Traktor/myenv/Lib/site-packages/pandas/tests/extension/base/interface.py

138 lines
4.6 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
import numpy as np
import pytest
from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
from pandas.core.dtypes.common import is_extension_array_dtype
from pandas.core.dtypes.dtypes import ExtensionDtype
import pandas as pd
import pandas._testing as tm
class BaseInterfaceTests:
"""Tests that the basic interface is satisfied."""
# ------------------------------------------------------------------------
# Interface
# ------------------------------------------------------------------------
def test_len(self, data):
assert len(data) == 100
def test_size(self, data):
assert data.size == 100
def test_ndim(self, data):
assert data.ndim == 1
def test_can_hold_na_valid(self, data):
# GH-20761
assert data._can_hold_na is True
def test_contains(self, data, data_missing):
# GH-37867
# Tests for membership checks. Membership checks for nan-likes is tricky and
# the settled on rule is: `nan_like in arr` is True if nan_like is
# arr.dtype.na_value and arr.isna().any() is True. Else the check returns False.
na_value = data.dtype.na_value
# ensure data without missing values
data = data[~data.isna()]
# first elements are non-missing
assert data[0] in data
assert data_missing[0] in data_missing
# check the presence of na_value
assert na_value in data_missing
assert na_value not in data
# the data can never contain other nan-likes than na_value
for na_value_obj in tm.NULL_OBJECTS:
if na_value_obj is na_value or type(na_value_obj) == type(na_value):
# type check for e.g. two instances of Decimal("NAN")
continue
assert na_value_obj not in data
assert na_value_obj not in data_missing
def test_memory_usage(self, data):
s = pd.Series(data)
result = s.memory_usage(index=False)
assert result == s.nbytes
def test_array_interface(self, data):
result = np.array(data)
assert result[0] == data[0]
result = np.array(data, dtype=object)
expected = np.array(list(data), dtype=object)
if expected.ndim > 1:
# nested data, explicitly construct as 1D
expected = construct_1d_object_array_from_listlike(list(data))
tm.assert_numpy_array_equal(result, expected)
def test_is_extension_array_dtype(self, data):
assert is_extension_array_dtype(data)
assert is_extension_array_dtype(data.dtype)
assert is_extension_array_dtype(pd.Series(data))
assert isinstance(data.dtype, ExtensionDtype)
def test_no_values_attribute(self, data):
# GH-20735: EA's with .values attribute give problems with internal
# code, disallowing this for now until solved
assert not hasattr(data, "values")
assert not hasattr(data, "_values")
def test_is_numeric_honored(self, data):
result = pd.Series(data)
if hasattr(result._mgr, "blocks"):
assert result._mgr.blocks[0].is_numeric is data.dtype._is_numeric
def test_isna_extension_array(self, data_missing):
# If your `isna` returns an ExtensionArray, you must also implement
# _reduce. At the *very* least, you must implement any and all
na = data_missing.isna()
if is_extension_array_dtype(na):
assert na._reduce("any")
assert na.any()
assert not na._reduce("all")
assert not na.all()
assert na.dtype._is_boolean
def test_copy(self, data):
# GH#27083 removing deep keyword from EA.copy
assert data[0] != data[1]
result = data.copy()
if data.dtype._is_immutable:
pytest.skip(f"test_copy assumes mutability and {data.dtype} is immutable")
data[1] = data[0]
assert result[1] != result[0]
def test_view(self, data):
# view with no dtype should return a shallow copy, *not* the same
# object
assert data[1] != data[0]
result = data.view()
assert result is not data
assert type(result) == type(data)
if data.dtype._is_immutable:
pytest.skip(f"test_view assumes mutability and {data.dtype} is immutable")
result[1] = result[0]
assert data[1] == data[0]
# check specifically that the `dtype` kwarg is accepted
data.view(dtype=None)
def test_tolist(self, data):
result = data.tolist()
expected = list(data)
assert isinstance(result, list)
assert result == expected