Traktor/myenv/Lib/site-packages/sklearn/_loss/loss.py

1179 lines
40 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
"""
This module contains loss classes suitable for fitting.
It is not part of the public API.
Specific losses are used for regression, binary classification or multiclass
classification.
"""
# Goals:
# - Provide a common private module for loss functions/classes.
# - To be used in:
# - LogisticRegression
# - PoissonRegressor, GammaRegressor, TweedieRegressor
# - HistGradientBoostingRegressor, HistGradientBoostingClassifier
# - GradientBoostingRegressor, GradientBoostingClassifier
# - SGDRegressor, SGDClassifier
# - Replace link module of GLMs.
import numbers
import numpy as np
from scipy.special import xlogy
from ..utils import check_scalar
from ..utils.stats import _weighted_percentile
from ._loss import (
CyAbsoluteError,
CyExponentialLoss,
CyHalfBinomialLoss,
CyHalfGammaLoss,
CyHalfMultinomialLoss,
CyHalfPoissonLoss,
CyHalfSquaredError,
CyHalfTweedieLoss,
CyHalfTweedieLossIdentity,
CyHuberLoss,
CyPinballLoss,
)
from .link import (
HalfLogitLink,
IdentityLink,
Interval,
LogitLink,
LogLink,
MultinomialLogit,
)
# Note: The shape of raw_prediction for multiclass classifications are
# - GradientBoostingClassifier: (n_samples, n_classes)
# - HistGradientBoostingClassifier: (n_classes, n_samples)
#
# Note: Instead of inheritance like
#
# class BaseLoss(BaseLink, CyLossFunction):
# ...
#
# # Note: Naturally, we would inherit in the following order
# # class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
# # But because of https://github.com/cython/cython/issues/4350 we set BaseLoss as
# # the last one. This, of course, changes the MRO.
# class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss):
#
# we use composition. This way we improve maintainability by avoiding the above
# mentioned Cython edge case and have easier to understand code (which method calls
# which code).
class BaseLoss:
"""Base class for a loss function of 1-dimensional targets.
Conventions:
- y_true.shape = sample_weight.shape = (n_samples,)
- y_pred.shape = raw_prediction.shape = (n_samples,)
- If is_multiclass is true (multiclass classification), then
y_pred.shape = raw_prediction.shape = (n_samples, n_classes)
Note that this corresponds to the return value of decision_function.
y_true, y_pred, sample_weight and raw_prediction must either be all float64
or all float32.
gradient and hessian must be either both float64 or both float32.
Note that y_pred = link.inverse(raw_prediction).
Specific loss classes can inherit specific link classes to satisfy
BaseLink's abstractmethods.
Parameters
----------
sample_weight : {None, ndarray}
If sample_weight is None, the hessian might be constant.
n_classes : {None, int}
The number of classes for classification, else None.
Attributes
----------
closs: CyLossFunction
link : BaseLink
interval_y_true : Interval
Valid interval for y_true
interval_y_pred : Interval
Valid Interval for y_pred
differentiable : bool
Indicates whether or not loss function is differentiable in
raw_prediction everywhere.
need_update_leaves_values : bool
Indicates whether decision trees in gradient boosting need to uptade
leave values after having been fit to the (negative) gradients.
approx_hessian : bool
Indicates whether the hessian is approximated or exact. If,
approximated, it should be larger or equal to the exact one.
constant_hessian : bool
Indicates whether the hessian is one for this loss.
is_multiclass : bool
Indicates whether n_classes > 2 is allowed.
"""
# For gradient boosted decision trees:
# This variable indicates whether the loss requires the leaves values to
# be updated once the tree has been trained. The trees are trained to
# predict a Newton-Raphson step (see grower._finalize_leaf()). But for
# some losses (e.g. least absolute deviation) we need to adjust the tree
# values to account for the "line search" of the gradient descent
# procedure. See the original paper Greedy Function Approximation: A
# Gradient Boosting Machine by Friedman
# (https://statweb.stanford.edu/~jhf/ftp/trebst.pdf) for the theory.
differentiable = True
need_update_leaves_values = False
is_multiclass = False
def __init__(self, closs, link, n_classes=None):
self.closs = closs
self.link = link
self.approx_hessian = False
self.constant_hessian = False
self.n_classes = n_classes
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
self.interval_y_pred = self.link.interval_y_pred
def in_y_true_range(self, y):
"""Return True if y is in the valid range of y_true.
Parameters
----------
y : ndarray
"""
return self.interval_y_true.includes(y)
def in_y_pred_range(self, y):
"""Return True if y is in the valid range of y_pred.
Parameters
----------
y : ndarray
"""
return self.interval_y_pred.includes(y)
def loss(
self,
y_true,
raw_prediction,
sample_weight=None,
loss_out=None,
n_threads=1,
):
"""Compute the pointwise loss value for each input.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
loss_out : None or C-contiguous array of shape (n_samples,)
A location into which the result is stored. If None, a new array
might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
loss : array of shape (n_samples,)
Element-wise loss function.
"""
if loss_out is None:
loss_out = np.empty_like(y_true)
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
self.closs.loss(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
loss_out=loss_out,
n_threads=n_threads,
)
return loss_out
def loss_gradient(
self,
y_true,
raw_prediction,
sample_weight=None,
loss_out=None,
gradient_out=None,
n_threads=1,
):
"""Compute loss and gradient w.r.t. raw_prediction for each input.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
loss_out : None or C-contiguous array of shape (n_samples,)
A location into which the loss is stored. If None, a new array
might be created.
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
of shape (n_samples, n_classes)
A location into which the gradient is stored. If None, a new array
might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
loss : array of shape (n_samples,)
Element-wise loss function.
gradient : array of shape (n_samples,) or (n_samples, n_classes)
Element-wise gradients.
"""
if loss_out is None:
if gradient_out is None:
loss_out = np.empty_like(y_true)
gradient_out = np.empty_like(raw_prediction)
else:
loss_out = np.empty_like(y_true, dtype=gradient_out.dtype)
elif gradient_out is None:
gradient_out = np.empty_like(raw_prediction, dtype=loss_out.dtype)
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
gradient_out = gradient_out.squeeze(1)
self.closs.loss_gradient(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
loss_out=loss_out,
gradient_out=gradient_out,
n_threads=n_threads,
)
return loss_out, gradient_out
def gradient(
self,
y_true,
raw_prediction,
sample_weight=None,
gradient_out=None,
n_threads=1,
):
"""Compute gradient of loss w.r.t raw_prediction for each input.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
of shape (n_samples, n_classes)
A location into which the result is stored. If None, a new array
might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
gradient : array of shape (n_samples,) or (n_samples, n_classes)
Element-wise gradients.
"""
if gradient_out is None:
gradient_out = np.empty_like(raw_prediction)
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
gradient_out = gradient_out.squeeze(1)
self.closs.gradient(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
gradient_out=gradient_out,
n_threads=n_threads,
)
return gradient_out
def gradient_hessian(
self,
y_true,
raw_prediction,
sample_weight=None,
gradient_out=None,
hessian_out=None,
n_threads=1,
):
"""Compute gradient and hessian of loss w.r.t raw_prediction.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
gradient_out : None or C-contiguous array of shape (n_samples,) or array \
of shape (n_samples, n_classes)
A location into which the gradient is stored. If None, a new array
might be created.
hessian_out : None or C-contiguous array of shape (n_samples,) or array \
of shape (n_samples, n_classes)
A location into which the hessian is stored. If None, a new array
might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
gradient : arrays of shape (n_samples,) or (n_samples, n_classes)
Element-wise gradients.
hessian : arrays of shape (n_samples,) or (n_samples, n_classes)
Element-wise hessians.
"""
if gradient_out is None:
if hessian_out is None:
gradient_out = np.empty_like(raw_prediction)
hessian_out = np.empty_like(raw_prediction)
else:
gradient_out = np.empty_like(hessian_out)
elif hessian_out is None:
hessian_out = np.empty_like(gradient_out)
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
if gradient_out.ndim == 2 and gradient_out.shape[1] == 1:
gradient_out = gradient_out.squeeze(1)
if hessian_out.ndim == 2 and hessian_out.shape[1] == 1:
hessian_out = hessian_out.squeeze(1)
self.closs.gradient_hessian(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
gradient_out=gradient_out,
hessian_out=hessian_out,
n_threads=n_threads,
)
return gradient_out, hessian_out
def __call__(self, y_true, raw_prediction, sample_weight=None, n_threads=1):
"""Compute the weighted average loss.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : C-contiguous array of shape (n_samples,) or array of \
shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
loss : float
Mean or averaged loss function.
"""
return np.average(
self.loss(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=None,
loss_out=None,
n_threads=n_threads,
),
weights=sample_weight,
)
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This can be used as initial estimates of predictions, i.e. before the
first iteration in fit.
Parameters
----------
y_true : array-like of shape (n_samples,)
Observed, true target values.
sample_weight : None or array of shape (n_samples,)
Sample weights.
Returns
-------
raw_prediction : numpy scalar or array of shape (n_classes,)
Raw predictions of an intercept-only model.
"""
# As default, take weighted average of the target over the samples
# axis=0 and then transform into link-scale (raw_prediction).
y_pred = np.average(y_true, weights=sample_weight, axis=0)
eps = 10 * np.finfo(y_pred.dtype).eps
if self.interval_y_pred.low == -np.inf:
a_min = None
elif self.interval_y_pred.low_inclusive:
a_min = self.interval_y_pred.low
else:
a_min = self.interval_y_pred.low + eps
if self.interval_y_pred.high == np.inf:
a_max = None
elif self.interval_y_pred.high_inclusive:
a_max = self.interval_y_pred.high
else:
a_max = self.interval_y_pred.high - eps
if a_min is None and a_max is None:
return self.link.link(y_pred)
else:
return self.link.link(np.clip(y_pred, a_min, a_max))
def constant_to_optimal_zero(self, y_true, sample_weight=None):
"""Calculate term dropped in loss.
With this term added, the loss of perfect predictions is zero.
"""
return np.zeros_like(y_true)
def init_gradient_and_hessian(self, n_samples, dtype=np.float64, order="F"):
"""Initialize arrays for gradients and hessians.
Unless hessians are constant, arrays are initialized with undefined values.
Parameters
----------
n_samples : int
The number of samples, usually passed to `fit()`.
dtype : {np.float64, np.float32}, default=np.float64
The dtype of the arrays gradient and hessian.
order : {'C', 'F'}, default='F'
Order of the arrays gradient and hessian. The default 'F' makes the arrays
contiguous along samples.
Returns
-------
gradient : C-contiguous array of shape (n_samples,) or array of shape \
(n_samples, n_classes)
Empty array (allocated but not initialized) to be used as argument
gradient_out.
hessian : C-contiguous array of shape (n_samples,), array of shape
(n_samples, n_classes) or shape (1,)
Empty (allocated but not initialized) array to be used as argument
hessian_out.
If constant_hessian is True (e.g. `HalfSquaredError`), the array is
initialized to ``1``.
"""
if dtype not in (np.float32, np.float64):
raise ValueError(
"Valid options for 'dtype' are np.float32 and np.float64. "
f"Got dtype={dtype} instead."
)
if self.is_multiclass:
shape = (n_samples, self.n_classes)
else:
shape = (n_samples,)
gradient = np.empty(shape=shape, dtype=dtype, order=order)
if self.constant_hessian:
# If the hessians are constant, we consider them equal to 1.
# - This is correct for HalfSquaredError
# - For AbsoluteError, hessians are actually 0, but they are
# always ignored anyway.
hessian = np.ones(shape=(1,), dtype=dtype)
else:
hessian = np.empty(shape=shape, dtype=dtype, order=order)
return gradient, hessian
# Note: Naturally, we would inherit in the following order
# class HalfSquaredError(IdentityLink, CyHalfSquaredError, BaseLoss)
# But because of https://github.com/cython/cython/issues/4350 we
# set BaseLoss as the last one. This, of course, changes the MRO.
class HalfSquaredError(BaseLoss):
"""Half squared error with identity link, for regression.
Domain:
y_true and y_pred all real numbers
Link:
y_pred = raw_prediction
For a given sample x_i, half squared error is defined as::
loss(x_i) = 0.5 * (y_true_i - raw_prediction_i)**2
The factor of 0.5 simplifies the computation of gradients and results in a
unit hessian (and is consistent with what is done in LightGBM). It is also
half the Normal distribution deviance.
"""
def __init__(self, sample_weight=None):
super().__init__(closs=CyHalfSquaredError(), link=IdentityLink())
self.constant_hessian = sample_weight is None
class AbsoluteError(BaseLoss):
"""Absolute error with identity link, for regression.
Domain:
y_true and y_pred all real numbers
Link:
y_pred = raw_prediction
For a given sample x_i, the absolute error is defined as::
loss(x_i) = |y_true_i - raw_prediction_i|
Note that the exact hessian = 0 almost everywhere (except at one point, therefore
differentiable = False). Optimization routines like in HGBT, however, need a
hessian > 0. Therefore, we assign 1.
"""
differentiable = False
need_update_leaves_values = True
def __init__(self, sample_weight=None):
super().__init__(closs=CyAbsoluteError(), link=IdentityLink())
self.approx_hessian = True
self.constant_hessian = sample_weight is None
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This is the weighted median of the target, i.e. over the samples
axis=0.
"""
if sample_weight is None:
return np.median(y_true, axis=0)
else:
return _weighted_percentile(y_true, sample_weight, 50)
class PinballLoss(BaseLoss):
"""Quantile loss aka pinball loss, for regression.
Domain:
y_true and y_pred all real numbers
quantile in (0, 1)
Link:
y_pred = raw_prediction
For a given sample x_i, the pinball loss is defined as::
loss(x_i) = rho_{quantile}(y_true_i - raw_prediction_i)
rho_{quantile}(u) = u * (quantile - 1_{u<0})
= -u *(1 - quantile) if u < 0
u * quantile if u >= 0
Note: 2 * PinballLoss(quantile=0.5) equals AbsoluteError().
Note that the exact hessian = 0 almost everywhere (except at one point, therefore
differentiable = False). Optimization routines like in HGBT, however, need a
hessian > 0. Therefore, we assign 1.
Additional Attributes
---------------------
quantile : float
The quantile level of the quantile to be estimated. Must be in range (0, 1).
"""
differentiable = False
need_update_leaves_values = True
def __init__(self, sample_weight=None, quantile=0.5):
check_scalar(
quantile,
"quantile",
target_type=numbers.Real,
min_val=0,
max_val=1,
include_boundaries="neither",
)
super().__init__(
closs=CyPinballLoss(quantile=float(quantile)),
link=IdentityLink(),
)
self.approx_hessian = True
self.constant_hessian = sample_weight is None
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This is the weighted median of the target, i.e. over the samples
axis=0.
"""
if sample_weight is None:
return np.percentile(y_true, 100 * self.closs.quantile, axis=0)
else:
return _weighted_percentile(
y_true, sample_weight, 100 * self.closs.quantile
)
class HuberLoss(BaseLoss):
"""Huber loss, for regression.
Domain:
y_true and y_pred all real numbers
quantile in (0, 1)
Link:
y_pred = raw_prediction
For a given sample x_i, the Huber loss is defined as::
loss(x_i) = 1/2 * abserr**2 if abserr <= delta
delta * (abserr - delta/2) if abserr > delta
abserr = |y_true_i - raw_prediction_i|
delta = quantile(abserr, self.quantile)
Note: HuberLoss(quantile=1) equals HalfSquaredError and HuberLoss(quantile=0)
equals delta * (AbsoluteError() - delta/2).
Additional Attributes
---------------------
quantile : float
The quantile level which defines the breaking point `delta` to distinguish
between absolute error and squared error. Must be in range (0, 1).
Reference
---------
.. [1] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient
boosting machine <10.1214/aos/1013203451>`.
Annals of Statistics, 29, 1189-1232.
"""
differentiable = False
need_update_leaves_values = True
def __init__(self, sample_weight=None, quantile=0.9, delta=0.5):
check_scalar(
quantile,
"quantile",
target_type=numbers.Real,
min_val=0,
max_val=1,
include_boundaries="neither",
)
self.quantile = quantile # This is better stored outside of Cython.
super().__init__(
closs=CyHuberLoss(delta=float(delta)),
link=IdentityLink(),
)
self.approx_hessian = True
self.constant_hessian = False
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This is the weighted median of the target, i.e. over the samples
axis=0.
"""
# See formula before algo 4 in Friedman (2001), but we apply it to y_true,
# not to the residual y_true - raw_prediction. An estimator like
# HistGradientBoostingRegressor might then call it on the residual, e.g.
# fit_intercept_only(y_true - raw_prediction).
if sample_weight is None:
median = np.percentile(y_true, 50, axis=0)
else:
median = _weighted_percentile(y_true, sample_weight, 50)
diff = y_true - median
term = np.sign(diff) * np.minimum(self.closs.delta, np.abs(diff))
return median + np.average(term, weights=sample_weight)
class HalfPoissonLoss(BaseLoss):
"""Half Poisson deviance loss with log-link, for regression.
Domain:
y_true in non-negative real numbers
y_pred in positive real numbers
Link:
y_pred = exp(raw_prediction)
For a given sample x_i, half the Poisson deviance is defined as::
loss(x_i) = y_true_i * log(y_true_i/exp(raw_prediction_i))
- y_true_i + exp(raw_prediction_i)
Half the Poisson deviance is actually the negative log-likelihood up to
constant terms (not involving raw_prediction) and simplifies the
computation of the gradients.
We also skip the constant term `y_true_i * log(y_true_i) - y_true_i`.
"""
def __init__(self, sample_weight=None):
super().__init__(closs=CyHalfPoissonLoss(), link=LogLink())
self.interval_y_true = Interval(0, np.inf, True, False)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
term = xlogy(y_true, y_true) - y_true
if sample_weight is not None:
term *= sample_weight
return term
class HalfGammaLoss(BaseLoss):
"""Half Gamma deviance loss with log-link, for regression.
Domain:
y_true and y_pred in positive real numbers
Link:
y_pred = exp(raw_prediction)
For a given sample x_i, half Gamma deviance loss is defined as::
loss(x_i) = log(exp(raw_prediction_i)/y_true_i)
+ y_true/exp(raw_prediction_i) - 1
Half the Gamma deviance is actually proportional to the negative log-
likelihood up to constant terms (not involving raw_prediction) and
simplifies the computation of the gradients.
We also skip the constant term `-log(y_true_i) - 1`.
"""
def __init__(self, sample_weight=None):
super().__init__(closs=CyHalfGammaLoss(), link=LogLink())
self.interval_y_true = Interval(0, np.inf, False, False)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
term = -np.log(y_true) - 1
if sample_weight is not None:
term *= sample_weight
return term
class HalfTweedieLoss(BaseLoss):
"""Half Tweedie deviance loss with log-link, for regression.
Domain:
y_true in real numbers for power <= 0
y_true in non-negative real numbers for 0 < power < 2
y_true in positive real numbers for 2 <= power
y_pred in positive real numbers
power in real numbers
Link:
y_pred = exp(raw_prediction)
For a given sample x_i, half Tweedie deviance loss with p=power is defined
as::
loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
- y_true_i * exp(raw_prediction_i)**(1-p) / (1-p)
+ exp(raw_prediction_i)**(2-p) / (2-p)
Taking the limits for p=0, 1, 2 gives HalfSquaredError with a log link,
HalfPoissonLoss and HalfGammaLoss.
We also skip constant terms, but those are different for p=0, 1, 2.
Therefore, the loss is not continuous in `power`.
Note furthermore that although no Tweedie distribution exists for
0 < power < 1, it still gives a strictly consistent scoring function for
the expectation.
"""
def __init__(self, sample_weight=None, power=1.5):
super().__init__(
closs=CyHalfTweedieLoss(power=float(power)),
link=LogLink(),
)
if self.closs.power <= 0:
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
elif self.closs.power < 2:
self.interval_y_true = Interval(0, np.inf, True, False)
else:
self.interval_y_true = Interval(0, np.inf, False, False)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
if self.closs.power == 0:
return HalfSquaredError().constant_to_optimal_zero(
y_true=y_true, sample_weight=sample_weight
)
elif self.closs.power == 1:
return HalfPoissonLoss().constant_to_optimal_zero(
y_true=y_true, sample_weight=sample_weight
)
elif self.closs.power == 2:
return HalfGammaLoss().constant_to_optimal_zero(
y_true=y_true, sample_weight=sample_weight
)
else:
p = self.closs.power
term = np.power(np.maximum(y_true, 0), 2 - p) / (1 - p) / (2 - p)
if sample_weight is not None:
term *= sample_weight
return term
class HalfTweedieLossIdentity(BaseLoss):
"""Half Tweedie deviance loss with identity link, for regression.
Domain:
y_true in real numbers for power <= 0
y_true in non-negative real numbers for 0 < power < 2
y_true in positive real numbers for 2 <= power
y_pred in positive real numbers for power != 0
y_pred in real numbers for power = 0
power in real numbers
Link:
y_pred = raw_prediction
For a given sample x_i, half Tweedie deviance loss with p=power is defined
as::
loss(x_i) = max(y_true_i, 0)**(2-p) / (1-p) / (2-p)
- y_true_i * raw_prediction_i**(1-p) / (1-p)
+ raw_prediction_i**(2-p) / (2-p)
Note that the minimum value of this loss is 0.
Note furthermore that although no Tweedie distribution exists for
0 < power < 1, it still gives a strictly consistent scoring function for
the expectation.
"""
def __init__(self, sample_weight=None, power=1.5):
super().__init__(
closs=CyHalfTweedieLossIdentity(power=float(power)),
link=IdentityLink(),
)
if self.closs.power <= 0:
self.interval_y_true = Interval(-np.inf, np.inf, False, False)
elif self.closs.power < 2:
self.interval_y_true = Interval(0, np.inf, True, False)
else:
self.interval_y_true = Interval(0, np.inf, False, False)
if self.closs.power == 0:
self.interval_y_pred = Interval(-np.inf, np.inf, False, False)
else:
self.interval_y_pred = Interval(0, np.inf, False, False)
class HalfBinomialLoss(BaseLoss):
"""Half Binomial deviance loss with logit link, for binary classification.
This is also know as binary cross entropy, log-loss and logistic loss.
Domain:
y_true in [0, 1], i.e. regression on the unit interval
y_pred in (0, 1), i.e. boundaries excluded
Link:
y_pred = expit(raw_prediction)
For a given sample x_i, half Binomial deviance is defined as the negative
log-likelihood of the Binomial/Bernoulli distribution and can be expressed
as::
loss(x_i) = log(1 + exp(raw_pred_i)) - y_true_i * raw_pred_i
See The Elements of Statistical Learning, by Hastie, Tibshirani, Friedman,
section 4.4.1 (about logistic regression).
Note that the formulation works for classification, y = {0, 1}, as well as
logistic regression, y = [0, 1].
If you add `constant_to_optimal_zero` to the loss, you get half the
Bernoulli/binomial deviance.
More details: Inserting the predicted probability y_pred = expit(raw_prediction)
in the loss gives the well known::
loss(x_i) = - y_true_i * log(y_pred_i) - (1 - y_true_i) * log(1 - y_pred_i)
"""
def __init__(self, sample_weight=None):
super().__init__(
closs=CyHalfBinomialLoss(),
link=LogitLink(),
n_classes=2,
)
self.interval_y_true = Interval(0, 1, True, True)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
# This is non-zero only if y_true is neither 0 nor 1.
term = xlogy(y_true, y_true) + xlogy(1 - y_true, 1 - y_true)
if sample_weight is not None:
term *= sample_weight
return term
def predict_proba(self, raw_prediction):
"""Predict probabilities.
Parameters
----------
raw_prediction : array of shape (n_samples,) or (n_samples, 1)
Raw prediction values (in link space).
Returns
-------
proba : array of shape (n_samples, 2)
Element-wise class probabilities.
"""
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
proba[:, 1] = self.link.inverse(raw_prediction)
proba[:, 0] = 1 - proba[:, 1]
return proba
class HalfMultinomialLoss(BaseLoss):
"""Categorical cross-entropy loss, for multiclass classification.
Domain:
y_true in {0, 1, 2, 3, .., n_classes - 1}
y_pred has n_classes elements, each element in (0, 1)
Link:
y_pred = softmax(raw_prediction)
Note: We assume y_true to be already label encoded. The inverse link is
softmax. But the full link function is the symmetric multinomial logit
function.
For a given sample x_i, the categorical cross-entropy loss is defined as
the negative log-likelihood of the multinomial distribution, it
generalizes the binary cross-entropy to more than 2 classes::
loss_i = log(sum(exp(raw_pred_{i, k}), k=0..n_classes-1))
- sum(y_true_{i, k} * raw_pred_{i, k}, k=0..n_classes-1)
See [1].
Note that for the hessian, we calculate only the diagonal part in the
classes: If the full hessian for classes k and l and sample i is H_i_k_l,
we calculate H_i_k_k, i.e. k=l.
Reference
---------
.. [1] :arxiv:`Simon, Noah, J. Friedman and T. Hastie.
"A Blockwise Descent Algorithm for Group-penalized Multiresponse and
Multinomial Regression".
<1311.6529>`
"""
is_multiclass = True
def __init__(self, sample_weight=None, n_classes=3):
super().__init__(
closs=CyHalfMultinomialLoss(),
link=MultinomialLogit(),
n_classes=n_classes,
)
self.interval_y_true = Interval(0, np.inf, True, False)
self.interval_y_pred = Interval(0, 1, False, False)
def in_y_true_range(self, y):
"""Return True if y is in the valid range of y_true.
Parameters
----------
y : ndarray
"""
return self.interval_y_true.includes(y) and np.all(y.astype(int) == y)
def fit_intercept_only(self, y_true, sample_weight=None):
"""Compute raw_prediction of an intercept-only model.
This is the softmax of the weighted average of the target, i.e. over
the samples axis=0.
"""
out = np.zeros(self.n_classes, dtype=y_true.dtype)
eps = np.finfo(y_true.dtype).eps
for k in range(self.n_classes):
out[k] = np.average(y_true == k, weights=sample_weight, axis=0)
out[k] = np.clip(out[k], eps, 1 - eps)
return self.link.link(out[None, :]).reshape(-1)
def predict_proba(self, raw_prediction):
"""Predict probabilities.
Parameters
----------
raw_prediction : array of shape (n_samples, n_classes)
Raw prediction values (in link space).
Returns
-------
proba : array of shape (n_samples, n_classes)
Element-wise class probabilities.
"""
return self.link.inverse(raw_prediction)
def gradient_proba(
self,
y_true,
raw_prediction,
sample_weight=None,
gradient_out=None,
proba_out=None,
n_threads=1,
):
"""Compute gradient and class probabilities fow raw_prediction.
Parameters
----------
y_true : C-contiguous array of shape (n_samples,)
Observed, true target values.
raw_prediction : array of shape (n_samples, n_classes)
Raw prediction values (in link space).
sample_weight : None or C-contiguous array of shape (n_samples,)
Sample weights.
gradient_out : None or array of shape (n_samples, n_classes)
A location into which the gradient is stored. If None, a new array
might be created.
proba_out : None or array of shape (n_samples, n_classes)
A location into which the class probabilities are stored. If None,
a new array might be created.
n_threads : int, default=1
Might use openmp thread parallelism.
Returns
-------
gradient : array of shape (n_samples, n_classes)
Element-wise gradients.
proba : array of shape (n_samples, n_classes)
Element-wise class probabilities.
"""
if gradient_out is None:
if proba_out is None:
gradient_out = np.empty_like(raw_prediction)
proba_out = np.empty_like(raw_prediction)
else:
gradient_out = np.empty_like(proba_out)
elif proba_out is None:
proba_out = np.empty_like(gradient_out)
self.closs.gradient_proba(
y_true=y_true,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
gradient_out=gradient_out,
proba_out=proba_out,
n_threads=n_threads,
)
return gradient_out, proba_out
class ExponentialLoss(BaseLoss):
"""Exponential loss with (half) logit link, for binary classification.
This is also know as boosting loss.
Domain:
y_true in [0, 1], i.e. regression on the unit interval
y_pred in (0, 1), i.e. boundaries excluded
Link:
y_pred = expit(2 * raw_prediction)
For a given sample x_i, the exponential loss is defined as::
loss(x_i) = y_true_i * exp(-raw_pred_i)) + (1 - y_true_i) * exp(raw_pred_i)
See:
- J. Friedman, T. Hastie, R. Tibshirani.
"Additive logistic regression: a statistical view of boosting (With discussion
and a rejoinder by the authors)." Ann. Statist. 28 (2) 337 - 407, April 2000.
https://doi.org/10.1214/aos/1016218223
- A. Buja, W. Stuetzle, Y. Shen. (2005).
"Loss Functions for Binary Class Probability Estimation and Classification:
Structure and Applications."
Note that the formulation works for classification, y = {0, 1}, as well as
"exponential logistic" regression, y = [0, 1].
Note that this is a proper scoring rule, but without it's canonical link.
More details: Inserting the predicted probability
y_pred = expit(2 * raw_prediction) in the loss gives::
loss(x_i) = y_true_i * sqrt((1 - y_pred_i) / y_pred_i)
+ (1 - y_true_i) * sqrt(y_pred_i / (1 - y_pred_i))
"""
def __init__(self, sample_weight=None):
super().__init__(
closs=CyExponentialLoss(),
link=HalfLogitLink(),
n_classes=2,
)
self.interval_y_true = Interval(0, 1, True, True)
def constant_to_optimal_zero(self, y_true, sample_weight=None):
# This is non-zero only if y_true is neither 0 nor 1.
term = -2 * np.sqrt(y_true * (1 - y_true))
if sample_weight is not None:
term *= sample_weight
return term
def predict_proba(self, raw_prediction):
"""Predict probabilities.
Parameters
----------
raw_prediction : array of shape (n_samples,) or (n_samples, 1)
Raw prediction values (in link space).
Returns
-------
proba : array of shape (n_samples, 2)
Element-wise class probabilities.
"""
# Be graceful to shape (n_samples, 1) -> (n_samples,)
if raw_prediction.ndim == 2 and raw_prediction.shape[1] == 1:
raw_prediction = raw_prediction.squeeze(1)
proba = np.empty((raw_prediction.shape[0], 2), dtype=raw_prediction.dtype)
proba[:, 1] = self.link.inverse(raw_prediction)
proba[:, 0] = 1 - proba[:, 1]
return proba
_LOSSES = {
"squared_error": HalfSquaredError,
"absolute_error": AbsoluteError,
"pinball_loss": PinballLoss,
"huber_loss": HuberLoss,
"poisson_loss": HalfPoissonLoss,
"gamma_loss": HalfGammaLoss,
"tweedie_loss": HalfTweedieLoss,
"binomial_loss": HalfBinomialLoss,
"multinomial_loss": HalfMultinomialLoss,
"exponential_loss": ExponentialLoss,
}