Traktor/myenv/Lib/site-packages/sympy/series/limitseq.py

258 lines
7.6 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
"""Limits of sequences"""
from sympy.calculus.accumulationbounds import AccumulationBounds
from sympy.core.add import Add
from sympy.core.function import PoleError
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.numbers import fibonacci
from sympy.functions.combinatorial.factorials import factorial, subfactorial
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import Max, Min
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.series.limits import Limit
def difference_delta(expr, n=None, step=1):
"""Difference Operator.
Explanation
===========
Discrete analog of differential operator. Given a sequence x[n],
returns the sequence x[n + step] - x[n].
Examples
========
>>> from sympy import difference_delta as dd
>>> from sympy.abc import n
>>> dd(n*(n + 1), n)
2*n + 2
>>> dd(n*(n + 1), n, 2)
4*n + 6
References
==========
.. [1] https://reference.wolfram.com/language/ref/DifferenceDelta.html
"""
expr = sympify(expr)
if n is None:
f = expr.free_symbols
if len(f) == 1:
n = f.pop()
elif len(f) == 0:
return S.Zero
else:
raise ValueError("Since there is more than one variable in the"
" expression, a variable must be supplied to"
" take the difference of %s" % expr)
step = sympify(step)
if step.is_number is False or step.is_finite is False:
raise ValueError("Step should be a finite number.")
if hasattr(expr, '_eval_difference_delta'):
result = expr._eval_difference_delta(n, step)
if result:
return result
return expr.subs(n, n + step) - expr
def dominant(expr, n):
"""Finds the dominant term in a sum, that is a term that dominates
every other term.
Explanation
===========
If limit(a/b, n, oo) is oo then a dominates b.
If limit(a/b, n, oo) is 0 then b dominates a.
Otherwise, a and b are comparable.
If there is no unique dominant term, then returns ``None``.
Examples
========
>>> from sympy import Sum
>>> from sympy.series.limitseq import dominant
>>> from sympy.abc import n, k
>>> dominant(5*n**3 + 4*n**2 + n + 1, n)
5*n**3
>>> dominant(2**n + Sum(k, (k, 0, n)), n)
2**n
See Also
========
sympy.series.limitseq.dominant
"""
terms = Add.make_args(expr.expand(func=True))
term0 = terms[-1]
comp = [term0] # comparable terms
for t in terms[:-1]:
r = term0/t
e = r.gammasimp()
if e == r:
e = r.factor()
l = limit_seq(e, n)
if l is None:
return None
elif l.is_zero:
term0 = t
comp = [term0]
elif l not in [S.Infinity, S.NegativeInfinity]:
comp.append(t)
if len(comp) > 1:
return None
return term0
def _limit_inf(expr, n):
try:
return Limit(expr, n, S.Infinity).doit(deep=False)
except (NotImplementedError, PoleError):
return None
def _limit_seq(expr, n, trials):
from sympy.concrete.summations import Sum
for i in range(trials):
if not expr.has(Sum):
result = _limit_inf(expr, n)
if result is not None:
return result
num, den = expr.as_numer_denom()
if not den.has(n) or not num.has(n):
result = _limit_inf(expr.doit(), n)
if result is not None:
return result
return None
num, den = (difference_delta(t.expand(), n) for t in [num, den])
expr = (num / den).gammasimp()
if not expr.has(Sum):
result = _limit_inf(expr, n)
if result is not None:
return result
num, den = expr.as_numer_denom()
num = dominant(num, n)
if num is None:
return None
den = dominant(den, n)
if den is None:
return None
expr = (num / den).gammasimp()
def limit_seq(expr, n=None, trials=5):
"""Finds the limit of a sequence as index ``n`` tends to infinity.
Parameters
==========
expr : Expr
SymPy expression for the ``n-th`` term of the sequence
n : Symbol, optional
The index of the sequence, an integer that tends to positive
infinity. If None, inferred from the expression unless it has
multiple symbols.
trials: int, optional
The algorithm is highly recursive. ``trials`` is a safeguard from
infinite recursion in case the limit is not easily computed by the
algorithm. Try increasing ``trials`` if the algorithm returns ``None``.
Admissible Terms
================
The algorithm is designed for sequences built from rational functions,
indefinite sums, and indefinite products over an indeterminate n. Terms of
alternating sign are also allowed, but more complex oscillatory behavior is
not supported.
Examples
========
>>> from sympy import limit_seq, Sum, binomial
>>> from sympy.abc import n, k, m
>>> limit_seq((5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5), n)
5/3
>>> limit_seq(binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n)), n)
3/4
>>> limit_seq(Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n), n)
4
See Also
========
sympy.series.limitseq.dominant
References
==========
.. [1] Computing Limits of Sequences - Manuel Kauers
"""
from sympy.concrete.summations import Sum
if n is None:
free = expr.free_symbols
if len(free) == 1:
n = free.pop()
elif not free:
return expr
else:
raise ValueError("Expression has more than one variable. "
"Please specify a variable.")
elif n not in expr.free_symbols:
return expr
expr = expr.rewrite(fibonacci, S.GoldenRatio)
expr = expr.rewrite(factorial, subfactorial, gamma)
n_ = Dummy("n", integer=True, positive=True)
n1 = Dummy("n", odd=True, positive=True)
n2 = Dummy("n", even=True, positive=True)
# If there is a negative term raised to a power involving n, or a
# trigonometric function, then consider even and odd n separately.
powers = (p.as_base_exp() for p in expr.atoms(Pow))
if (any(b.is_negative and e.has(n) for b, e in powers) or
expr.has(cos, sin)):
L1 = _limit_seq(expr.xreplace({n: n1}), n1, trials)
if L1 is not None:
L2 = _limit_seq(expr.xreplace({n: n2}), n2, trials)
if L1 != L2:
if L1.is_comparable and L2.is_comparable:
return AccumulationBounds(Min(L1, L2), Max(L1, L2))
else:
return None
else:
L1 = _limit_seq(expr.xreplace({n: n_}), n_, trials)
if L1 is not None:
return L1
else:
if expr.is_Add:
limits = [limit_seq(term, n, trials) for term in expr.args]
if any(result is None for result in limits):
return None
else:
return Add(*limits)
# Maybe the absolute value is easier to deal with (though not if
# it has a Sum). If it tends to 0, the limit is 0.
elif not expr.has(Sum):
lim = _limit_seq(Abs(expr.xreplace({n: n_})), n_, trials)
if lim is not None and lim.is_zero:
return S.Zero