Traktor/myenv/Lib/site-packages/scipy/special/_spherical_bessel.py

355 lines
10 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
import numpy as np
from ._ufuncs import (_spherical_jn, _spherical_yn, _spherical_in,
_spherical_kn, _spherical_jn_d, _spherical_yn_d,
_spherical_in_d, _spherical_kn_d)
def spherical_jn(n, z, derivative=False):
r"""Spherical Bessel function of the first kind or its derivative.
Defined as [1]_,
.. math:: j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z),
where :math:`J_n` is the Bessel function of the first kind.
Parameters
----------
n : int, array_like
Order of the Bessel function (n >= 0).
z : complex or float, array_like
Argument of the Bessel function.
derivative : bool, optional
If True, the value of the derivative (rather than the function
itself) is returned.
Returns
-------
jn : ndarray
Notes
-----
For real arguments greater than the order, the function is computed
using the ascending recurrence [2]_. For small real or complex
arguments, the definitional relation to the cylindrical Bessel function
of the first kind is used.
The derivative is computed using the relations [3]_,
.. math::
j_n'(z) = j_{n-1}(z) - \frac{n + 1}{z} j_n(z).
j_0'(z) = -j_1(z)
.. versionadded:: 0.18.0
References
----------
.. [1] https://dlmf.nist.gov/10.47.E3
.. [2] https://dlmf.nist.gov/10.51.E1
.. [3] https://dlmf.nist.gov/10.51.E2
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1972.
Examples
--------
The spherical Bessel functions of the first kind :math:`j_n` accept
both real and complex second argument. They can return a complex type:
>>> from scipy.special import spherical_jn
>>> spherical_jn(0, 3+5j)
(-9.878987731663194-8.021894345786002j)
>>> type(spherical_jn(0, 3+5j))
<class 'numpy.complex128'>
We can verify the relation for the derivative from the Notes
for :math:`n=3` in the interval :math:`[1, 2]`:
>>> import numpy as np
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_jn(3, x, True),
... spherical_jn(2, x) - 4/x * spherical_jn(3, x))
True
The first few :math:`j_n` with real argument:
>>> import matplotlib.pyplot as plt
>>> x = np.arange(0.0, 10.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-0.5, 1.5)
>>> ax.set_title(r'Spherical Bessel functions $j_n$')
>>> for n in np.arange(0, 4):
... ax.plot(x, spherical_jn(n, x), label=rf'$j_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()
"""
n = np.asarray(n, dtype=np.dtype("long"))
if derivative:
return _spherical_jn_d(n, z)
else:
return _spherical_jn(n, z)
def spherical_yn(n, z, derivative=False):
r"""Spherical Bessel function of the second kind or its derivative.
Defined as [1]_,
.. math:: y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z),
where :math:`Y_n` is the Bessel function of the second kind.
Parameters
----------
n : int, array_like
Order of the Bessel function (n >= 0).
z : complex or float, array_like
Argument of the Bessel function.
derivative : bool, optional
If True, the value of the derivative (rather than the function
itself) is returned.
Returns
-------
yn : ndarray
Notes
-----
For real arguments, the function is computed using the ascending
recurrence [2]_. For complex arguments, the definitional relation to
the cylindrical Bessel function of the second kind is used.
The derivative is computed using the relations [3]_,
.. math::
y_n' = y_{n-1} - \frac{n + 1}{z} y_n.
y_0' = -y_1
.. versionadded:: 0.18.0
References
----------
.. [1] https://dlmf.nist.gov/10.47.E4
.. [2] https://dlmf.nist.gov/10.51.E1
.. [3] https://dlmf.nist.gov/10.51.E2
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1972.
Examples
--------
The spherical Bessel functions of the second kind :math:`y_n` accept
both real and complex second argument. They can return a complex type:
>>> from scipy.special import spherical_yn
>>> spherical_yn(0, 3+5j)
(8.022343088587197-9.880052589376795j)
>>> type(spherical_yn(0, 3+5j))
<class 'numpy.complex128'>
We can verify the relation for the derivative from the Notes
for :math:`n=3` in the interval :math:`[1, 2]`:
>>> import numpy as np
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_yn(3, x, True),
... spherical_yn(2, x) - 4/x * spherical_yn(3, x))
True
The first few :math:`y_n` with real argument:
>>> import matplotlib.pyplot as plt
>>> x = np.arange(0.0, 10.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-2.0, 1.0)
>>> ax.set_title(r'Spherical Bessel functions $y_n$')
>>> for n in np.arange(0, 4):
... ax.plot(x, spherical_yn(n, x), label=rf'$y_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()
"""
n = np.asarray(n, dtype=np.dtype("long"))
if derivative:
return _spherical_yn_d(n, z)
else:
return _spherical_yn(n, z)
def spherical_in(n, z, derivative=False):
r"""Modified spherical Bessel function of the first kind or its derivative.
Defined as [1]_,
.. math:: i_n(z) = \sqrt{\frac{\pi}{2z}} I_{n + 1/2}(z),
where :math:`I_n` is the modified Bessel function of the first kind.
Parameters
----------
n : int, array_like
Order of the Bessel function (n >= 0).
z : complex or float, array_like
Argument of the Bessel function.
derivative : bool, optional
If True, the value of the derivative (rather than the function
itself) is returned.
Returns
-------
in : ndarray
Notes
-----
The function is computed using its definitional relation to the
modified cylindrical Bessel function of the first kind.
The derivative is computed using the relations [2]_,
.. math::
i_n' = i_{n-1} - \frac{n + 1}{z} i_n.
i_1' = i_0
.. versionadded:: 0.18.0
References
----------
.. [1] https://dlmf.nist.gov/10.47.E7
.. [2] https://dlmf.nist.gov/10.51.E5
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1972.
Examples
--------
The modified spherical Bessel functions of the first kind :math:`i_n`
accept both real and complex second argument.
They can return a complex type:
>>> from scipy.special import spherical_in
>>> spherical_in(0, 3+5j)
(-1.1689867793369182-1.2697305267234222j)
>>> type(spherical_in(0, 3+5j))
<class 'numpy.complex128'>
We can verify the relation for the derivative from the Notes
for :math:`n=3` in the interval :math:`[1, 2]`:
>>> import numpy as np
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_in(3, x, True),
... spherical_in(2, x) - 4/x * spherical_in(3, x))
True
The first few :math:`i_n` with real argument:
>>> import matplotlib.pyplot as plt
>>> x = np.arange(0.0, 6.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(-0.5, 5.0)
>>> ax.set_title(r'Modified spherical Bessel functions $i_n$')
>>> for n in np.arange(0, 4):
... ax.plot(x, spherical_in(n, x), label=rf'$i_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()
"""
n = np.asarray(n, dtype=np.dtype("long"))
if derivative:
return _spherical_in_d(n, z)
else:
return _spherical_in(n, z)
def spherical_kn(n, z, derivative=False):
r"""Modified spherical Bessel function of the second kind or its derivative.
Defined as [1]_,
.. math:: k_n(z) = \sqrt{\frac{\pi}{2z}} K_{n + 1/2}(z),
where :math:`K_n` is the modified Bessel function of the second kind.
Parameters
----------
n : int, array_like
Order of the Bessel function (n >= 0).
z : complex or float, array_like
Argument of the Bessel function.
derivative : bool, optional
If True, the value of the derivative (rather than the function
itself) is returned.
Returns
-------
kn : ndarray
Notes
-----
The function is computed using its definitional relation to the
modified cylindrical Bessel function of the second kind.
The derivative is computed using the relations [2]_,
.. math::
k_n' = -k_{n-1} - \frac{n + 1}{z} k_n.
k_0' = -k_1
.. versionadded:: 0.18.0
References
----------
.. [1] https://dlmf.nist.gov/10.47.E9
.. [2] https://dlmf.nist.gov/10.51.E5
.. [AS] Milton Abramowitz and Irene A. Stegun, eds.
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover, 1972.
Examples
--------
The modified spherical Bessel functions of the second kind :math:`k_n`
accept both real and complex second argument.
They can return a complex type:
>>> from scipy.special import spherical_kn
>>> spherical_kn(0, 3+5j)
(0.012985785614001561+0.003354691603137546j)
>>> type(spherical_kn(0, 3+5j))
<class 'numpy.complex128'>
We can verify the relation for the derivative from the Notes
for :math:`n=3` in the interval :math:`[1, 2]`:
>>> import numpy as np
>>> x = np.arange(1.0, 2.0, 0.01)
>>> np.allclose(spherical_kn(3, x, True),
... - 4/x * spherical_kn(3, x) - spherical_kn(2, x))
True
The first few :math:`k_n` with real argument:
>>> import matplotlib.pyplot as plt
>>> x = np.arange(0.0, 4.0, 0.01)
>>> fig, ax = plt.subplots()
>>> ax.set_ylim(0.0, 5.0)
>>> ax.set_title(r'Modified spherical Bessel functions $k_n$')
>>> for n in np.arange(0, 4):
... ax.plot(x, spherical_kn(n, x), label=rf'$k_{n}$')
>>> plt.legend(loc='best')
>>> plt.show()
"""
n = np.asarray(n, dtype=np.dtype("long"))
if derivative:
return _spherical_kn_d(n, z)
else:
return _spherical_kn(n, z)