Traktor/myenv/Lib/site-packages/pandas/tests/resample/test_base.py

461 lines
15 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
from datetime import datetime
import numpy as np
import pytest
from pandas.core.dtypes.common import is_extension_array_dtype
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
MultiIndex,
NaT,
PeriodIndex,
Series,
TimedeltaIndex,
)
import pandas._testing as tm
from pandas.core.groupby.groupby import DataError
from pandas.core.groupby.grouper import Grouper
from pandas.core.indexes.datetimes import date_range
from pandas.core.indexes.period import period_range
from pandas.core.indexes.timedeltas import timedelta_range
from pandas.core.resample import _asfreq_compat
# a fixture value can be overridden by the test parameter value. Note that the
# value of the fixture can be overridden this way even if the test doesn't use
# it directly (doesn't mention it in the function prototype).
# see https://docs.pytest.org/en/latest/fixture.html#override-a-fixture-with-direct-test-parametrization # noqa: E501
# in this module we override the fixture values defined in conftest.py
# tuples of '_index_factory,_series_name,_index_start,_index_end'
DATE_RANGE = (date_range, "dti", datetime(2005, 1, 1), datetime(2005, 1, 10))
PERIOD_RANGE = (period_range, "pi", datetime(2005, 1, 1), datetime(2005, 1, 10))
TIMEDELTA_RANGE = (timedelta_range, "tdi", "1 day", "10 day")
all_ts = pytest.mark.parametrize(
"_index_factory,_series_name,_index_start,_index_end",
[DATE_RANGE, PERIOD_RANGE, TIMEDELTA_RANGE],
)
@pytest.fixture
def create_index(_index_factory):
def _create_index(*args, **kwargs):
"""return the _index_factory created using the args, kwargs"""
return _index_factory(*args, **kwargs)
return _create_index
@pytest.mark.parametrize("freq", ["2D", "1h"])
@pytest.mark.parametrize(
"_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE]
)
def test_asfreq(series_and_frame, freq, create_index):
obj = series_and_frame
result = obj.resample(freq).asfreq()
new_index = create_index(obj.index[0], obj.index[-1], freq=freq)
expected = obj.reindex(new_index)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize(
"_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE]
)
def test_asfreq_fill_value(series, create_index):
# test for fill value during resampling, issue 3715
ser = series
result = ser.resample("1h").asfreq()
new_index = create_index(ser.index[0], ser.index[-1], freq="1h")
expected = ser.reindex(new_index)
tm.assert_series_equal(result, expected)
# Explicit cast to float to avoid implicit cast when setting None
frame = ser.astype("float").to_frame("value")
frame.iloc[1] = None
result = frame.resample("1h").asfreq(fill_value=4.0)
new_index = create_index(frame.index[0], frame.index[-1], freq="1h")
expected = frame.reindex(new_index, fill_value=4.0)
tm.assert_frame_equal(result, expected)
@all_ts
def test_resample_interpolate(frame):
# GH#12925
df = frame
warn = None
if isinstance(df.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
result = df.resample("1min").asfreq().interpolate()
expected = df.resample("1min").interpolate()
tm.assert_frame_equal(result, expected)
def test_raises_on_non_datetimelike_index():
# this is a non datetimelike index
xp = DataFrame()
msg = (
"Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, "
"but got an instance of 'RangeIndex'"
)
with pytest.raises(TypeError, match=msg):
xp.resample("YE")
@all_ts
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_resample_empty_series(freq, empty_series_dti, resample_method):
# GH12771 & GH12868
ser = empty_series_dti
if freq == "ME" and isinstance(ser.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
ser.resample(freq)
return
elif freq == "ME" and isinstance(ser.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
warn = None
if isinstance(ser.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
rs = ser.resample(freq)
result = getattr(rs, resample_method)()
if resample_method == "ohlc":
expected = DataFrame(
[], index=ser.index[:0].copy(), columns=["open", "high", "low", "close"]
)
expected.index = _asfreq_compat(ser.index, freq)
tm.assert_frame_equal(result, expected, check_dtype=False)
else:
expected = ser.copy()
expected.index = _asfreq_compat(ser.index, freq)
tm.assert_series_equal(result, expected, check_dtype=False)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
@all_ts
@pytest.mark.parametrize(
"freq",
[
pytest.param("ME", marks=pytest.mark.xfail(reason="Don't know why this fails")),
"D",
"h",
],
)
def test_resample_nat_index_series(freq, series, resample_method):
# GH39227
ser = series.copy()
ser.index = PeriodIndex([NaT] * len(ser), freq=freq)
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
rs = ser.resample(freq)
result = getattr(rs, resample_method)()
if resample_method == "ohlc":
expected = DataFrame(
[], index=ser.index[:0].copy(), columns=["open", "high", "low", "close"]
)
tm.assert_frame_equal(result, expected, check_dtype=False)
else:
expected = ser[:0].copy()
tm.assert_series_equal(result, expected, check_dtype=False)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
@all_ts
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
@pytest.mark.parametrize("resample_method", ["count", "size"])
def test_resample_count_empty_series(freq, empty_series_dti, resample_method):
# GH28427
ser = empty_series_dti
if freq == "ME" and isinstance(ser.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
ser.resample(freq)
return
elif freq == "ME" and isinstance(ser.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
warn = None
if isinstance(ser.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
rs = ser.resample(freq)
result = getattr(rs, resample_method)()
index = _asfreq_compat(ser.index, freq)
expected = Series([], dtype="int64", index=index, name=ser.name)
tm.assert_series_equal(result, expected)
@all_ts
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_resample_empty_dataframe(empty_frame_dti, freq, resample_method):
# GH13212
df = empty_frame_dti
# count retains dimensions too
if freq == "ME" and isinstance(df.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
df.resample(freq, group_keys=False)
return
elif freq == "ME" and isinstance(df.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
warn = None
if isinstance(df.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
rs = df.resample(freq, group_keys=False)
result = getattr(rs, resample_method)()
if resample_method == "ohlc":
# TODO: no tests with len(df.columns) > 0
mi = MultiIndex.from_product([df.columns, ["open", "high", "low", "close"]])
expected = DataFrame(
[], index=df.index[:0].copy(), columns=mi, dtype=np.float64
)
expected.index = _asfreq_compat(df.index, freq)
elif resample_method != "size":
expected = df.copy()
else:
# GH14962
expected = Series([], dtype=np.int64)
expected.index = _asfreq_compat(df.index, freq)
tm.assert_index_equal(result.index, expected.index)
assert result.index.freq == expected.index.freq
tm.assert_almost_equal(result, expected)
# test size for GH13212 (currently stays as df)
@all_ts
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_resample_count_empty_dataframe(freq, empty_frame_dti):
# GH28427
empty_frame_dti["a"] = []
if freq == "ME" and isinstance(empty_frame_dti.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
empty_frame_dti.resample(freq)
return
elif freq == "ME" and isinstance(empty_frame_dti.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
warn = None
if isinstance(empty_frame_dti.index, PeriodIndex):
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
with tm.assert_produces_warning(warn, match=msg):
rs = empty_frame_dti.resample(freq)
result = rs.count()
index = _asfreq_compat(empty_frame_dti.index, freq)
expected = DataFrame(dtype="int64", index=index, columns=Index(["a"], dtype=object))
tm.assert_frame_equal(result, expected)
@all_ts
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_resample_size_empty_dataframe(freq, empty_frame_dti):
# GH28427
empty_frame_dti["a"] = []
if freq == "ME" and isinstance(empty_frame_dti.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
empty_frame_dti.resample(freq)
return
elif freq == "ME" and isinstance(empty_frame_dti.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
msg = "Resampling with a PeriodIndex"
warn = None
if isinstance(empty_frame_dti.index, PeriodIndex):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
rs = empty_frame_dti.resample(freq)
result = rs.size()
index = _asfreq_compat(empty_frame_dti.index, freq)
expected = Series([], dtype="int64", index=index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"index",
[
PeriodIndex([], freq="M", name="a"),
DatetimeIndex([], name="a"),
TimedeltaIndex([], name="a"),
],
)
@pytest.mark.parametrize("dtype", [float, int, object, "datetime64[ns]"])
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_resample_empty_dtypes(index, dtype, resample_method):
# Empty series were sometimes causing a segfault (for the functions
# with Cython bounds-checking disabled) or an IndexError. We just run
# them to ensure they no longer do. (GH #10228)
warn = None
if isinstance(index, PeriodIndex):
# GH#53511
index = PeriodIndex([], freq="B", name=index.name)
warn = FutureWarning
msg = "Resampling with a PeriodIndex is deprecated"
empty_series_dti = Series([], index, dtype)
with tm.assert_produces_warning(warn, match=msg):
rs = empty_series_dti.resample("d", group_keys=False)
try:
getattr(rs, resample_method)()
except DataError:
# Ignore these since some combinations are invalid
# (ex: doing mean with dtype of np.object_)
pass
@all_ts
@pytest.mark.parametrize("freq", ["ME", "D", "h"])
def test_apply_to_empty_series(empty_series_dti, freq):
# GH 14313
ser = empty_series_dti
if freq == "ME" and isinstance(empty_series_dti.index, TimedeltaIndex):
msg = (
"Resampling on a TimedeltaIndex requires fixed-duration `freq`, "
"e.g. '24h' or '3D', not <MonthEnd>"
)
with pytest.raises(ValueError, match=msg):
empty_series_dti.resample(freq)
return
elif freq == "ME" and isinstance(empty_series_dti.index, PeriodIndex):
# index is PeriodIndex, so convert to corresponding Period freq
freq = "M"
msg = "Resampling with a PeriodIndex"
warn = None
if isinstance(empty_series_dti.index, PeriodIndex):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
rs = ser.resample(freq, group_keys=False)
result = rs.apply(lambda x: 1)
with tm.assert_produces_warning(warn, match=msg):
expected = ser.resample(freq).apply("sum")
tm.assert_series_equal(result, expected, check_dtype=False)
@all_ts
def test_resampler_is_iterable(series):
# GH 15314
freq = "h"
tg = Grouper(freq=freq, convention="start")
msg = "Resampling with a PeriodIndex"
warn = None
if isinstance(series.index, PeriodIndex):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
grouped = series.groupby(tg)
with tm.assert_produces_warning(warn, match=msg):
resampled = series.resample(freq)
for (rk, rv), (gk, gv) in zip(resampled, grouped):
assert rk == gk
tm.assert_series_equal(rv, gv)
@all_ts
def test_resample_quantile(series):
# GH 15023
ser = series
q = 0.75
freq = "h"
msg = "Resampling with a PeriodIndex"
warn = None
if isinstance(series.index, PeriodIndex):
warn = FutureWarning
with tm.assert_produces_warning(warn, match=msg):
result = ser.resample(freq).quantile(q)
expected = ser.resample(freq).agg(lambda x: x.quantile(q)).rename(ser.name)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("how", ["first", "last"])
def test_first_last_skipna(any_real_nullable_dtype, skipna, how):
# GH#57019
if is_extension_array_dtype(any_real_nullable_dtype):
na_value = Series(dtype=any_real_nullable_dtype).dtype.na_value
else:
na_value = np.nan
df = DataFrame(
{
"a": [2, 1, 1, 2],
"b": [na_value, 3.0, na_value, 4.0],
"c": [na_value, 3.0, na_value, 4.0],
},
index=date_range("2020-01-01", periods=4, freq="D"),
dtype=any_real_nullable_dtype,
)
rs = df.resample("ME")
method = getattr(rs, how)
result = method(skipna=skipna)
gb = df.groupby(df.shape[0] * [pd.to_datetime("2020-01-31")])
expected = getattr(gb, how)(skipna=skipna)
expected.index.freq = "ME"
tm.assert_frame_equal(result, expected)