Traktor/myenv/Lib/site-packages/scipy/linalg/tests/test_interpolative.py

242 lines
8.8 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
#******************************************************************************
# Copyright (C) 2013 Kenneth L. Ho
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer. Redistributions in binary
# form must reproduce the above copyright notice, this list of conditions and
# the following disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# None of the names of the copyright holders may be used to endorse or
# promote products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#******************************************************************************
import scipy.linalg.interpolative as pymatrixid
import numpy as np
from scipy.linalg import hilbert, svdvals, norm
from scipy.sparse.linalg import aslinearoperator
from scipy.linalg.interpolative import interp_decomp
from numpy.testing import (assert_, assert_allclose, assert_equal,
assert_array_equal)
import pytest
from pytest import raises as assert_raises
import sys
_IS_32BIT = (sys.maxsize < 2**32)
@pytest.fixture()
def eps():
yield 1e-12
@pytest.fixture(params=[np.float64, np.complex128])
def A(request):
# construct Hilbert matrix
# set parameters
n = 300
yield hilbert(n).astype(request.param)
@pytest.fixture()
def L(A):
yield aslinearoperator(A)
@pytest.fixture()
def rank(A, eps):
S = np.linalg.svd(A, compute_uv=False)
try:
rank = np.nonzero(S < eps)[0][0]
except IndexError:
rank = A.shape[0]
return rank
class TestInterpolativeDecomposition:
@pytest.mark.parametrize(
"rand,lin_op",
[(False, False), (True, False), (True, True)])
def test_real_id_fixed_precision(self, A, L, eps, rand, lin_op):
if _IS_32BIT and A.dtype == np.complex128 and rand:
pytest.xfail("bug in external fortran code")
# Test ID routines on a Hilbert matrix.
A_or_L = A if not lin_op else L
k, idx, proj = pymatrixid.interp_decomp(A_or_L, eps, rand=rand)
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
assert_allclose(A, B, rtol=eps, atol=1e-08)
@pytest.mark.parametrize(
"rand,lin_op",
[(False, False), (True, False), (True, True)])
def test_real_id_fixed_rank(self, A, L, eps, rank, rand, lin_op):
if _IS_32BIT and A.dtype == np.complex128 and rand:
pytest.xfail("bug in external fortran code")
k = rank
A_or_L = A if not lin_op else L
idx, proj = pymatrixid.interp_decomp(A_or_L, k, rand=rand)
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
assert_allclose(A, B, rtol=eps, atol=1e-08)
@pytest.mark.parametrize("rand,lin_op", [(False, False)])
def test_real_id_skel_and_interp_matrices(
self, A, L, eps, rank, rand, lin_op):
k = rank
A_or_L = A if not lin_op else L
idx, proj = pymatrixid.interp_decomp(A_or_L, k, rand=rand)
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
assert_allclose(B, A[:, idx[:k]], rtol=eps, atol=1e-08)
assert_allclose(B @ P, A, rtol=eps, atol=1e-08)
@pytest.mark.parametrize(
"rand,lin_op",
[(False, False), (True, False), (True, True)])
def test_svd_fixed_precison(self, A, L, eps, rand, lin_op):
if _IS_32BIT and A.dtype == np.complex128 and rand:
pytest.xfail("bug in external fortran code")
A_or_L = A if not lin_op else L
U, S, V = pymatrixid.svd(A_or_L, eps, rand=rand)
B = U * S @ V.T.conj()
assert_allclose(A, B, rtol=eps, atol=1e-08)
@pytest.mark.parametrize(
"rand,lin_op",
[(False, False), (True, False), (True, True)])
def test_svd_fixed_rank(self, A, L, eps, rank, rand, lin_op):
if _IS_32BIT and A.dtype == np.complex128 and rand:
pytest.xfail("bug in external fortran code")
k = rank
A_or_L = A if not lin_op else L
U, S, V = pymatrixid.svd(A_or_L, k, rand=rand)
B = U * S @ V.T.conj()
assert_allclose(A, B, rtol=eps, atol=1e-08)
def test_id_to_svd(self, A, eps, rank):
k = rank
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
U, S, V = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
B = U * S @ V.T.conj()
assert_allclose(A, B, rtol=eps, atol=1e-08)
def test_estimate_spectral_norm(self, A):
s = svdvals(A)
norm_2_est = pymatrixid.estimate_spectral_norm(A)
assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8)
def test_estimate_spectral_norm_diff(self, A):
B = A.copy()
B[:, 0] *= 1.2
s = svdvals(A - B)
norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B)
assert_allclose(norm_2_est, s[0], rtol=1e-6, atol=1e-8)
def test_rank_estimates_array(self, A):
B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=A.dtype)
for M in [A, B]:
rank_tol = 1e-9
rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol)
rank_est = pymatrixid.estimate_rank(M, rank_tol)
assert_(rank_est >= rank_np)
assert_(rank_est <= rank_np + 10)
def test_rank_estimates_lin_op(self, A):
B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=A.dtype)
for M in [A, B]:
ML = aslinearoperator(M)
rank_tol = 1e-9
rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol)
rank_est = pymatrixid.estimate_rank(ML, rank_tol)
assert_(rank_est >= rank_np - 4)
assert_(rank_est <= rank_np + 4)
def test_rand(self):
pymatrixid.seed('default')
assert_allclose(pymatrixid.rand(2), [0.8932059, 0.64500803],
rtol=1e-4, atol=1e-8)
pymatrixid.seed(1234)
x1 = pymatrixid.rand(2)
assert_allclose(x1, [0.7513823, 0.06861718], rtol=1e-4, atol=1e-8)
np.random.seed(1234)
pymatrixid.seed()
x2 = pymatrixid.rand(2)
np.random.seed(1234)
pymatrixid.seed(np.random.rand(55))
x3 = pymatrixid.rand(2)
assert_allclose(x1, x2)
assert_allclose(x1, x3)
def test_badcall(self):
A = hilbert(5).astype(np.float32)
with assert_raises(ValueError):
pymatrixid.interp_decomp(A, 1e-6, rand=False)
def test_rank_too_large(self):
# svd(array, k) should not segfault
a = np.ones((4, 3))
with assert_raises(ValueError):
pymatrixid.svd(a, 4)
def test_full_rank(self):
eps = 1.0e-12
# fixed precision
A = np.random.rand(16, 8)
k, idx, proj = pymatrixid.interp_decomp(A, eps)
assert_equal(k, A.shape[1])
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
assert_allclose(A, B @ P)
# fixed rank
idx, proj = pymatrixid.interp_decomp(A, k)
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
assert_allclose(A, B @ P)
@pytest.mark.parametrize("dtype", [np.float64, np.complex128])
@pytest.mark.parametrize("rand", [True, False])
@pytest.mark.parametrize("eps", [1, 0.1])
def test_bug_9793(self, dtype, rand, eps):
if _IS_32BIT and dtype == np.complex128 and rand:
pytest.xfail("bug in external fortran code")
A = np.array([[-1, -1, -1, 0, 0, 0],
[0, 0, 0, 1, 1, 1],
[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1]],
dtype=dtype, order="C")
B = A.copy()
interp_decomp(A.T, eps, rand=rand)
assert_array_equal(A, B)