcast_up_to(
fill_value, broadcast_shape, 'fill_value')] * 2
self._fill_value_below, self._fill_value_above = below_above
self._extrapolate = False
if self.bounds_error is None:
self.bounds_error = True
# backwards compat: fill_value was a public attr; make it writeable
self._fill_value_orig = fill_value
def _check_and_update_bounds_error_for_extrapolation(self):
if self.bounds_error:
raise ValueError("Cannot extrapolate and raise "
"at the same time.")
self.bounds_error = False
def _call_linear_np(self, x_new):
# Note that out-of-bounds values are taken care of in self._evaluate
return np.interp(x_new, self.x, self.y)
def _call_linear(self, x_new):
# 2. Find where in the original data, the values to interpolate
# would be inserted.
# Note: If x_new[n] == x[m], then m is returned by searchsorted.
x_new_indices = searchsorted(self.x, x_new)
# 3. Clip x_new_indices so that they are within the range of
# self.x indices and at least 1. Removes mis-interpolation
# of x_new[n] = x[0]
x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int)
# 4. Calculate the slope of regions that each x_new value falls in.
lo = x_new_indices - 1
hi = x_new_indices
x_lo = self.x[lo]
x_hi = self.x[hi]
y_lo = self._y[lo]
y_hi = self._y[hi]
# Note that the following two expressions rely on the specifics of the
# broadcasting semantics.
slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None]
# 5. Calculate the actual value for each entry in x_new.
y_new = slope*(x_new - x_lo)[:, None] + y_lo
return y_new
def _call_nearest(self, x_new):
""" Find nearest neighbor interpolated y_new = f(x_new)."""
# 2. Find where in the averaged data the values to interpolate
# would be inserted.
# Note: use side='left' (right) to searchsorted() to define the
# halfway point to be nearest to the left (right) neighbor
x_new_indices = searchsorted(self.x_bds, x_new, side=self._side)
# 3. Clip x_new_indices so that they are within the range of x indices.
x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp)
# 4. Calculate the actual value for each entry in x_new.
y_new = self._y[x_new_indices]
return y_new
def _call_previousnext(self, x_new):
"""Use previous/next neighbor of x_new, y_new = f(x_new)."""
# 1. Get index of left/right value
x_new_indices = searchsorted(self._x_shift, x_new, side=self._side)
# 2. Clip x_new_indices so that they are within the range of x indices.
x_new_indices = x_new_indices.clip(1-self._ind,
len(self.x)-self._ind).astype(intp)
# 3. Calculate the actual value for each entry in x_new.
y_new = self._y[x_new_indices+self._ind-1]
return y_new
def _call_spline(self, x_new):
return self._spline(x_new)
def _call_nan_spline(self, x_new):
out = self._spline(x_new)
out[...] = np.nan
return out
def _evaluate(self, x_new):
# 1. Handle values in x_new that are outside of x. Throw error,
# or return a list of mask array indicating the outofbounds values.
# The behavior is set by the bounds_error variable.
x_new = asarray(x_new)
y_new = self._call(self, x_new)
if not self._extrapolate:
below_bounds, above_bounds = self._check_bounds(x_new)
if len(y_new) > 0:
# Note fill_value must be broadcast up to the proper size
# and flattened to work here
y_new[below_bounds] = self._fill_value_below
y_new[above_bounds] = self._fill_value_above
return y_new
def _check_bounds(self, x_new):
"""Check the inputs for being in the bounds of the interpolated data.
Parameters
----------
x_new : array
Returns
-------
out_of_bounds : bool array
The mask on x_new of values that are out of the bounds.
"""
# If self.bounds_error is True, we raise an error if any x_new values
# fall outside the range of x. Otherwise, we return an array indicating
# which values are outside the boundary region.
below_bounds = x_new < self.x[0]
above_bounds = x_new > self.x[-1]
if self.bounds_error and below_bounds.any():
below_bounds_value = x_new[np.argmax(below_bounds)]
raise ValueError(f"A value ({below_bounds_value}) in x_new is below "
f"the interpolation range's minimum value ({self.x[0]}).")
if self.bounds_error and above_bounds.any():
above_bounds_value = x_new[np.argmax(above_bounds)]
raise ValueError(f"A value ({above_bounds_value}) in x_new is above "
f"the interpolation range's maximum value ({self.x[-1]}).")
# !! Should we emit a warning if some values are out of bounds?
# !! matlab does not.
return below_bounds, above_bounds
class _PPolyBase:
"""Base class for piecewise polynomials."""
__slots__ = ('c', 'x', 'extrapolate', 'axis')
def __init__(self, c, x, extrapolate=None, axis=0):
self.c = np.asarray(c)
self.x = np.ascontiguousarray(x, dtype=np.float64)
if extrapolate is None:
extrapolate = True
elif extrapolate != 'periodic':
extrapolate = bool(extrapolate)
self.extrapolate = extrapolate
if self.c.ndim < 2:
raise ValueError("Coefficients array must be at least "
"2-dimensional.")
if not (0 <= axis < self.c.ndim - 1):
raise ValueError(f"axis={axis} must be between 0 and {self.c.ndim-1}")
self.axis = axis
if axis != 0:
# move the interpolation axis to be the first one in self.c
# More specifically, the target shape for self.c is (k, m, ...),
# and axis !=0 means that we have c.shape (..., k, m, ...)
# ^
# axis
# So we roll two of them.
self.c = np.moveaxis(self.c, axis+1, 0)
self.c = np.moveaxis(self.c, axis+1, 0)
if self.x.ndim != 1:
raise ValueError("x must be 1-dimensional")
if self.x.size < 2:
raise ValueError("at least 2 breakpoints are needed")
if self.c.ndim < 2:
raise ValueError("c must have at least 2 dimensions")
if self.c.shape[0] == 0:
raise ValueError("polynomial must be at least of order 0")
if self.c.shape[1] != self.x.size-1:
raise ValueError("number of coefficients != len(x)-1")
dx = np.diff(self.x)
if not (np.all(dx >= 0) or np.all(dx <= 0)):
raise ValueError("`x` must be strictly increasing or decreasing.")
dtype = self._get_dtype(self.c.dtype)
self.c = np.ascontiguousarray(self.c, dtype=dtype)
def _get_dtype(self, dtype):
if np.issubdtype(dtype, np.complexfloating) \
or np.issubdtype(self.c.dtype, np.complexfloating):
return np.complex128
else:
return np.float64
@classmethod
def construct_fast(cls, c, x, extrapolate=None, axis=0):
"""
Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
``c`` and ``x`` must be arrays of the correct shape and type. The
``c`` array can only be of dtypes float and complex, and ``x``
array must have dtype float.
"""
self = object.__new__(cls)
self.c = c
self.x = x
self.axis = axis
if extrapolate is None:
extrapolate = True
self.extrapolate = extrapolate
return self
def _ensure_c_contiguous(self):
"""
c and x may be modified by the user. The Cython code expects
that they are C contiguous.
"""
if not self.x.flags.c_contiguous:
self.x = self.x.copy()
if not self.c.flags.c_contiguous:
self.c = self.c.copy()
def extend(self, c, x):
"""
Add additional breakpoints and coefficients to the polynomial.
Parameters
----------
c : ndarray, size (k, m, ...)
Additional coefficients for polynomials in intervals. Note that
the first additional interval will be formed using one of the
``self.x`` end points.
x : ndarray, size (m,)
Additional breakpoints. Must be sorted in the same order as
``self.x`` and either to the right or to the left of the current
breakpoints.
"""
c = np.asarray(c)
x = np.asarray(x)
if c.ndim < 2:
raise ValueError("invalid dimensions for c")
if x.ndim != 1:
raise ValueError("invalid dimensions for x")
if x.shape[0] != c.shape[1]:
raise ValueError(f"Shapes of x {x.shape} and c {c.shape} are incompatible")
if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim:
raise ValueError("Shapes of c {} and self.c {} are incompatible"
.format(c.shape, self.c.shape))
if c.size == 0:
return
dx = np.diff(x)
if not (np.all(dx >= 0) or np.all(dx <= 0)):
raise ValueError("`x` is not sorted.")
if self.x[-1] >= self.x[0]:
if not x[-1] >= x[0]:
raise ValueError("`x` is in the different order "
"than `self.x`.")
if x[0] >= self.x[-1]:
action = 'append'
elif x[-1] <= self.x[0]:
action = 'prepend'
else:
raise ValueError("`x` is neither on the left or on the right "
"from `self.x`.")
else:
if not x[-1] <= x[0]:
raise ValueError("`x` is in the different order "
"than `self.x`.")
if x[0] <= self.x[-1]:
action = 'append'
elif x[-1] >= self.x[0]:
action = 'prepend'
else:
raise ValueError("`x` is neither on the left or on the right "
"from `self.x`.")
dtype = self._get_dtype(c.dtype)
k2 = max(c.shape[0], self.c.shape[0])
c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:],
dtype=dtype)
if action == 'append':
c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c
c2[k2-c.shape[0]:, self.c.shape[1]:] = c
self.x = np.r_[self.x, x]
elif action == 'prepend':
c2[k2-self.c.shape[0]:, :c.shape[1]] = c
c2[k2-c.shape[0]:, c.shape[1]:] = self.c
self.x = np.r_[x, self.x]
self.c = c2
def __call__(self, x, nu=0, extrapolate=None):
"""
Evaluate the piecewise polynomial or its derivative.
Parameters
----------
x : array_like
Points to evaluate the interpolant at.
nu : int, optional
Order of derivative to evaluate. Must be non-negative.
extrapolate : {bool, 'periodic', None}, optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If 'periodic', periodic extrapolation is used.
If None (default), use `self.extrapolate`.
Returns
-------
y : array_like
Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.
Notes
-----
Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
``[a, b)``, except for the last interval which is closed
``[a, b]``.
"""
if extrapolate is None:
extrapolate = self.extrapolate
x = np.asarray(x)
x_shape, x_ndim = x.shape, x.ndim
x = np.ascontiguousarray(x.ravel(), dtype=np.float64)
# With periodic extrapolation we map x to the segment
# [self.x[0], self.x[-1]].
if extrapolate == 'periodic':
x = self.x[0] + (x - self.x[0]) % (self.x[-1] - self.x[0])
extrapolate = False
out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype)
self._ensure_c_contiguous()
self._evaluate(x, nu, extrapolate, out)
out = out.reshape(x_shape + self.c.shape[2:])
if self.axis != 0:
# transpose to move the calculated values to the interpolation axis
l = list(range(out.ndim))
l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:]
out = out.transpose(l)
return out
class PPoly(_PPolyBase):
"""
Piecewise polynomial in terms of coefficients and breakpoints
The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the
local power basis::
S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1))
where ``k`` is the degree of the polynomial.
Parameters
----------
c : ndarray, shape (k, m, ...)
Polynomial coefficients, order `k` and `m` intervals.
x : ndarray, shape (m+1,)
Polynomial breakpoints. Must be sorted in either increasing or
decreasing order.
extrapolate : bool or 'periodic', optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs. If 'periodic',
periodic extrapolation is used. Default is True.
axis : int, optional
Interpolation axis. Default is zero.
Attributes
----------
x : ndarray
Breakpoints.
c : ndarray
Coefficients of the polynomials. They are reshaped
to a 3-D array with the last dimension representing
the trailing dimensions of the original coefficient array.
axis : int
Interpolation axis.
Methods
-------
__call__
derivative
antiderivative
integrate
solve
roots
extend
from_spline
from_bernstein_basis
construct_fast
See also
--------
BPoly : piecewise polynomials in the Bernstein basis
Notes
-----
High-order polynomials in the power basis can be numerically
unstable. Precision problems can start to appear for orders
larger than 20-30.
"""
def _evaluate(self, x, nu, extrapolate, out):
_ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
self.x, x, nu, bool(extrapolate), out)
def derivative(self, nu=1):
"""
Construct a new piecewise polynomial representing the derivative.
Parameters
----------
nu : int, optional
Order of derivative to evaluate. Default is 1, i.e., compute the
first derivative. If negative, the antiderivative is returned.
Returns
-------
pp : PPoly
Piecewise polynomial of order k2 = k - n representing the derivative
of this polynomial.
Notes
-----
Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
``[a, b)``, except for the last interval which is closed
``[a, b]``.
"""
if nu < 0:
return self.antiderivative(-nu)
# reduce order
if nu == 0:
c2 = self.c.copy()
else:
c2 = self.c[:-nu, :].copy()
if c2.shape[0] == 0:
# derivative of order 0 is zero
c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype)
# multiply by the correct rising factorials
factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu)
c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)]
# construct a compatible polynomial
return self.construct_fast(c2, self.x, self.extrapolate, self.axis)
def antiderivative(self, nu=1):
"""
Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function,
and derivative is its inverse operation.
Parameters
----------
nu : int, optional
Order of antiderivative to evaluate. Default is 1, i.e., compute
the first integral. If negative, the derivative is returned.
Returns
-------
pp : PPoly
Piecewise polynomial of order k2 = k + n representing
the antiderivative of this polynomial.
Notes
-----
The antiderivative returned by this function is continuous and
continuously differentiable to order n-1, up to floating point
rounding error.
If antiderivative is computed and ``self.extrapolate='periodic'``,
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.
"""
if nu <= 0:
return self.derivative(-nu)
c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:],
dtype=self.c.dtype)
c[:-nu] = self.c
# divide by the correct rising factorials
factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu)
c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)]
# fix continuity of added degrees of freedom
self._ensure_c_contiguous()
_ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1),
self.x, nu - 1)
if self.extrapolate == 'periodic':
extrapolate = False
else:
extrapolate = self.extrapolate
# construct a compatible polynomial
return self.construct_fast(c, self.x, extrapolate, self.axis)
def integrate(self, a, b, extrapolate=None):
"""
Compute a definite integral over a piecewise polynomial.
Parameters
----------
a : float
Lower integration bound
b : float
Upper integration bound
extrapolate : {bool, 'periodic', None}, optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If 'periodic', periodic extrapolation is used.
If None (default), use `self.extrapolate`.
Returns
-------
ig : array_like
Definite integral of the piecewise polynomial over [a, b]
"""
if extrapolate is None:
extrapolate = self.extrapolate
# Swap integration bounds if needed
sign = 1
if b < a:
a, b = b, a
sign = -1
range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype)
self._ensure_c_contiguous()
# Compute the integral.
if extrapolate == 'periodic':
# Split the integral into the part over period (can be several
# of them) and the remaining part.
xs, xe = self.x[0], self.x[-1]
period = xe - xs
interval = b - a
n_periods, left = divmod(interval, period)
if n_periods > 0:
_ppoly.integrate(
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
self.x, xs, xe, False, out=range_int)
range_int *= n_periods
else:
range_int.fill(0)
# Map a to [xs, xe], b is always a + left.
a = xs + (a - xs) % period
b = a + left
# If b <= xe then we need to integrate over [a, b], otherwise
# over [a, xe] and from xs to what is remained.
remainder_int = np.empty_like(range_int)
if b <= xe:
_ppoly.integrate(
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
self.x, a, b, False, out=remainder_int)
range_int += remainder_int
else:
_ppoly.integrate(
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
self.x, a, xe, False, out=remainder_int)
range_int += remainder_int
_ppoly.integrate(
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
self.x, xs, xs + left + a - xe, False, out=remainder_int)
range_int += remainder_int
else:
_ppoly.integrate(
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
self.x, a, b, bool(extrapolate), out=range_int)
# Return
range_int *= sign
return range_int.reshape(self.c.shape[2:])
def solve(self, y=0., discontinuity=True, extrapolate=None):
"""
Find real solutions of the equation ``pp(x) == y``.
Parameters
----------
y : float, optional
Right-hand side. Default is zero.
discontinuity : bool, optional
Whether to report sign changes across discontinuities at
breakpoints as roots.
extrapolate : {bool, 'periodic', None}, optional
If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, 'periodic' works
the same as False. If None (default), use `self.extrapolate`.
Returns
-------
roots : ndarray
Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.
Notes
-----
This routine works only on real-valued polynomials.
If the piecewise polynomial contains sections that are
identically zero, the root list will contain the start point
of the corresponding interval, followed by a ``nan`` value.
If the polynomial is discontinuous across a breakpoint, and
there is a sign change across the breakpoint, this is reported
if the `discont` parameter is True.
Examples
--------
Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals
``[-2, 1], [1, 2]``:
>>> import numpy as np
>>> from scipy.interpolate import PPoly
>>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2])
>>> pp.solve()
array([-1., 1.])
"""
if extrapolate is None:
extrapolate = self.extrapolate
self._ensure_c_contiguous()
if np.issubdtype(self.c.dtype, np.complexfloating):
raise ValueError("Root finding is only for "
"real-valued polynomials")
y = float(y)
r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
self.x, y, bool(discontinuity),
bool(extrapolate))
if self.c.ndim == 2:
return r[0]
else:
r2 = np.empty(prod(self.c.shape[2:]), dtype=object)
# this for-loop is equivalent to ``r2[...] = r``, but that's broken
# in NumPy 1.6.0
for ii, root in enumerate(r):
r2[ii] = root
return r2.reshape(self.c.shape[2:])
def roots(self, discontinuity=True, extrapolate=None):
"""
Find real roots of the piecewise polynomial.
Parameters
----------
discontinuity : bool, optional
Whether to report sign changes across discontinuities at
breakpoints as roots.
extrapolate : {bool, 'periodic', None}, optional
If bool, determines whether to return roots from the polynomial
extrapolated based on first and last intervals, 'periodic' works
the same as False. If None (default), use `self.extrapolate`.
Returns
-------
roots : ndarray
Roots of the polynomial(s).
If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an
ndarray containing the roots.
See Also
--------
PPoly.solve
"""
return self.solve(0, discontinuity, extrapolate)
@classmethod
def from_spline(cls, tck, extrapolate=None):
"""
Construct a piecewise polynomial from a spline
Parameters
----------
tck
A spline, as returned by `splrep` or a BSpline object.
extrapolate : bool or 'periodic', optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If 'periodic', periodic extrapolation is used. Default is True.
Examples
--------
Construct an interpolating spline and convert it to a `PPoly` instance
>>> import numpy as np
>>> from scipy.interpolate import splrep, PPoly
>>> x = np.linspace(0, 1, 11)
>>> y = np.sin(2*np.pi*x)
>>> tck = splrep(x, y, s=0)
>>> p = PPoly.from_spline(tck)
>>> isinstance(p, PPoly)
True
Note that this function only supports 1D splines out of the box.
If the ``tck`` object represents a parametric spline (e.g. constructed
by `splprep` or a `BSpline` with ``c.ndim > 1``), you will need to loop
over the dimensions manually.
>>> from scipy.interpolate import splprep, splev
>>> t = np.linspace(0, 1, 11)
>>> x = np.sin(2*np.pi*t)
>>> y = np.cos(2*np.pi*t)
>>> (t, c, k), u = splprep([x, y], s=0)
Note that ``c`` is a list of two arrays of length 11.
>>> unew = np.arange(0, 1.01, 0.01)
>>> out = splev(unew, (t, c, k))
To convert this spline to the power basis, we convert each
component of the list of b-spline coefficients, ``c``, into the
corresponding cubic polynomial.
>>> polys = [PPoly.from_spline((t, cj, k)) for cj in c]
>>> polys[0].c.shape
(4, 14)
Note that the coefficients of the polynomials `polys` are in the
power basis and their dimensions reflect just that: here 4 is the order
(degree+1), and 14 is the number of intervals---which is nothing but
the length of the knot array of the original `tck` minus one.
Optionally, we can stack the components into a single `PPoly` along
the third dimension:
>>> cc = np.dstack([p.c for p in polys]) # has shape = (4, 14, 2)
>>> poly = PPoly(cc, polys[0].x)
>>> np.allclose(poly(unew).T, # note the transpose to match `splev`
... out, atol=1e-15)
True
"""
if isinstance(tck, BSpline):
t, c, k = tck.tck
if extrapolate is None:
extrapolate = tck.extrapolate
else:
t, c, k = tck
cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype)
for m in range(k, -1, -1):
y = _fitpack_py.splev(t[:-1], tck, der=m)
cvals[k - m, :] = y/spec.gamma(m+1)
return cls.construct_fast(cvals, t, extrapolate)
@classmethod
def from_bernstein_basis(cls, bp, extrapolate=None):
"""
Construct a piecewise polynomial in the power basis
from a polynomial in Bernstein basis.
Parameters
----------
bp : BPoly
A Bernstein basis polynomial, as created by BPoly
extrapolate : bool or 'periodic', optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If 'periodic', periodic extrapolation is used. Default is True.
"""
if not isinstance(bp, BPoly):
raise TypeError(".from_bernstein_basis only accepts BPoly instances. "
"Got %s instead." % type(bp))
dx = np.diff(bp.x)
k = bp.c.shape[0] - 1 # polynomial order
rest = (None,)*(bp.c.ndim-2)
c = np.zeros_like(bp.c)
for a in range(k+1):
factor = (-1)**a * comb(k, a) * bp.c[a]
for s in range(a, k+1):
val = comb(k-a, s-a) * (-1)**s
c[k-s] += factor * val / dx[(slice(None),)+rest]**s
if extrapolate is None:
extrapolate = bp.extrapolate
return cls.construct_fast(c, bp.x, extrapolate, bp.axis)
class BPoly(_PPolyBase):
"""Piecewise polynomial in terms of coefficients and breakpoints.
The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the
Bernstein polynomial basis::
S = sum(c[a, i] * b(a, k; x) for a in range(k+1)),
where ``k`` is the degree of the polynomial, and::
b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a),
with ``t = (x - x[i]) / (x[i+1] - x[i])`` and ``binom`` is the binomial
coefficient.
Parameters
----------
c : ndarray, shape (k, m, ...)
Polynomial coefficients, order `k` and `m` intervals
x : ndarray, shape (m+1,)
Polynomial breakpoints. Must be sorted in either increasing or
decreasing order.
extrapolate : bool, optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs. If 'periodic',
periodic extrapolation is used. Default is True.
axis : int, optional
Interpolation axis. Default is zero.
Attributes
----------
x : ndarray
Breakpoints.
c : ndarray
Coefficients of the polynomials. They are reshaped
to a 3-D array with the last dimension representing
the trailing dimensions of the original coefficient array.
axis : int
Interpolation axis.
Methods
-------
__call__
extend
derivative
antiderivative
integrate
construct_fast
from_power_basis
from_derivatives
See also
--------
PPoly : piecewise polynomials in the power basis
Notes
-----
Properties of Bernstein polynomials are well documented in the literature,
see for example [1]_ [2]_ [3]_.
References
----------
.. [1] https://en.wikipedia.org/wiki/Bernstein_polynomial
.. [2] Kenneth I. Joy, Bernstein polynomials,
http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
.. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems,
vol 2011, article ID 829546, :doi:`10.1155/2011/829543`.
Examples
--------
>>> from scipy.interpolate import BPoly
>>> x = [0, 1]
>>> c = [[1], [2], [3]]
>>> bp = BPoly(c, x)
This creates a 2nd order polynomial
.. math::
B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3
\\times b_{2, 2}(x) \\\\
= 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2
""" # noqa: E501
def _evaluate(self, x, nu, extrapolate, out):
_ppoly.evaluate_bernstein(
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
self.x, x, nu, bool(extrapolate), out)
def derivative(self, nu=1):
"""
Construct a new piecewise polynomial representing the derivative.
Parameters
----------
nu : int, optional
Order of derivative to evaluate. Default is 1, i.e., compute the
first derivative. If negative, the antiderivative is returned.
Returns
-------
bp : BPoly
Piecewise polynomial of order k - nu representing the derivative of
this polynomial.
"""
if nu < 0:
return self.antiderivative(-nu)
if nu > 1:
bp = self
for k in range(nu):
bp = bp.derivative()
return bp
# reduce order
if nu == 0:
c2 = self.c.copy()
else:
# For a polynomial
# B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x),
# we use the fact that
# b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ),
# which leads to
# B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1}
#
# finally, for an interval [y, y + dy] with dy != 1,
# we need to correct for an extra power of dy
rest = (None,)*(self.c.ndim-2)
k = self.c.shape[0] - 1
dx = np.diff(self.x)[(None, slice(None))+rest]
c2 = k * np.diff(self.c, axis=0) / dx
if c2.shape[0] == 0:
# derivative of order 0 is zero
c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype)
# construct a compatible polynomial
return self.construct_fast(c2, self.x, self.extrapolate, self.axis)
def antiderivative(self, nu=1):
"""
Construct a new piecewise polynomial representing the antiderivative.
Parameters
----------
nu : int, optional
Order of antiderivative to evaluate. Default is 1, i.e., compute
the first integral. If negative, the derivative is returned.
Returns
-------
bp : BPoly
Piecewise polynomial of order k + nu representing the
antiderivative of this polynomial.
Notes
-----
If antiderivative is computed and ``self.extrapolate='periodic'``,
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.
"""
if nu <= 0:
return self.derivative(-nu)
if nu > 1:
bp = self
for k in range(nu):
bp = bp.antiderivative()
return bp
# Construct the indefinite integrals on individual intervals
c, x = self.c, self.x
k = c.shape[0]
c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype)
c2[1:, ...] = np.cumsum(c, axis=0) / k
delta = x[1:] - x[:-1]
c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)]
# Now fix continuity: on the very first interval, take the integration
# constant to be zero; on an interval [x_j, x_{j+1}) with j>0,
# the integration constant is then equal to the jump of the `bp` at x_j.
# The latter is given by the coefficient of B_{n+1, n+1}
# *on the previous interval* (other B. polynomials are zero at the
# breakpoint). Finally, use the fact that BPs form a partition of unity.
c2[:,1:] += np.cumsum(c2[k, :], axis=0)[:-1]
if self.extrapolate == 'periodic':
extrapolate = False
else:
extrapolate = self.extrapolate
return self.construct_fast(c2, x, extrapolate, axis=self.axis)
def integrate(self, a, b, extrapolate=None):
"""
Compute a definite integral over a piecewise polynomial.
Parameters
----------
a : float
Lower integration bound
b : float
Upper integration bound
extrapolate : {bool, 'periodic', None}, optional
Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs. If 'periodic', periodic
extrapolation is used. If None (default), use `self.extrapolate`.
Returns
-------
array_like
Definite integral of the piecewise polynomial over [a, b]
"""
# XXX: can probably use instead the fact that
# \int_0^{1} B_{j, n}(x) \dx = 1/(n+1)
ib = self.antiderivative()
if extrapolate is None:
extrapolate = self.extrapolate
# ib.extrapolate shouldn't be 'periodic', it is converted to
# False for 'periodic. in antiderivative() call.
if extrapolate != 'periodic':
ib.extrapolate = extrapolate
if extrapolate == 'periodic':
# Split the integral into the part over period (can be several
# of them) and the remaining part.
# For simplicity and clarity convert to a <= b case.
if a <= b:
sign = 1
else:
a, b = b, a
sign = -1
xs, xe = self.x[0], self.x[-1]
period = xe - xs
interval = b - a
n_periods, left = divmod(interval, period)
res = n_periods * (ib(xe) - ib(xs))
# Map a and b to [xs, xe].
a = xs + (a - xs) % period
b = a + left
# If b <= xe then we need to integrate over [a, b], otherwise
# over [a, xe] and from xs to what is remained.
if b <= xe:
res += ib(b) - ib(a)
else:
res += ib(xe) - ib(a) + ib(xs + left + a - xe) - ib(xs)
return sign * res
else:
return ib(b) - ib(a)
def extend(self, c, x):
k = max(self.c.shape[0], c.shape[0])
self.c = self._raise_degree(self.c, k - self.c.shape[0])
c = self._raise_degree(c, k - c.shape[0])
return _PPolyBase.extend(self, c, x)
extend.__doc__ = _PPolyBase.extend.__doc__
@classmethod
def from_power_basis(cls, pp, extrapolate=None):
"""
Construct a piecewise polynomial in Bernstein basis
from a power basis polynomial.
Parameters
----------
pp : PPoly
A piecewise polynomial in the power basis
extrapolate : bool or 'periodic', optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If 'periodic', periodic extrapolation is used. Default is True.
"""
if not isinstance(pp, PPoly):
raise TypeError(".from_power_basis only accepts PPoly instances. "
"Got %s instead." % type(pp))
dx = np.diff(pp.x)
k = pp.c.shape[0] - 1 # polynomial order
rest = (None,)*(pp.c.ndim-2)
c = np.zeros_like(pp.c)
for a in range(k+1):
factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a)
for j in range(k-a, k+1):
c[j] += factor * comb(j, k-a)
if extrapolate is None:
extrapolate = pp.extrapolate
return cls.construct_fast(c, pp.x, extrapolate, pp.axis)
@classmethod
def from_derivatives(cls, xi, yi, orders=None, extrapolate=None):
"""Construct a piecewise polynomial in the Bernstein basis,
compatible with the specified values and derivatives at breakpoints.
Parameters
----------
xi : array_like
sorted 1-D array of x-coordinates
yi : array_like or list of array_likes
``yi[i][j]`` is the ``j``\\ th derivative known at ``xi[i]``
orders : None or int or array_like of ints. Default: None.
Specifies the degree of local polynomials. If not None, some
derivatives are ignored.
extrapolate : bool or 'periodic', optional
If bool, determines whether to extrapolate to out-of-bounds points
based on first and last intervals, or to return NaNs.
If 'periodic', periodic extrapolation is used. Default is True.
Notes
-----
If ``k`` derivatives are specified at a breakpoint ``x``, the
constructed polynomial is exactly ``k`` times continuously
differentiable at ``x``, unless the ``order`` is provided explicitly.
In the latter case, the smoothness of the polynomial at
the breakpoint is controlled by the ``order``.
Deduces the number of derivatives to match at each end
from ``order`` and the number of derivatives available. If
possible it uses the same number of derivatives from
each end; if the number is odd it tries to take the
extra one from y2. In any case if not enough derivatives
are available at one end or another it draws enough to
make up the total from the other end.
If the order is too high and not enough derivatives are available,
an exception is raised.
Examples
--------
>>> from scipy.interpolate import BPoly
>>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]])
Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]`
such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4`
>>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]])
Creates a piecewise polynomial `f(x)`, such that
`f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`.
Based on the number of derivatives provided, the order of the
local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`.
Notice that no restriction is imposed on the derivatives at
``x = 1`` and ``x = 2``.
Indeed, the explicit form of the polynomial is::
f(x) = | x * (1 - x), 0 <= x < 1
| 2 * (x - 1), 1 <= x <= 2
So that f'(1-0) = -1 and f'(1+0) = 2
"""
xi = np.asarray(xi)
if len(xi) != len(yi):
raise ValueError("xi and yi need to have the same length")
if np.any(xi[1:] - xi[:1] <= 0):
raise ValueError("x coordinates are not in increasing order")
# number of intervals
m = len(xi) - 1
# global poly order is k-1, local orders are <=k and can vary
try:
k = max(len(yi[i]) + len(yi[i+1]) for i in range(m))
except TypeError as e:
raise ValueError(
"Using a 1-D array for y? Please .reshape(-1, 1)."
) from e
if orders is None:
orders = [None] * m
else:
if isinstance(orders, (int, np.integer)):
orders = [orders] * m
k = max(k, max(orders))
if any(o <= 0 for o in orders):
raise ValueError("Orders must be positive.")
c = []
for i in range(m):
y1, y2 = yi[i], yi[i+1]
if orders[i] is None:
n1, n2 = len(y1), len(y2)
else:
n = orders[i]+1
n1 = min(n//2, len(y1))
n2 = min(n - n1, len(y2))
n1 = min(n - n2, len(y2))
if n1+n2 != n:
mesg = ("Point %g has %d derivatives, point %g"
" has %d derivatives, but order %d requested" % (
xi[i], len(y1), xi[i+1], len(y2), orders[i]))
raise ValueError(mesg)
if not (n1 <= len(y1) and n2 <= len(y2)):
raise ValueError("`order` input incompatible with"
" length y1 or y2.")
b = BPoly._construct_from_derivatives(xi[i], xi[i+1],
y1[:n1], y2[:n2])
if len(b) < k:
b = BPoly._raise_degree(b, k - len(b))
c.append(b)
c = np.asarray(c)
return cls(c.swapaxes(0, 1), xi, extrapolate)
@staticmethod
def _construct_from_derivatives(xa, xb, ya, yb):
r"""Compute the coefficients of a polynomial in the Bernstein basis
given the values and derivatives at the edges.
Return the coefficients of a polynomial in the Bernstein basis
defined on ``[xa, xb]`` and having the values and derivatives at the
endpoints `xa` and `xb` as specified by `ya` and `yb`.
The polynomial constructed is of the minimal possible degree, i.e.,
if the lengths of `ya` and `yb` are `na` and `nb`, the degree
of the polynomial is ``na + nb - 1``.
Parameters
----------
xa : float
Left-hand end point of the interval
xb : float
Right-hand end point of the interval
ya : array_like
Derivatives at `xa`. ``ya[0]`` is the value of the function, and
``ya[i]`` for ``i > 0`` is the value of the ``i``\ th derivative.
yb : array_like
Derivatives at `xb`.
Returns
-------
array
coefficient array of a polynomial having specified derivatives
Notes
-----
This uses several facts from life of Bernstein basis functions.
First of all,
.. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1})
If B(x) is a linear combination of the form
.. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n},
then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}.
Iterating the latter one, one finds for the q-th derivative
.. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q},
with
.. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a}
This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and
`c_q` are found one by one by iterating `q = 0, ..., na`.
At ``x = xb`` it's the same with ``a = n - q``.
"""
ya, yb = np.asarray(ya), np.asarray(yb)
if ya.shape[1:] != yb.shape[1:]:
raise ValueError('Shapes of ya {} and yb {} are incompatible'
.format(ya.shape, yb.shape))
dta, dtb = ya.dtype, yb.dtype
if (np.issubdtype(dta, np.complexfloating) or
np.issubdtype(dtb, np.complexfloating)):
dt = np.complex128
else:
dt = np.float64
na, nb = len(ya), len(yb)
n = na + nb
c = np.empty((na+nb,) + ya.shape[1:], dtype=dt)
# compute coefficients of a polynomial degree na+nb-1
# walk left-to-right
for q in range(0, na):
c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q
for j in range(0, q):
c[q] -= (-1)**(j+q) * comb(q, j) * c[j]
# now walk right-to-left
for q in range(0, nb):
c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q
for j in range(0, q):
c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j]
return c
@staticmethod
def _raise_degree(c, d):
r"""Raise a degree of a polynomial in the Bernstein basis.
Given the coefficients of a polynomial degree `k`, return (the
coefficients of) the equivalent polynomial of degree `k+d`.
Parameters
----------
c : array_like
coefficient array, 1-D
d : integer
Returns
-------
array
coefficient array, 1-D array of length `c.shape[0] + d`
Notes
-----
This uses the fact that a Bernstein polynomial `b_{a, k}` can be
identically represented as a linear combination of polynomials of
a higher degree `k+d`:
.. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \
comb(d, j) / comb(k+d, a+j)
"""
if d == 0:
return c
k = c.shape[0] - 1
out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype)
for a in range(c.shape[0]):
f = c[a] * comb(k, a)
for j in range(d+1):
out[a+j] += f * comb(d, j) / comb(k+d, a+j)
return out
class NdPPoly:
"""
Piecewise tensor product polynomial
The value at point ``xp = (x', y', z', ...)`` is evaluated by first
computing the interval indices `i` such that::
x[0][i[0]] <= x' < x[0][i[0]+1]
x[1][i[1]] <= y' < x[1][i[1]+1]
...
and then computing::
S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]]
* (xp[0] - x[0][i[0]])**m0
* ...
* (xp[n] - x[n][i[n]])**mn
for m0 in range(k[0]+1)
...
for mn in range(k[n]+1))
where ``k[j]`` is the degree of the polynomial in dimension j. This
representation is the piecewise multivariate power basis.
Parameters
----------
c : ndarray, shape (k0, ..., kn, m0, ..., mn, ...)
Polynomial coefficients, with polynomial order `kj` and
`mj+1` intervals for each dimension `j`.
x : ndim-tuple of ndarrays, shapes (mj+1,)
Polynomial breakpoints for each dimension. These must be
sorted in increasing order.
extrapolate : bool, optional
Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs. Default: True.
Attributes
----------
x : tuple of ndarrays
Breakpoints.
c : ndarray
Coefficients of the polynomials.
Methods
-------
__call__
derivative
antiderivative
integrate
integrate_1d
construct_fast
See also
--------
PPoly : piecewise polynomials in 1D
Notes
-----
High-order polynomials in the power basis can be numerically
unstable.
"""
def __init__(self, c, x, extrapolate=None):
self.x = tuple(np.ascontiguousarray(v, dtype=np.float64) for v in x)
self.c = np.asarray(c)
if extrapolate is None:
extrapolate = True
self.extrapolate = bool(extrapolate)
ndim = len(self.x)
if any(v.ndim != 1 for v in self.x):
raise ValueError("x arrays must all be 1-dimensional")
if any(v.size < 2 for v in self.x):
raise ValueError("x arrays must all contain at least 2 points")
if c.ndim < 2*ndim:
raise ValueError("c must have at least 2*len(x) dimensions")
if any(np.any(v[1:] - v[:-1] < 0) for v in self.x):
raise ValueError("x-coordinates are not in increasing order")
if any(a != b.size - 1 for a, b in zip(c.shape[ndim:2*ndim], self.x)):
raise ValueError("x and c do not agree on the number of intervals")
dtype = self._get_dtype(self.c.dtype)
self.c = np.ascontiguousarray(self.c, dtype=dtype)
@classmethod
def construct_fast(cls, c, x, extrapolate=None):
"""
Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
``c`` and ``x`` must be arrays of the correct shape and type. The
``c`` array can only be of dtypes float and complex, and ``x``
array must have dtype float.
"""
self = object.__new__(cls)
self.c = c
self.x = x
if extrapolate is None:
extrapolate = True
self.extrapolate = extrapolate
return self
def _get_dtype(self, dtype):
if np.issubdtype(dtype, np.complexfloating) \
or np.issubdtype(self.c.dtype, np.complexfloating):
return np.complex128
else:
return np.float64
def _ensure_c_contiguous(self):
if not self.c.flags.c_contiguous:
self.c = self.c.copy()
if not isinstance(self.x, tuple):
self.x = tuple(self.x)
def __call__(self, x, nu=None, extrapolate=None):
"""
Evaluate the piecewise polynomial or its derivative
Parameters
----------
x : array-like
Points to evaluate the interpolant at.
nu : tuple, optional
Orders of derivatives to evaluate. Each must be non-negative.
extrapolate : bool, optional
Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs.
Returns
-------
y : array-like
Interpolated values. Shape is determined by replacing
the interpolation axis in the original array with the shape of x.
Notes
-----
Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals are considered half-open,
``[a, b)``, except for the last interval which is closed
``[a, b]``.
"""
if extrapolate is None:
extrapolate = self.extrapolate
else:
extrapolate = bool(extrapolate)
ndim = len(self.x)
x = _ndim_coords_from_arrays(x)
x_shape = x.shape
x = np.ascontiguousarray(x.reshape(-1, x.shape[-1]), dtype=np.float64)
if nu is None:
nu = np.zeros((ndim,), dtype=np.intc)
else:
nu = np.asarray(nu, dtype=np.intc)
if nu.ndim != 1 or nu.shape[0] != ndim:
raise ValueError("invalid number of derivative orders nu")
dim1 = prod(self.c.shape[:ndim])
dim2 = prod(self.c.shape[ndim:2*ndim])
dim3 = prod(self.c.shape[2*ndim:])
ks = np.array(self.c.shape[:ndim], dtype=np.intc)
out = np.empty((x.shape[0], dim3), dtype=self.c.dtype)
self._ensure_c_contiguous()
_ppoly.evaluate_nd(self.c.reshape(dim1, dim2, dim3),
self.x,
ks,
x,
nu,
bool(extrapolate),
out)
return out.reshape(x_shape[:-1] + self.c.shape[2*ndim:])
def _derivative_inplace(self, nu, axis):
"""
Compute 1-D derivative along a selected dimension in-place
May result to non-contiguous c array.
"""
if nu < 0:
return self._antiderivative_inplace(-nu, axis)
ndim = len(self.x)
axis = axis % ndim
# reduce order
if nu == 0:
# noop
return
else:
sl = [slice(None)]*ndim
sl[axis] = slice(None, -nu, None)
c2 = self.c[tuple(sl)]
if c2.shape[axis] == 0:
# derivative of order 0 is zero
shp = list(c2.shape)
shp[axis] = 1
c2 = np.zeros(shp, dtype=c2.dtype)
# multiply by the correct rising factorials
factor = spec.poch(np.arange(c2.shape[axis], 0, -1), nu)
sl = [None]*c2.ndim
sl[axis] = slice(None)
c2 *= factor[tuple(sl)]
self.c = c2
def _antiderivative_inplace(self, nu, axis):
"""
Compute 1-D antiderivative along a selected dimension
May result to non-contiguous c array.
"""
if nu <= 0:
return self._derivative_inplace(-nu, axis)
ndim = len(self.x)
axis = axis % ndim
perm = list(range(ndim))
perm[0], perm[axis] = perm[axis], perm[0]
perm = perm + list(range(ndim, self.c.ndim))
c = self.c.transpose(perm)
c2 = np.zeros((c.shape[0] + nu,) + c.shape[1:],
dtype=c.dtype)
c2[:-nu] = c
# divide by the correct rising factorials
factor = spec.poch(np.arange(c.shape[0], 0, -1), nu)
c2[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)]
# fix continuity of added degrees of freedom
perm2 = list(range(c2.ndim))
perm2[1], perm2[ndim+axis] = perm2[ndim+axis], perm2[1]
c2 = c2.transpose(perm2)
c2 = c2.copy()
_ppoly.fix_continuity(c2.reshape(c2.shape[0], c2.shape[1], -1),
self.x[axis], nu-1)
c2 = c2.transpose(perm2)
c2 = c2.transpose(perm)
# Done
self.c = c2
def derivative(self, nu):
"""
Construct a new piecewise polynomial representing the derivative.
Parameters
----------
nu : ndim-tuple of int
Order of derivatives to evaluate for each dimension.
If negative, the antiderivative is returned.
Returns
-------
pp : NdPPoly
Piecewise polynomial of orders (k[0] - nu[0], ..., k[n] - nu[n])
representing the derivative of this polynomial.
Notes
-----
Derivatives are evaluated piecewise for each polynomial
segment, even if the polynomial is not differentiable at the
breakpoints. The polynomial intervals in each dimension are
considered half-open, ``[a, b)``, except for the last interval
which is closed ``[a, b]``.
"""
p = self.construct_fast(self.c.copy(), self.x, self.extrapolate)
for axis, n in enumerate(nu):
p._derivative_inplace(n, axis)
p._ensure_c_contiguous()
return p
def antiderivative(self, nu):
"""
Construct a new piecewise polynomial representing the antiderivative.
Antiderivative is also the indefinite integral of the function,
and derivative is its inverse operation.
Parameters
----------
nu : ndim-tuple of int
Order of derivatives to evaluate for each dimension.
If negative, the derivative is returned.
Returns
-------
pp : PPoly
Piecewise polynomial of order k2 = k + n representing
the antiderivative of this polynomial.
Notes
-----
The antiderivative returned by this function is continuous and
continuously differentiable to order n-1, up to floating point
rounding error.
"""
p = self.construct_fast(self.c.copy(), self.x, self.extrapolate)
for axis, n in enumerate(nu):
p._antiderivative_inplace(n, axis)
p._ensure_c_contiguous()
return p
def integrate_1d(self, a, b, axis, extrapolate=None):
r"""
Compute NdPPoly representation for one dimensional definite integral
The result is a piecewise polynomial representing the integral:
.. math::
p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...)
where the dimension integrated over is specified with the
`axis` parameter.
Parameters
----------
a, b : float
Lower and upper bound for integration.
axis : int
Dimension over which to compute the 1-D integrals
extrapolate : bool, optional
Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs.
Returns
-------
ig : NdPPoly or array-like
Definite integral of the piecewise polynomial over [a, b].
If the polynomial was 1D, an array is returned,
otherwise, an NdPPoly object.
"""
if extrapolate is None:
extrapolate = self.extrapolate
else:
extrapolate = bool(extrapolate)
ndim = len(self.x)
axis = int(axis) % ndim
# reuse 1-D integration routines
c = self.c
swap = list(range(c.ndim))
swap.insert(0, swap[axis])
del swap[axis + 1]
swap.insert(1, swap[ndim + axis])
del swap[ndim + axis + 1]
c = c.transpose(swap)
p = PPoly.construct_fast(c.reshape(c.shape[0], c.shape[1], -1),
self.x[axis],
extrapolate=extrapolate)
out = p.integrate(a, b, extrapolate=extrapolate)
# Construct result
if ndim == 1:
return out.reshape(c.shape[2:])
else:
c = out.reshape(c.shape[2:])
x = self.x[:axis] + self.x[axis+1:]
return self.construct_fast(c, x, extrapolate=extrapolate)
def integrate(self, ranges, extrapolate=None):
"""
Compute a definite integral over a piecewise polynomial.
Parameters
----------
ranges : ndim-tuple of 2-tuples float
Sequence of lower and upper bounds for each dimension,
``[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]``
extrapolate : bool, optional
Whether to extrapolate to out-of-bounds points based on first
and last intervals, or to return NaNs.
Returns
-------
ig : array_like
Definite integral of the piecewise polynomial over
[a[0], b[0]] x ... x [a[ndim-1], b[ndim-1]]
"""
ndim = len(self.x)
if extrapolate is None:
extrapolate = self.extrapolate
else:
extrapolate = bool(extrapolate)
if not hasattr(ranges, '__len__') or len(ranges) != ndim:
raise ValueError("Range not a sequence of correct length")
self._ensure_c_contiguous()
# Reuse 1D integration routine
c = self.c
for n, (a, b) in enumerate(ranges):
swap = list(range(c.ndim))
swap.insert(1, swap[ndim - n])
del swap[ndim - n + 1]
c = c.transpose(swap)
p = PPoly.construct_fast(c, self.x[n], extrapolate=extrapolate)
out = p.integrate(a, b, extrapolate=extrapolate)
c = out.reshape(c.shape[2:])
return c