Traktor/myenv/Lib/site-packages/pandas/tests/reshape/test_cut.py

792 lines
24 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
import numpy as np
import pytest
import pandas as pd
from pandas import (
Categorical,
DataFrame,
DatetimeIndex,
Index,
Interval,
IntervalIndex,
Series,
TimedeltaIndex,
Timestamp,
cut,
date_range,
interval_range,
isna,
qcut,
timedelta_range,
to_datetime,
)
import pandas._testing as tm
from pandas.api.types import CategoricalDtype
import pandas.core.reshape.tile as tmod
def test_simple():
data = np.ones(5, dtype="int64")
result = cut(data, 4, labels=False)
expected = np.array([1, 1, 1, 1, 1])
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize("func", [list, np.array])
def test_bins(func):
data = func([0.2, 1.4, 2.5, 6.2, 9.7, 2.1])
result, bins = cut(data, 3, retbins=True)
intervals = IntervalIndex.from_breaks(bins.round(3))
intervals = intervals.take([0, 0, 0, 1, 2, 0])
expected = Categorical(intervals, ordered=True)
tm.assert_categorical_equal(result, expected)
tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7]))
def test_right():
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575])
result, bins = cut(data, 4, right=True, retbins=True)
intervals = IntervalIndex.from_breaks(bins.round(3))
expected = Categorical(intervals, ordered=True)
expected = expected.take([0, 0, 0, 2, 3, 0, 0])
tm.assert_categorical_equal(result, expected)
tm.assert_almost_equal(bins, np.array([0.1905, 2.575, 4.95, 7.325, 9.7]))
def test_no_right():
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575])
result, bins = cut(data, 4, right=False, retbins=True)
intervals = IntervalIndex.from_breaks(bins.round(3), closed="left")
intervals = intervals.take([0, 0, 0, 2, 3, 0, 1])
expected = Categorical(intervals, ordered=True)
tm.assert_categorical_equal(result, expected)
tm.assert_almost_equal(bins, np.array([0.2, 2.575, 4.95, 7.325, 9.7095]))
def test_bins_from_interval_index():
c = cut(range(5), 3)
expected = c
result = cut(range(5), bins=expected.categories)
tm.assert_categorical_equal(result, expected)
expected = Categorical.from_codes(
np.append(c.codes, -1), categories=c.categories, ordered=True
)
result = cut(range(6), bins=expected.categories)
tm.assert_categorical_equal(result, expected)
def test_bins_from_interval_index_doc_example():
# Make sure we preserve the bins.
ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
c = cut(ages, bins=[0, 18, 35, 70])
expected = IntervalIndex.from_tuples([(0, 18), (18, 35), (35, 70)])
tm.assert_index_equal(c.categories, expected)
result = cut([25, 20, 50], bins=c.categories)
tm.assert_index_equal(result.categories, expected)
tm.assert_numpy_array_equal(result.codes, np.array([1, 1, 2], dtype="int8"))
def test_bins_not_overlapping_from_interval_index():
# see gh-23980
msg = "Overlapping IntervalIndex is not accepted"
ii = IntervalIndex.from_tuples([(0, 10), (2, 12), (4, 14)])
with pytest.raises(ValueError, match=msg):
cut([5, 6], bins=ii)
def test_bins_not_monotonic():
msg = "bins must increase monotonically"
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
with pytest.raises(ValueError, match=msg):
cut(data, [0.1, 1.5, 1, 10])
@pytest.mark.parametrize(
"x, bins, expected",
[
(
date_range("2017-12-31", periods=3),
[Timestamp.min, Timestamp("2018-01-01"), Timestamp.max],
IntervalIndex.from_tuples(
[
(Timestamp.min, Timestamp("2018-01-01")),
(Timestamp("2018-01-01"), Timestamp.max),
]
),
),
(
[-1, 0, 1],
np.array(
[np.iinfo(np.int64).min, 0, np.iinfo(np.int64).max], dtype="int64"
),
IntervalIndex.from_tuples(
[(np.iinfo(np.int64).min, 0), (0, np.iinfo(np.int64).max)]
),
),
(
[
np.timedelta64(-1, "ns"),
np.timedelta64(0, "ns"),
np.timedelta64(1, "ns"),
],
np.array(
[
np.timedelta64(-np.iinfo(np.int64).max, "ns"),
np.timedelta64(0, "ns"),
np.timedelta64(np.iinfo(np.int64).max, "ns"),
]
),
IntervalIndex.from_tuples(
[
(
np.timedelta64(-np.iinfo(np.int64).max, "ns"),
np.timedelta64(0, "ns"),
),
(
np.timedelta64(0, "ns"),
np.timedelta64(np.iinfo(np.int64).max, "ns"),
),
]
),
),
],
)
def test_bins_monotonic_not_overflowing(x, bins, expected):
# GH 26045
result = cut(x, bins)
tm.assert_index_equal(result.categories, expected)
def test_wrong_num_labels():
msg = "Bin labels must be one fewer than the number of bin edges"
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
with pytest.raises(ValueError, match=msg):
cut(data, [0, 1, 10], labels=["foo", "bar", "baz"])
@pytest.mark.parametrize(
"x,bins,msg",
[
([], 2, "Cannot cut empty array"),
([1, 2, 3], 0.5, "`bins` should be a positive integer"),
],
)
def test_cut_corner(x, bins, msg):
with pytest.raises(ValueError, match=msg):
cut(x, bins)
@pytest.mark.parametrize("arg", [2, np.eye(2), DataFrame(np.eye(2))])
@pytest.mark.parametrize("cut_func", [cut, qcut])
def test_cut_not_1d_arg(arg, cut_func):
msg = "Input array must be 1 dimensional"
with pytest.raises(ValueError, match=msg):
cut_func(arg, 2)
@pytest.mark.parametrize(
"data",
[
[0, 1, 2, 3, 4, np.inf],
[-np.inf, 0, 1, 2, 3, 4],
[-np.inf, 0, 1, 2, 3, 4, np.inf],
],
)
def test_int_bins_with_inf(data):
# GH 24314
msg = "cannot specify integer `bins` when input data contains infinity"
with pytest.raises(ValueError, match=msg):
cut(data, bins=3)
def test_cut_out_of_range_more():
# see gh-1511
name = "x"
ser = Series([0, -1, 0, 1, -3], name=name)
ind = cut(ser, [0, 1], labels=False)
exp = Series([np.nan, np.nan, np.nan, 0, np.nan], name=name)
tm.assert_series_equal(ind, exp)
@pytest.mark.parametrize(
"right,breaks,closed",
[
(True, [-1e-3, 0.25, 0.5, 0.75, 1], "right"),
(False, [0, 0.25, 0.5, 0.75, 1 + 1e-3], "left"),
],
)
def test_labels(right, breaks, closed):
arr = np.tile(np.arange(0, 1.01, 0.1), 4)
result, bins = cut(arr, 4, retbins=True, right=right)
ex_levels = IntervalIndex.from_breaks(breaks, closed=closed)
tm.assert_index_equal(result.categories, ex_levels)
def test_cut_pass_series_name_to_factor():
name = "foo"
ser = Series(np.random.default_rng(2).standard_normal(100), name=name)
factor = cut(ser, 4)
assert factor.name == name
def test_label_precision():
arr = np.arange(0, 0.73, 0.01)
result = cut(arr, 4, precision=2)
ex_levels = IntervalIndex.from_breaks([-0.00072, 0.18, 0.36, 0.54, 0.72])
tm.assert_index_equal(result.categories, ex_levels)
@pytest.mark.parametrize("labels", [None, False])
def test_na_handling(labels):
arr = np.arange(0, 0.75, 0.01)
arr[::3] = np.nan
result = cut(arr, 4, labels=labels)
result = np.asarray(result)
expected = np.where(isna(arr), np.nan, result)
tm.assert_almost_equal(result, expected)
def test_inf_handling():
data = np.arange(6)
data_ser = Series(data, dtype="int64")
bins = [-np.inf, 2, 4, np.inf]
result = cut(data, bins)
result_ser = cut(data_ser, bins)
ex_uniques = IntervalIndex.from_breaks(bins)
tm.assert_index_equal(result.categories, ex_uniques)
assert result[5] == Interval(4, np.inf)
assert result[0] == Interval(-np.inf, 2)
assert result_ser[5] == Interval(4, np.inf)
assert result_ser[0] == Interval(-np.inf, 2)
def test_cut_out_of_bounds():
arr = np.random.default_rng(2).standard_normal(100)
result = cut(arr, [-1, 0, 1])
mask = isna(result)
ex_mask = (arr < -1) | (arr > 1)
tm.assert_numpy_array_equal(mask, ex_mask)
@pytest.mark.parametrize(
"get_labels,get_expected",
[
(
lambda labels: labels,
lambda labels: Categorical(
["Medium"] + 4 * ["Small"] + ["Medium", "Large"],
categories=labels,
ordered=True,
),
),
(
lambda labels: Categorical.from_codes([0, 1, 2], labels),
lambda labels: Categorical.from_codes([1] + 4 * [0] + [1, 2], labels),
),
],
)
def test_cut_pass_labels(get_labels, get_expected):
bins = [0, 25, 50, 100]
arr = [50, 5, 10, 15, 20, 30, 70]
labels = ["Small", "Medium", "Large"]
result = cut(arr, bins, labels=get_labels(labels))
tm.assert_categorical_equal(result, get_expected(labels))
def test_cut_pass_labels_compat():
# see gh-16459
arr = [50, 5, 10, 15, 20, 30, 70]
labels = ["Good", "Medium", "Bad"]
result = cut(arr, 3, labels=labels)
exp = cut(arr, 3, labels=Categorical(labels, categories=labels, ordered=True))
tm.assert_categorical_equal(result, exp)
@pytest.mark.parametrize("x", [np.arange(11.0), np.arange(11.0) / 1e10])
def test_round_frac_just_works(x):
# It works.
cut(x, 2)
@pytest.mark.parametrize(
"val,precision,expected",
[
(-117.9998, 3, -118),
(117.9998, 3, 118),
(117.9998, 2, 118),
(0.000123456, 2, 0.00012),
],
)
def test_round_frac(val, precision, expected):
# see gh-1979
result = tmod._round_frac(val, precision=precision)
assert result == expected
def test_cut_return_intervals():
ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8])
result = cut(ser, 3)
exp_bins = np.linspace(0, 8, num=4).round(3)
exp_bins[0] -= 0.008
expected = Series(
IntervalIndex.from_breaks(exp_bins, closed="right").take(
[0, 0, 0, 1, 1, 1, 2, 2, 2]
)
).astype(CategoricalDtype(ordered=True))
tm.assert_series_equal(result, expected)
def test_series_ret_bins():
# see gh-8589
ser = Series(np.arange(4))
result, bins = cut(ser, 2, retbins=True)
expected = Series(
IntervalIndex.from_breaks([-0.003, 1.5, 3], closed="right").repeat(2)
).astype(CategoricalDtype(ordered=True))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"kwargs,msg",
[
({"duplicates": "drop"}, None),
({}, "Bin edges must be unique"),
({"duplicates": "raise"}, "Bin edges must be unique"),
({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"),
],
)
def test_cut_duplicates_bin(kwargs, msg):
# see gh-20947
bins = [0, 2, 4, 6, 10, 10]
values = Series(np.array([1, 3, 5, 7, 9]), index=["a", "b", "c", "d", "e"])
if msg is not None:
with pytest.raises(ValueError, match=msg):
cut(values, bins, **kwargs)
else:
result = cut(values, bins, **kwargs)
expected = cut(values, pd.unique(np.asarray(bins)))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("data", [9.0, -9.0, 0.0])
@pytest.mark.parametrize("length", [1, 2])
def test_single_bin(data, length):
# see gh-14652, gh-15428
ser = Series([data] * length)
result = cut(ser, 1, labels=False)
expected = Series([0] * length, dtype=np.intp)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"array_1_writeable,array_2_writeable", [(True, True), (True, False), (False, False)]
)
def test_cut_read_only(array_1_writeable, array_2_writeable):
# issue 18773
array_1 = np.arange(0, 100, 10)
array_1.flags.writeable = array_1_writeable
array_2 = np.arange(0, 100, 10)
array_2.flags.writeable = array_2_writeable
hundred_elements = np.arange(100)
tm.assert_categorical_equal(
cut(hundred_elements, array_1), cut(hundred_elements, array_2)
)
@pytest.mark.parametrize(
"conv",
[
lambda v: Timestamp(v),
lambda v: to_datetime(v),
lambda v: np.datetime64(v),
lambda v: Timestamp(v).to_pydatetime(),
],
)
def test_datetime_bin(conv):
data = [np.datetime64("2012-12-13"), np.datetime64("2012-12-15")]
bin_data = ["2012-12-12", "2012-12-14", "2012-12-16"]
expected = Series(
IntervalIndex(
[
Interval(Timestamp(bin_data[0]), Timestamp(bin_data[1])),
Interval(Timestamp(bin_data[1]), Timestamp(bin_data[2])),
]
)
).astype(CategoricalDtype(ordered=True))
bins = [conv(v) for v in bin_data]
result = Series(cut(data, bins=bins))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("box", [Series, Index, np.array, list])
def test_datetime_cut(unit, box):
# see gh-14714
#
# Testing time data when it comes in various collection types.
data = to_datetime(["2013-01-01", "2013-01-02", "2013-01-03"]).astype(f"M8[{unit}]")
data = box(data)
result, _ = cut(data, 3, retbins=True)
if box is list:
# We don't (yet) do inference on these, so get nanos
unit = "ns"
if unit == "s":
# See https://github.com/pandas-dev/pandas/pull/56101#discussion_r1405325425
# for why we round to 8 seconds instead of 7
left = DatetimeIndex(
["2012-12-31 23:57:08", "2013-01-01 16:00:00", "2013-01-02 08:00:00"],
dtype=f"M8[{unit}]",
)
else:
left = DatetimeIndex(
[
"2012-12-31 23:57:07.200000",
"2013-01-01 16:00:00",
"2013-01-02 08:00:00",
],
dtype=f"M8[{unit}]",
)
right = DatetimeIndex(
["2013-01-01 16:00:00", "2013-01-02 08:00:00", "2013-01-03 00:00:00"],
dtype=f"M8[{unit}]",
)
exp_intervals = IntervalIndex.from_arrays(left, right)
expected = Series(exp_intervals).astype(CategoricalDtype(ordered=True))
tm.assert_series_equal(Series(result), expected)
@pytest.mark.parametrize("box", [list, np.array, Index, Series])
def test_datetime_tz_cut_mismatched_tzawareness(box):
# GH#54964
bins = box(
[
Timestamp("2013-01-01 04:57:07.200000"),
Timestamp("2013-01-01 21:00:00"),
Timestamp("2013-01-02 13:00:00"),
Timestamp("2013-01-03 05:00:00"),
]
)
ser = Series(date_range("20130101", periods=3, tz="US/Eastern"))
msg = "Cannot use timezone-naive bins with timezone-aware values"
with pytest.raises(ValueError, match=msg):
cut(ser, bins)
@pytest.mark.parametrize(
"bins",
[
3,
[
Timestamp("2013-01-01 04:57:07.200000", tz="UTC").tz_convert("US/Eastern"),
Timestamp("2013-01-01 21:00:00", tz="UTC").tz_convert("US/Eastern"),
Timestamp("2013-01-02 13:00:00", tz="UTC").tz_convert("US/Eastern"),
Timestamp("2013-01-03 05:00:00", tz="UTC").tz_convert("US/Eastern"),
],
],
)
@pytest.mark.parametrize("box", [list, np.array, Index, Series])
def test_datetime_tz_cut(bins, box):
# see gh-19872
tz = "US/Eastern"
ser = Series(date_range("20130101", periods=3, tz=tz))
if not isinstance(bins, int):
bins = box(bins)
result = cut(ser, bins)
expected = Series(
IntervalIndex(
[
Interval(
Timestamp("2012-12-31 23:57:07.200000", tz=tz),
Timestamp("2013-01-01 16:00:00", tz=tz),
),
Interval(
Timestamp("2013-01-01 16:00:00", tz=tz),
Timestamp("2013-01-02 08:00:00", tz=tz),
),
Interval(
Timestamp("2013-01-02 08:00:00", tz=tz),
Timestamp("2013-01-03 00:00:00", tz=tz),
),
]
)
).astype(CategoricalDtype(ordered=True))
tm.assert_series_equal(result, expected)
def test_datetime_nan_error():
msg = "bins must be of datetime64 dtype"
with pytest.raises(ValueError, match=msg):
cut(date_range("20130101", periods=3), bins=[0, 2, 4])
def test_datetime_nan_mask():
result = cut(
date_range("20130102", periods=5), bins=date_range("20130101", periods=2)
)
mask = result.categories.isna()
tm.assert_numpy_array_equal(mask, np.array([False]))
mask = result.isna()
tm.assert_numpy_array_equal(mask, np.array([False, True, True, True, True]))
@pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"])
def test_datetime_cut_roundtrip(tz, unit):
# see gh-19891
ser = Series(date_range("20180101", periods=3, tz=tz, unit=unit))
result, result_bins = cut(ser, 2, retbins=True)
expected = cut(ser, result_bins)
tm.assert_series_equal(result, expected)
if unit == "s":
# TODO: constructing DatetimeIndex with dtype="M8[s]" without truncating
# the first entry here raises in array_to_datetime. Should truncate
# instead of raising?
# See https://github.com/pandas-dev/pandas/pull/56101#discussion_r1405325425
# for why we round to 8 seconds instead of 7
expected_bins = DatetimeIndex(
["2017-12-31 23:57:08", "2018-01-02 00:00:00", "2018-01-03 00:00:00"],
dtype=f"M8[{unit}]",
)
else:
expected_bins = DatetimeIndex(
[
"2017-12-31 23:57:07.200000",
"2018-01-02 00:00:00",
"2018-01-03 00:00:00",
],
dtype=f"M8[{unit}]",
)
expected_bins = expected_bins.tz_localize(tz)
tm.assert_index_equal(result_bins, expected_bins)
def test_timedelta_cut_roundtrip():
# see gh-19891
ser = Series(timedelta_range("1day", periods=3))
result, result_bins = cut(ser, 2, retbins=True)
expected = cut(ser, result_bins)
tm.assert_series_equal(result, expected)
expected_bins = TimedeltaIndex(
["0 days 23:57:07.200000", "2 days 00:00:00", "3 days 00:00:00"]
)
tm.assert_index_equal(result_bins, expected_bins)
@pytest.mark.parametrize("bins", [6, 7])
@pytest.mark.parametrize(
"box, compare",
[
(Series, tm.assert_series_equal),
(np.array, tm.assert_categorical_equal),
(list, tm.assert_equal),
],
)
def test_cut_bool_coercion_to_int(bins, box, compare):
# issue 20303
data_expected = box([0, 1, 1, 0, 1] * 10)
data_result = box([False, True, True, False, True] * 10)
expected = cut(data_expected, bins, duplicates="drop")
result = cut(data_result, bins, duplicates="drop")
compare(result, expected)
@pytest.mark.parametrize("labels", ["foo", 1, True])
def test_cut_incorrect_labels(labels):
# GH 13318
values = range(5)
msg = "Bin labels must either be False, None or passed in as a list-like argument"
with pytest.raises(ValueError, match=msg):
cut(values, 4, labels=labels)
@pytest.mark.parametrize("bins", [3, [0, 5, 15]])
@pytest.mark.parametrize("right", [True, False])
@pytest.mark.parametrize("include_lowest", [True, False])
def test_cut_nullable_integer(bins, right, include_lowest):
a = np.random.default_rng(2).integers(0, 10, size=50).astype(float)
a[::2] = np.nan
result = cut(
pd.array(a, dtype="Int64"), bins, right=right, include_lowest=include_lowest
)
expected = cut(a, bins, right=right, include_lowest=include_lowest)
tm.assert_categorical_equal(result, expected)
@pytest.mark.parametrize(
"data, bins, labels, expected_codes, expected_labels",
[
([15, 17, 19], [14, 16, 18, 20], ["A", "B", "A"], [0, 1, 0], ["A", "B"]),
([1, 3, 5], [0, 2, 4, 6, 8], [2, 0, 1, 2], [2, 0, 1], [0, 1, 2]),
],
)
def test_cut_non_unique_labels(data, bins, labels, expected_codes, expected_labels):
# GH 33141
result = cut(data, bins=bins, labels=labels, ordered=False)
expected = Categorical.from_codes(
expected_codes, categories=expected_labels, ordered=False
)
tm.assert_categorical_equal(result, expected)
@pytest.mark.parametrize(
"data, bins, labels, expected_codes, expected_labels",
[
([15, 17, 19], [14, 16, 18, 20], ["C", "B", "A"], [0, 1, 2], ["C", "B", "A"]),
([1, 3, 5], [0, 2, 4, 6, 8], [3, 0, 1, 2], [0, 1, 2], [3, 0, 1, 2]),
],
)
def test_cut_unordered_labels(data, bins, labels, expected_codes, expected_labels):
# GH 33141
result = cut(data, bins=bins, labels=labels, ordered=False)
expected = Categorical.from_codes(
expected_codes, categories=expected_labels, ordered=False
)
tm.assert_categorical_equal(result, expected)
def test_cut_unordered_with_missing_labels_raises_error():
# GH 33141
msg = "'labels' must be provided if 'ordered = False'"
with pytest.raises(ValueError, match=msg):
cut([0.5, 3], bins=[0, 1, 2], ordered=False)
def test_cut_unordered_with_series_labels():
# https://github.com/pandas-dev/pandas/issues/36603
ser = Series([1, 2, 3, 4, 5])
bins = Series([0, 2, 4, 6])
labels = Series(["a", "b", "c"])
result = cut(ser, bins=bins, labels=labels, ordered=False)
expected = Series(["a", "a", "b", "b", "c"], dtype="category")
tm.assert_series_equal(result, expected)
def test_cut_no_warnings():
df = DataFrame({"value": np.random.default_rng(2).integers(0, 100, 20)})
labels = [f"{i} - {i + 9}" for i in range(0, 100, 10)]
with tm.assert_produces_warning(False):
df["group"] = cut(df.value, range(0, 105, 10), right=False, labels=labels)
def test_cut_with_duplicated_index_lowest_included():
# GH 42185
expected = Series(
[Interval(-0.001, 2, closed="right")] * 3
+ [Interval(2, 4, closed="right"), Interval(-0.001, 2, closed="right")],
index=[0, 1, 2, 3, 0],
dtype="category",
).cat.as_ordered()
ser = Series([0, 1, 2, 3, 0], index=[0, 1, 2, 3, 0])
result = cut(ser, bins=[0, 2, 4], include_lowest=True)
tm.assert_series_equal(result, expected)
def test_cut_with_nonexact_categorical_indices():
# GH 42424
ser = Series(range(100))
ser1 = cut(ser, 10).value_counts().head(5)
ser2 = cut(ser, 10).value_counts().tail(5)
result = DataFrame({"1": ser1, "2": ser2})
index = pd.CategoricalIndex(
[
Interval(-0.099, 9.9, closed="right"),
Interval(9.9, 19.8, closed="right"),
Interval(19.8, 29.7, closed="right"),
Interval(29.7, 39.6, closed="right"),
Interval(39.6, 49.5, closed="right"),
Interval(49.5, 59.4, closed="right"),
Interval(59.4, 69.3, closed="right"),
Interval(69.3, 79.2, closed="right"),
Interval(79.2, 89.1, closed="right"),
Interval(89.1, 99, closed="right"),
],
ordered=True,
)
expected = DataFrame(
{"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index
)
tm.assert_frame_equal(expected, result)
def test_cut_with_timestamp_tuple_labels():
# GH 40661
labels = [(Timestamp(10),), (Timestamp(20),), (Timestamp(30),)]
result = cut([2, 4, 6], bins=[1, 3, 5, 7], labels=labels)
expected = Categorical.from_codes([0, 1, 2], labels, ordered=True)
tm.assert_categorical_equal(result, expected)
def test_cut_bins_datetime_intervalindex():
# https://github.com/pandas-dev/pandas/issues/46218
bins = interval_range(Timestamp("2022-02-25"), Timestamp("2022-02-27"), freq="1D")
# passing Series instead of list is important to trigger bug
result = cut(Series([Timestamp("2022-02-26")]).astype("M8[ns]"), bins=bins)
expected = Categorical.from_codes([0], bins, ordered=True)
tm.assert_categorical_equal(result.array, expected)
def test_cut_with_nullable_int64():
# GH 30787
series = Series([0, 1, 2, 3, 4, pd.NA, 6, 7], dtype="Int64")
bins = [0, 2, 4, 6, 8]
intervals = IntervalIndex.from_breaks(bins)
expected = Series(
Categorical.from_codes([-1, 0, 0, 1, 1, -1, 2, 3], intervals, ordered=True)
)
result = cut(series, bins=bins)
tm.assert_series_equal(result, expected)