Traktor/myenv/Lib/site-packages/pandas/tests/groupby/test_reductions.py

1177 lines
36 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
import builtins
import datetime as dt
from string import ascii_lowercase
import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
from pandas.core.dtypes.common import pandas_dtype
from pandas.core.dtypes.missing import na_value_for_dtype
import pandas as pd
from pandas import (
DataFrame,
MultiIndex,
Series,
Timestamp,
date_range,
isna,
)
import pandas._testing as tm
from pandas.util import _test_decorators as td
@pytest.mark.parametrize("agg_func", ["any", "all"])
@pytest.mark.parametrize(
"vals",
[
["foo", "bar", "baz"],
["foo", "", ""],
["", "", ""],
[1, 2, 3],
[1, 0, 0],
[0, 0, 0],
[1.0, 2.0, 3.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[True, True, True],
[True, False, False],
[False, False, False],
[np.nan, np.nan, np.nan],
],
)
def test_groupby_bool_aggs(skipna, agg_func, vals):
df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2})
# Figure out expectation using Python builtin
exp = getattr(builtins, agg_func)(vals)
# edge case for missing data with skipna and 'any'
if skipna and all(isna(vals)) and agg_func == "any":
exp = False
expected = DataFrame(
[exp] * 2, columns=["val"], index=pd.Index(["a", "b"], name="key")
)
result = getattr(df.groupby("key"), agg_func)(skipna=skipna)
tm.assert_frame_equal(result, expected)
def test_any():
df = DataFrame(
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]],
columns=["A", "B", "C"],
)
expected = DataFrame(
[[True, True], [False, True]], columns=["B", "C"], index=[1, 3]
)
expected.index.name = "A"
result = df.groupby("A").any()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
def test_bool_aggs_dup_column_labels(bool_agg_func):
# GH#21668
df = DataFrame([[True, True]], columns=["a", "a"])
grp_by = df.groupby([0])
result = getattr(grp_by, bool_agg_func)()
expected = df.set_axis(np.array([0]))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize(
"data",
[
[False, False, False],
[True, True, True],
[pd.NA, pd.NA, pd.NA],
[False, pd.NA, False],
[True, pd.NA, True],
[True, pd.NA, False],
],
)
def test_masked_kleene_logic(bool_agg_func, skipna, data):
# GH#37506
ser = Series(data, dtype="boolean")
# The result should match aggregating on the whole series. Correctness
# there is verified in test_reductions.py::test_any_all_boolean_kleene_logic
expected_data = getattr(ser, bool_agg_func)(skipna=skipna)
expected = Series(expected_data, index=np.array([0]), dtype="boolean")
result = ser.groupby([0, 0, 0]).agg(bool_agg_func, skipna=skipna)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dtype1,dtype2,exp_col1,exp_col2",
[
(
"float",
"Float64",
np.array([True], dtype=bool),
pd.array([pd.NA], dtype="boolean"),
),
(
"Int64",
"float",
pd.array([pd.NA], dtype="boolean"),
np.array([True], dtype=bool),
),
(
"Int64",
"Int64",
pd.array([pd.NA], dtype="boolean"),
pd.array([pd.NA], dtype="boolean"),
),
(
"Float64",
"boolean",
pd.array([pd.NA], dtype="boolean"),
pd.array([pd.NA], dtype="boolean"),
),
],
)
def test_masked_mixed_types(dtype1, dtype2, exp_col1, exp_col2):
# GH#37506
data = [1.0, np.nan]
df = DataFrame(
{"col1": pd.array(data, dtype=dtype1), "col2": pd.array(data, dtype=dtype2)}
)
result = df.groupby([1, 1]).agg("all", skipna=False)
expected = DataFrame({"col1": exp_col1, "col2": exp_col2}, index=np.array([1]))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
def test_masked_bool_aggs_skipna(bool_agg_func, dtype, skipna, frame_or_series):
# GH#40585
obj = frame_or_series([pd.NA, 1], dtype=dtype)
expected_res = True
if not skipna and bool_agg_func == "all":
expected_res = pd.NA
expected = frame_or_series([expected_res], index=np.array([1]), dtype="boolean")
result = obj.groupby([1, 1]).agg(bool_agg_func, skipna=skipna)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"bool_agg_func,data,expected_res",
[
("any", [pd.NA, np.nan], False),
("any", [pd.NA, 1, np.nan], True),
("all", [pd.NA, pd.NaT], True),
("all", [pd.NA, False, pd.NaT], False),
],
)
def test_object_type_missing_vals(bool_agg_func, data, expected_res, frame_or_series):
# GH#37501
obj = frame_or_series(data, dtype=object)
result = obj.groupby([1] * len(data)).agg(bool_agg_func)
expected = frame_or_series([expected_res], index=np.array([1]), dtype="bool")
tm.assert_equal(result, expected)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
def test_object_NA_raises_with_skipna_false(bool_agg_func):
# GH#37501
ser = Series([pd.NA], dtype=object)
with pytest.raises(TypeError, match="boolean value of NA is ambiguous"):
ser.groupby([1]).agg(bool_agg_func, skipna=False)
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
def test_empty(frame_or_series, bool_agg_func):
# GH 45231
kwargs = {"columns": ["a"]} if frame_or_series is DataFrame else {"name": "a"}
obj = frame_or_series(**kwargs, dtype=object)
result = getattr(obj.groupby(obj.index), bool_agg_func)()
expected = frame_or_series(**kwargs, dtype=bool)
tm.assert_equal(result, expected)
@pytest.mark.parametrize("how", ["idxmin", "idxmax"])
def test_idxmin_idxmax_extremes(how, any_real_numpy_dtype):
# GH#57040
if any_real_numpy_dtype is int or any_real_numpy_dtype is float:
# No need to test
return
info = np.iinfo if "int" in any_real_numpy_dtype else np.finfo
min_value = info(any_real_numpy_dtype).min
max_value = info(any_real_numpy_dtype).max
df = DataFrame(
{"a": [2, 1, 1, 2], "b": [min_value, max_value, max_value, min_value]},
dtype=any_real_numpy_dtype,
)
gb = df.groupby("a")
result = getattr(gb, how)()
expected = DataFrame(
{"b": [1, 0]}, index=pd.Index([1, 2], name="a", dtype=any_real_numpy_dtype)
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("how", ["idxmin", "idxmax"])
def test_idxmin_idxmax_extremes_skipna(skipna, how, float_numpy_dtype):
# GH#57040
min_value = np.finfo(float_numpy_dtype).min
max_value = np.finfo(float_numpy_dtype).max
df = DataFrame(
{
"a": Series(np.repeat(range(1, 6), repeats=2), dtype="intp"),
"b": Series(
[
np.nan,
min_value,
np.nan,
max_value,
min_value,
np.nan,
max_value,
np.nan,
np.nan,
np.nan,
],
dtype=float_numpy_dtype,
),
},
)
gb = df.groupby("a")
warn = None if skipna else FutureWarning
msg = f"The behavior of DataFrameGroupBy.{how} with all-NA values"
with tm.assert_produces_warning(warn, match=msg):
result = getattr(gb, how)(skipna=skipna)
if skipna:
values = [1, 3, 4, 6, np.nan]
else:
values = np.nan
expected = DataFrame(
{"b": values}, index=pd.Index(range(1, 6), name="a", dtype="intp")
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"func, values",
[
("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}),
("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}),
],
)
@pytest.mark.parametrize("numeric_only", [True, False])
def test_idxmin_idxmax_returns_int_types(func, values, numeric_only):
# GH 25444
df = DataFrame(
{
"name": ["A", "A", "B", "B"],
"c_int": [1, 2, 3, 4],
"c_float": [4.02, 3.03, 2.04, 1.05],
"c_date": ["2019", "2018", "2016", "2017"],
}
)
df["c_date"] = pd.to_datetime(df["c_date"])
df["c_date_tz"] = df["c_date"].dt.tz_localize("US/Pacific")
df["c_timedelta"] = df["c_date"] - df["c_date"].iloc[0]
df["c_period"] = df["c_date"].dt.to_period("W")
df["c_Integer"] = df["c_int"].astype("Int64")
df["c_Floating"] = df["c_float"].astype("Float64")
result = getattr(df.groupby("name"), func)(numeric_only=numeric_only)
expected = DataFrame(values, index=pd.Index(["A", "B"], name="name"))
if numeric_only:
expected = expected.drop(columns=["c_date"])
else:
expected["c_date_tz"] = expected["c_date"]
expected["c_timedelta"] = expected["c_date"]
expected["c_period"] = expected["c_date"]
expected["c_Integer"] = expected["c_int"]
expected["c_Floating"] = expected["c_float"]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data",
[
(
Timestamp("2011-01-15 12:50:28.502376"),
Timestamp("2011-01-20 12:50:28.593448"),
),
(24650000000000001, 24650000000000002),
],
)
@pytest.mark.parametrize("method", ["count", "min", "max", "first", "last"])
def test_groupby_non_arithmetic_agg_int_like_precision(method, data):
# GH#6620, GH#9311
df = DataFrame({"a": [1, 1], "b": data})
grouped = df.groupby("a")
result = getattr(grouped, method)()
if method == "count":
expected_value = 2
elif method == "first":
expected_value = data[0]
elif method == "last":
expected_value = data[1]
else:
expected_value = getattr(df["b"], method)()
expected = DataFrame({"b": [expected_value]}, index=pd.Index([1], name="a"))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("how", ["first", "last"])
def test_first_last_skipna(any_real_nullable_dtype, sort, skipna, how):
# GH#57019
na_value = na_value_for_dtype(pandas_dtype(any_real_nullable_dtype))
df = DataFrame(
{
"a": [2, 1, 1, 2, 3, 3],
"b": [na_value, 3.0, na_value, 4.0, np.nan, np.nan],
"c": [na_value, 3.0, na_value, 4.0, np.nan, np.nan],
},
dtype=any_real_nullable_dtype,
)
gb = df.groupby("a", sort=sort)
method = getattr(gb, how)
result = method(skipna=skipna)
ilocs = {
("first", True): [3, 1, 4],
("first", False): [0, 1, 4],
("last", True): [3, 1, 5],
("last", False): [3, 2, 5],
}[how, skipna]
expected = df.iloc[ilocs].set_index("a")
if sort:
expected = expected.sort_index()
tm.assert_frame_equal(result, expected)
def test_idxmin_idxmax_axis1():
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)), columns=["A", "B", "C", "D"]
)
df["A"] = [1, 2, 3, 1, 2, 3, 1, 2, 3, 4]
gb = df.groupby("A")
warn_msg = "DataFrameGroupBy.idxmax with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
res = gb.idxmax(axis=1)
alt = df.iloc[:, 1:].idxmax(axis=1)
indexer = res.index.get_level_values(1)
tm.assert_series_equal(alt[indexer], res.droplevel("A"))
df["E"] = date_range("2016-01-01", periods=10)
gb2 = df.groupby("A")
msg = "'>' not supported between instances of 'Timestamp' and 'float'"
with pytest.raises(TypeError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
gb2.idxmax(axis=1)
def test_groupby_mean_no_overflow():
# Regression test for (#22487)
df = DataFrame(
{
"user": ["A", "A", "A", "A", "A"],
"connections": [4970, 4749, 4719, 4704, 18446744073699999744],
}
)
assert df.groupby("user")["connections"].mean()["A"] == 3689348814740003840
def test_mean_on_timedelta():
# GH 17382
df = DataFrame({"time": pd.to_timedelta(range(10)), "cat": ["A", "B"] * 5})
result = df.groupby("cat")["time"].mean()
expected = Series(
pd.to_timedelta([4, 5]), name="time", index=pd.Index(["A", "B"], name="cat")
)
tm.assert_series_equal(result, expected)
def test_cython_median():
arr = np.random.default_rng(2).standard_normal(1000)
arr[::2] = np.nan
df = DataFrame(arr)
labels = np.random.default_rng(2).integers(0, 50, size=1000).astype(float)
labels[::17] = np.nan
result = df.groupby(labels).median()
msg = "using DataFrameGroupBy.median"
with tm.assert_produces_warning(FutureWarning, match=msg):
exp = df.groupby(labels).agg(np.nanmedian)
tm.assert_frame_equal(result, exp)
df = DataFrame(np.random.default_rng(2).standard_normal((1000, 5)))
msg = "using DataFrameGroupBy.median"
with tm.assert_produces_warning(FutureWarning, match=msg):
rs = df.groupby(labels).agg(np.median)
xp = df.groupby(labels).median()
tm.assert_frame_equal(rs, xp)
def test_median_empty_bins(observed):
df = DataFrame(np.random.default_rng(2).integers(0, 44, 500))
grps = range(0, 55, 5)
bins = pd.cut(df[0], grps)
result = df.groupby(bins, observed=observed).median()
expected = df.groupby(bins, observed=observed).agg(lambda x: x.median())
tm.assert_frame_equal(result, expected)
def test_max_min_non_numeric():
# #2700
aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]})
result = aa.groupby("nn").max()
assert "ss" in result
result = aa.groupby("nn").max(numeric_only=False)
assert "ss" in result
result = aa.groupby("nn").min()
assert "ss" in result
result = aa.groupby("nn").min(numeric_only=False)
assert "ss" in result
def test_max_min_object_multiple_columns(using_array_manager):
# GH#41111 case where the aggregation is valid for some columns but not
# others; we split object blocks column-wise, consistent with
# DataFrame._reduce
df = DataFrame(
{
"A": [1, 1, 2, 2, 3],
"B": [1, "foo", 2, "bar", False],
"C": ["a", "b", "c", "d", "e"],
}
)
df._consolidate_inplace() # should already be consolidate, but double-check
if not using_array_manager:
assert len(df._mgr.blocks) == 2
gb = df.groupby("A")
result = gb[["C"]].max()
# "max" is valid for column "C" but not for "B"
ei = pd.Index([1, 2, 3], name="A")
expected = DataFrame({"C": ["b", "d", "e"]}, index=ei)
tm.assert_frame_equal(result, expected)
result = gb[["C"]].min()
# "min" is valid for column "C" but not for "B"
ei = pd.Index([1, 2, 3], name="A")
expected = DataFrame({"C": ["a", "c", "e"]}, index=ei)
tm.assert_frame_equal(result, expected)
def test_min_date_with_nans():
# GH26321
dates = pd.to_datetime(
Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d"
).dt.date
df = DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates})
result = df.groupby("b", as_index=False)["c"].min()["c"]
expected = pd.to_datetime(
Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d"
).dt.date
tm.assert_series_equal(result, expected)
result = df.groupby("b")["c"].min()
expected.index.name = "b"
tm.assert_series_equal(result, expected)
def test_max_inat():
# GH#40767 dont interpret iNaT as NaN
ser = Series([1, iNaT])
key = np.array([1, 1], dtype=np.int64)
gb = ser.groupby(key)
result = gb.max(min_count=2)
expected = Series({1: 1}, dtype=np.int64)
tm.assert_series_equal(result, expected, check_exact=True)
result = gb.min(min_count=2)
expected = Series({1: iNaT}, dtype=np.int64)
tm.assert_series_equal(result, expected, check_exact=True)
# not enough entries -> gets masked to NaN
result = gb.min(min_count=3)
expected = Series({1: np.nan})
tm.assert_series_equal(result, expected, check_exact=True)
def test_max_inat_not_all_na():
# GH#40767 dont interpret iNaT as NaN
# make sure we dont round iNaT+1 to iNaT
ser = Series([1, iNaT, 2, iNaT + 1])
gb = ser.groupby([1, 2, 3, 3])
result = gb.min(min_count=2)
# Note: in converting to float64, the iNaT + 1 maps to iNaT, i.e. is lossy
expected = Series({1: np.nan, 2: np.nan, 3: iNaT + 1})
expected.index = expected.index.astype(int)
tm.assert_series_equal(result, expected, check_exact=True)
@pytest.mark.parametrize("func", ["min", "max"])
def test_groupby_aggregate_period_column(func):
# GH 31471
groups = [1, 2]
periods = pd.period_range("2020", periods=2, freq="Y")
df = DataFrame({"a": groups, "b": periods})
result = getattr(df.groupby("a")["b"], func)()
idx = pd.Index([1, 2], name="a")
expected = Series(periods, index=idx, name="b")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("func", ["min", "max"])
def test_groupby_aggregate_period_frame(func):
# GH 31471
groups = [1, 2]
periods = pd.period_range("2020", periods=2, freq="Y")
df = DataFrame({"a": groups, "b": periods})
result = getattr(df.groupby("a"), func)()
idx = pd.Index([1, 2], name="a")
expected = DataFrame({"b": periods}, index=idx)
tm.assert_frame_equal(result, expected)
def test_aggregate_numeric_object_dtype():
# https://github.com/pandas-dev/pandas/issues/39329
# simplified case: multiple object columns where one is all-NaN
# -> gets split as the all-NaN is inferred as float
df = DataFrame(
{"key": ["A", "A", "B", "B"], "col1": list("abcd"), "col2": [np.nan] * 4},
).astype(object)
result = df.groupby("key").min()
expected = (
DataFrame(
{"key": ["A", "B"], "col1": ["a", "c"], "col2": [np.nan, np.nan]},
)
.set_index("key")
.astype(object)
)
tm.assert_frame_equal(result, expected)
# same but with numbers
df = DataFrame(
{"key": ["A", "A", "B", "B"], "col1": list("abcd"), "col2": range(4)},
).astype(object)
result = df.groupby("key").min()
expected = (
DataFrame({"key": ["A", "B"], "col1": ["a", "c"], "col2": [0, 2]})
.set_index("key")
.astype(object)
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("func", ["min", "max"])
def test_aggregate_categorical_lost_index(func: str):
# GH: 28641 groupby drops index, when grouping over categorical column with min/max
ds = Series(["b"], dtype="category").cat.as_ordered()
df = DataFrame({"A": [1997], "B": ds})
result = df.groupby("A").agg({"B": func})
expected = DataFrame({"B": ["b"]}, index=pd.Index([1997], name="A"))
# ordered categorical dtype should be preserved
expected["B"] = expected["B"].astype(ds.dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", ["Int64", "Int32", "Float64", "Float32", "boolean"])
def test_groupby_min_max_nullable(dtype):
if dtype == "Int64":
# GH#41743 avoid precision loss
ts = 1618556707013635762
elif dtype == "boolean":
ts = 0
else:
ts = 4.0
df = DataFrame({"id": [2, 2], "ts": [ts, ts + 1]})
df["ts"] = df["ts"].astype(dtype)
gb = df.groupby("id")
result = gb.min()
expected = df.iloc[:1].set_index("id")
tm.assert_frame_equal(result, expected)
res_max = gb.max()
expected_max = df.iloc[1:].set_index("id")
tm.assert_frame_equal(res_max, expected_max)
result2 = gb.min(min_count=3)
expected2 = DataFrame({"ts": [pd.NA]}, index=expected.index, dtype=dtype)
tm.assert_frame_equal(result2, expected2)
res_max2 = gb.max(min_count=3)
tm.assert_frame_equal(res_max2, expected2)
# Case with NA values
df2 = DataFrame({"id": [2, 2, 2], "ts": [ts, pd.NA, ts + 1]})
df2["ts"] = df2["ts"].astype(dtype)
gb2 = df2.groupby("id")
result3 = gb2.min()
tm.assert_frame_equal(result3, expected)
res_max3 = gb2.max()
tm.assert_frame_equal(res_max3, expected_max)
result4 = gb2.min(min_count=100)
tm.assert_frame_equal(result4, expected2)
res_max4 = gb2.max(min_count=100)
tm.assert_frame_equal(res_max4, expected2)
def test_min_max_nullable_uint64_empty_group():
# don't raise NotImplementedError from libgroupby
cat = pd.Categorical([0] * 10, categories=[0, 1])
df = DataFrame({"A": cat, "B": pd.array(np.arange(10, dtype=np.uint64))})
gb = df.groupby("A", observed=False)
res = gb.min()
idx = pd.CategoricalIndex([0, 1], dtype=cat.dtype, name="A")
expected = DataFrame({"B": pd.array([0, pd.NA], dtype="UInt64")}, index=idx)
tm.assert_frame_equal(res, expected)
res = gb.max()
expected.iloc[0, 0] = 9
tm.assert_frame_equal(res, expected)
@pytest.mark.parametrize("func", ["first", "last", "min", "max"])
def test_groupby_min_max_categorical(func):
# GH: 52151
df = DataFrame(
{
"col1": pd.Categorical(["A"], categories=list("AB"), ordered=True),
"col2": pd.Categorical([1], categories=[1, 2], ordered=True),
"value": 0.1,
}
)
result = getattr(df.groupby("col1", observed=False), func)()
idx = pd.CategoricalIndex(data=["A", "B"], name="col1", ordered=True)
expected = DataFrame(
{
"col2": pd.Categorical([1, None], categories=[1, 2], ordered=True),
"value": [0.1, None],
},
index=idx,
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("func", ["min", "max"])
def test_min_empty_string_dtype(func):
# GH#55619
pytest.importorskip("pyarrow")
dtype = "string[pyarrow_numpy]"
df = DataFrame({"a": ["a"], "b": "a", "c": "a"}, dtype=dtype).iloc[:0]
result = getattr(df.groupby("a"), func)()
expected = DataFrame(
columns=["b", "c"], dtype=dtype, index=pd.Index([], dtype=dtype, name="a")
)
tm.assert_frame_equal(result, expected)
def test_max_nan_bug():
df = DataFrame(
{
"Unnamed: 0": ["-04-23", "-05-06", "-05-07"],
"Date": [
"2013-04-23 00:00:00",
"2013-05-06 00:00:00",
"2013-05-07 00:00:00",
],
"app": Series([np.nan, np.nan, "OE"]),
"File": ["log080001.log", "log.log", "xlsx"],
}
)
gb = df.groupby("Date")
r = gb[["File"]].max()
e = gb["File"].max().to_frame()
tm.assert_frame_equal(r, e)
assert not r["File"].isna().any()
@pytest.mark.slow
@pytest.mark.parametrize("sort", [False, True])
@pytest.mark.parametrize("dropna", [False, True])
@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize("with_nan", [True, False])
@pytest.mark.parametrize("keys", [["joe"], ["joe", "jim"]])
def test_series_groupby_nunique(sort, dropna, as_index, with_nan, keys):
n = 100
m = 10
days = date_range("2015-08-23", periods=10)
df = DataFrame(
{
"jim": np.random.default_rng(2).choice(list(ascii_lowercase), n),
"joe": np.random.default_rng(2).choice(days, n),
"julie": np.random.default_rng(2).integers(0, m, n),
}
)
if with_nan:
df = df.astype({"julie": float}) # Explicit cast to avoid implicit cast below
df.loc[1::17, "jim"] = None
df.loc[3::37, "joe"] = None
df.loc[7::19, "julie"] = None
df.loc[8::19, "julie"] = None
df.loc[9::19, "julie"] = None
original_df = df.copy()
gr = df.groupby(keys, as_index=as_index, sort=sort)
left = gr["julie"].nunique(dropna=dropna)
gr = df.groupby(keys, as_index=as_index, sort=sort)
right = gr["julie"].apply(Series.nunique, dropna=dropna)
if not as_index:
right = right.reset_index(drop=True)
if as_index:
tm.assert_series_equal(left, right, check_names=False)
else:
tm.assert_frame_equal(left, right, check_names=False)
tm.assert_frame_equal(df, original_df)
def test_nunique():
df = DataFrame({"A": list("abbacc"), "B": list("abxacc"), "C": list("abbacx")})
expected = DataFrame({"A": list("abc"), "B": [1, 2, 1], "C": [1, 1, 2]})
result = df.groupby("A", as_index=False).nunique()
tm.assert_frame_equal(result, expected)
# as_index
expected.index = list("abc")
expected.index.name = "A"
expected = expected.drop(columns="A")
result = df.groupby("A").nunique()
tm.assert_frame_equal(result, expected)
# with na
result = df.replace({"x": None}).groupby("A").nunique(dropna=False)
tm.assert_frame_equal(result, expected)
# dropna
expected = DataFrame({"B": [1] * 3, "C": [1] * 3}, index=list("abc"))
expected.index.name = "A"
result = df.replace({"x": None}).groupby("A").nunique()
tm.assert_frame_equal(result, expected)
def test_nunique_with_object():
# GH 11077
data = DataFrame(
[
[100, 1, "Alice"],
[200, 2, "Bob"],
[300, 3, "Charlie"],
[-400, 4, "Dan"],
[500, 5, "Edith"],
],
columns=["amount", "id", "name"],
)
result = data.groupby(["id", "amount"])["name"].nunique()
index = MultiIndex.from_arrays([data.id, data.amount])
expected = Series([1] * 5, name="name", index=index)
tm.assert_series_equal(result, expected)
def test_nunique_with_empty_series():
# GH 12553
data = Series(name="name", dtype=object)
result = data.groupby(level=0).nunique()
expected = Series(name="name", dtype="int64")
tm.assert_series_equal(result, expected)
def test_nunique_with_timegrouper():
# GH 13453
test = DataFrame(
{
"time": [
Timestamp("2016-06-28 09:35:35"),
Timestamp("2016-06-28 16:09:30"),
Timestamp("2016-06-28 16:46:28"),
],
"data": ["1", "2", "3"],
}
).set_index("time")
result = test.groupby(pd.Grouper(freq="h"))["data"].nunique()
expected = test.groupby(pd.Grouper(freq="h"))["data"].apply(Series.nunique)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"key, data, dropna, expected",
[
(
["x", "x", "x"],
[Timestamp("2019-01-01"), pd.NaT, Timestamp("2019-01-01")],
True,
Series([1], index=pd.Index(["x"], name="key"), name="data"),
),
(
["x", "x", "x"],
[dt.date(2019, 1, 1), pd.NaT, dt.date(2019, 1, 1)],
True,
Series([1], index=pd.Index(["x"], name="key"), name="data"),
),
(
["x", "x", "x", "y", "y"],
[
dt.date(2019, 1, 1),
pd.NaT,
dt.date(2019, 1, 1),
pd.NaT,
dt.date(2019, 1, 1),
],
False,
Series([2, 2], index=pd.Index(["x", "y"], name="key"), name="data"),
),
(
["x", "x", "x", "x", "y"],
[
dt.date(2019, 1, 1),
pd.NaT,
dt.date(2019, 1, 1),
pd.NaT,
dt.date(2019, 1, 1),
],
False,
Series([2, 1], index=pd.Index(["x", "y"], name="key"), name="data"),
),
],
)
def test_nunique_with_NaT(key, data, dropna, expected):
# GH 27951
df = DataFrame({"key": key, "data": data})
result = df.groupby(["key"])["data"].nunique(dropna=dropna)
tm.assert_series_equal(result, expected)
def test_nunique_preserves_column_level_names():
# GH 23222
test = DataFrame([1, 2, 2], columns=pd.Index(["A"], name="level_0"))
result = test.groupby([0, 0, 0]).nunique()
expected = DataFrame([2], index=np.array([0]), columns=test.columns)
tm.assert_frame_equal(result, expected)
def test_nunique_transform_with_datetime():
# GH 35109 - transform with nunique on datetimes results in integers
df = DataFrame(date_range("2008-12-31", "2009-01-02"), columns=["date"])
result = df.groupby([0, 0, 1])["date"].transform("nunique")
expected = Series([2, 2, 1], name="date")
tm.assert_series_equal(result, expected)
def test_empty_categorical(observed):
# GH#21334
cat = Series([1]).astype("category")
ser = cat[:0]
gb = ser.groupby(ser, observed=observed)
result = gb.nunique()
if observed:
expected = Series([], index=cat[:0], dtype="int64")
else:
expected = Series([0], index=cat, dtype="int64")
tm.assert_series_equal(result, expected)
def test_intercept_builtin_sum():
s = Series([1.0, 2.0, np.nan, 3.0])
grouped = s.groupby([0, 1, 2, 2])
msg = "using SeriesGroupBy.sum"
with tm.assert_produces_warning(FutureWarning, match=msg):
# GH#53425
result = grouped.agg(builtins.sum)
msg = "using np.sum"
with tm.assert_produces_warning(FutureWarning, match=msg):
# GH#53425
result2 = grouped.apply(builtins.sum)
expected = grouped.sum()
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
@pytest.mark.parametrize("min_count", [0, 10])
def test_groupby_sum_mincount_boolean(min_count):
b = True
a = False
na = np.nan
dfg = pd.array([b, b, na, na, a, a, b], dtype="boolean")
df = DataFrame({"A": [1, 1, 2, 2, 3, 3, 1], "B": dfg})
result = df.groupby("A").sum(min_count=min_count)
if min_count == 0:
expected = DataFrame(
{"B": pd.array([3, 0, 0], dtype="Int64")},
index=pd.Index([1, 2, 3], name="A"),
)
tm.assert_frame_equal(result, expected)
else:
expected = DataFrame(
{"B": pd.array([pd.NA] * 3, dtype="Int64")},
index=pd.Index([1, 2, 3], name="A"),
)
tm.assert_frame_equal(result, expected)
def test_groupby_sum_below_mincount_nullable_integer():
# https://github.com/pandas-dev/pandas/issues/32861
df = DataFrame({"a": [0, 1, 2], "b": [0, 1, 2], "c": [0, 1, 2]}, dtype="Int64")
grouped = df.groupby("a")
idx = pd.Index([0, 1, 2], name="a", dtype="Int64")
result = grouped["b"].sum(min_count=2)
expected = Series([pd.NA] * 3, dtype="Int64", index=idx, name="b")
tm.assert_series_equal(result, expected)
result = grouped.sum(min_count=2)
expected = DataFrame({"b": [pd.NA] * 3, "c": [pd.NA] * 3}, dtype="Int64", index=idx)
tm.assert_frame_equal(result, expected)
def test_groupby_sum_timedelta_with_nat():
# GH#42659
df = DataFrame(
{
"a": [1, 1, 2, 2],
"b": [pd.Timedelta("1d"), pd.Timedelta("2d"), pd.Timedelta("3d"), pd.NaT],
}
)
td3 = pd.Timedelta(days=3)
gb = df.groupby("a")
res = gb.sum()
expected = DataFrame({"b": [td3, td3]}, index=pd.Index([1, 2], name="a"))
tm.assert_frame_equal(res, expected)
res = gb["b"].sum()
tm.assert_series_equal(res, expected["b"])
res = gb["b"].sum(min_count=2)
expected = Series([td3, pd.NaT], dtype="m8[ns]", name="b", index=expected.index)
tm.assert_series_equal(res, expected)
@pytest.mark.parametrize(
"dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"]
)
@pytest.mark.parametrize(
"method,data",
[
("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}),
],
)
def test_groupby_non_arithmetic_agg_types(dtype, method, data):
# GH9311, GH6620
df = DataFrame(
[{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}]
)
df["b"] = df.b.astype(dtype)
if "args" not in data:
data["args"] = []
if "out_type" in data:
out_type = data["out_type"]
else:
out_type = dtype
exp = data["df"]
df_out = DataFrame(exp)
df_out["b"] = df_out.b.astype(out_type)
df_out.set_index("a", inplace=True)
grpd = df.groupby("a")
t = getattr(grpd, method)(*data["args"])
tm.assert_frame_equal(t, df_out)
def scipy_sem(*args, **kwargs):
from scipy.stats import sem
return sem(*args, ddof=1, **kwargs)
@pytest.mark.parametrize(
"op,targop",
[
("mean", np.mean),
("median", np.median),
("std", np.std),
("var", np.var),
("sum", np.sum),
("prod", np.prod),
("min", np.min),
("max", np.max),
("first", lambda x: x.iloc[0]),
("last", lambda x: x.iloc[-1]),
("count", np.size),
pytest.param("sem", scipy_sem, marks=td.skip_if_no("scipy")),
],
)
def test_ops_general(op, targop):
df = DataFrame(np.random.default_rng(2).standard_normal(1000))
labels = np.random.default_rng(2).integers(0, 50, size=1000).astype(float)
result = getattr(df.groupby(labels), op)()
warn = None if op in ("first", "last", "count", "sem") else FutureWarning
msg = f"using DataFrameGroupBy.{op}"
with tm.assert_produces_warning(warn, match=msg):
expected = df.groupby(labels).agg(targop)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
{
"a": [1, 1, 1, 2, 2, 2, 3, 3, 3],
"b": [1, pd.NA, 2, 1, pd.NA, 2, 1, pd.NA, 2],
},
{"a": [1, 1, 2, 2, 3, 3], "b": [1, 2, 1, 2, 1, 2]},
],
)
@pytest.mark.parametrize("function", ["mean", "median", "var"])
def test_apply_to_nullable_integer_returns_float(values, function):
# https://github.com/pandas-dev/pandas/issues/32219
output = 0.5 if function == "var" else 1.5
arr = np.array([output] * 3, dtype=float)
idx = pd.Index([1, 2, 3], name="a", dtype="Int64")
expected = DataFrame({"b": arr}, index=idx).astype("Float64")
groups = DataFrame(values, dtype="Int64").groupby("a")
result = getattr(groups, function)()
tm.assert_frame_equal(result, expected)
result = groups.agg(function)
tm.assert_frame_equal(result, expected)
result = groups.agg([function])
expected.columns = MultiIndex.from_tuples([("b", function)])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"op",
[
"sum",
"prod",
"min",
"max",
"median",
"mean",
"skew",
"std",
"var",
"sem",
],
)
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("sort", [True, False])
def test_regression_allowlist_methods(op, axis, skipna, sort):
# GH6944
# GH 17537
# explicitly test the allowlist methods
raw_frame = DataFrame([0])
if axis == 0:
frame = raw_frame
msg = "The 'axis' keyword in DataFrame.groupby is deprecated and will be"
else:
frame = raw_frame.T
msg = "DataFrame.groupby with axis=1 is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
grouped = frame.groupby(level=0, axis=axis, sort=sort)
if op == "skew":
# skew has skipna
result = getattr(grouped, op)(skipna=skipna)
expected = frame.groupby(level=0).apply(
lambda h: getattr(h, op)(axis=axis, skipna=skipna)
)
if sort:
expected = expected.sort_index(axis=axis)
tm.assert_frame_equal(result, expected)
else:
result = getattr(grouped, op)()
expected = frame.groupby(level=0).apply(lambda h: getattr(h, op)(axis=axis))
if sort:
expected = expected.sort_index(axis=axis)
tm.assert_frame_equal(result, expected)
def test_groupby_prod_with_int64_dtype():
# GH#46573
data = [
[1, 11],
[1, 41],
[1, 17],
[1, 37],
[1, 7],
[1, 29],
[1, 31],
[1, 2],
[1, 3],
[1, 43],
[1, 5],
[1, 47],
[1, 19],
[1, 88],
]
df = DataFrame(data, columns=["A", "B"], dtype="int64")
result = df.groupby(["A"]).prod().reset_index()
expected = DataFrame({"A": [1], "B": [180970905912331920]}, dtype="int64")
tm.assert_frame_equal(result, expected)