Traktor/myenv/Lib/site-packages/sklearn/metrics/__init__.py

182 lines
4.5 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
"""
The :mod:`sklearn.metrics` module includes score functions, performance metrics
and pairwise metrics and distance computations.
"""
from . import cluster
from ._classification import (
accuracy_score,
balanced_accuracy_score,
brier_score_loss,
class_likelihood_ratios,
classification_report,
cohen_kappa_score,
confusion_matrix,
d2_log_loss_score,
f1_score,
fbeta_score,
hamming_loss,
hinge_loss,
jaccard_score,
log_loss,
matthews_corrcoef,
multilabel_confusion_matrix,
precision_recall_fscore_support,
precision_score,
recall_score,
zero_one_loss,
)
from ._dist_metrics import DistanceMetric
from ._plot.confusion_matrix import ConfusionMatrixDisplay
from ._plot.det_curve import DetCurveDisplay
from ._plot.precision_recall_curve import PrecisionRecallDisplay
from ._plot.regression import PredictionErrorDisplay
from ._plot.roc_curve import RocCurveDisplay
from ._ranking import (
auc,
average_precision_score,
coverage_error,
dcg_score,
det_curve,
label_ranking_average_precision_score,
label_ranking_loss,
ndcg_score,
precision_recall_curve,
roc_auc_score,
roc_curve,
top_k_accuracy_score,
)
from ._regression import (
d2_absolute_error_score,
d2_pinball_score,
d2_tweedie_score,
explained_variance_score,
max_error,
mean_absolute_error,
mean_absolute_percentage_error,
mean_gamma_deviance,
mean_pinball_loss,
mean_poisson_deviance,
mean_squared_error,
mean_squared_log_error,
mean_tweedie_deviance,
median_absolute_error,
r2_score,
root_mean_squared_error,
root_mean_squared_log_error,
)
from ._scorer import check_scoring, get_scorer, get_scorer_names, make_scorer
from .cluster import (
adjusted_mutual_info_score,
adjusted_rand_score,
calinski_harabasz_score,
completeness_score,
consensus_score,
davies_bouldin_score,
fowlkes_mallows_score,
homogeneity_completeness_v_measure,
homogeneity_score,
mutual_info_score,
normalized_mutual_info_score,
pair_confusion_matrix,
rand_score,
silhouette_samples,
silhouette_score,
v_measure_score,
)
from .pairwise import (
euclidean_distances,
nan_euclidean_distances,
pairwise_distances,
pairwise_distances_argmin,
pairwise_distances_argmin_min,
pairwise_distances_chunked,
pairwise_kernels,
)
__all__ = [
"accuracy_score",
"adjusted_mutual_info_score",
"adjusted_rand_score",
"auc",
"average_precision_score",
"balanced_accuracy_score",
"calinski_harabasz_score",
"check_scoring",
"class_likelihood_ratios",
"classification_report",
"cluster",
"cohen_kappa_score",
"completeness_score",
"ConfusionMatrixDisplay",
"confusion_matrix",
"consensus_score",
"coverage_error",
"d2_tweedie_score",
"d2_absolute_error_score",
"d2_log_loss_score",
"d2_pinball_score",
"dcg_score",
"davies_bouldin_score",
"DetCurveDisplay",
"det_curve",
"DistanceMetric",
"euclidean_distances",
"explained_variance_score",
"f1_score",
"fbeta_score",
"fowlkes_mallows_score",
"get_scorer",
"hamming_loss",
"hinge_loss",
"homogeneity_completeness_v_measure",
"homogeneity_score",
"jaccard_score",
"label_ranking_average_precision_score",
"label_ranking_loss",
"log_loss",
"make_scorer",
"nan_euclidean_distances",
"matthews_corrcoef",
"max_error",
"mean_absolute_error",
"mean_squared_error",
"mean_squared_log_error",
"mean_pinball_loss",
"mean_poisson_deviance",
"mean_gamma_deviance",
"mean_tweedie_deviance",
"median_absolute_error",
"mean_absolute_percentage_error",
"multilabel_confusion_matrix",
"mutual_info_score",
"ndcg_score",
"normalized_mutual_info_score",
"pair_confusion_matrix",
"pairwise_distances",
"pairwise_distances_argmin",
"pairwise_distances_argmin_min",
"pairwise_distances_chunked",
"pairwise_kernels",
"PrecisionRecallDisplay",
"precision_recall_curve",
"precision_recall_fscore_support",
"precision_score",
"PredictionErrorDisplay",
"r2_score",
"rand_score",
"recall_score",
"RocCurveDisplay",
"roc_auc_score",
"roc_curve",
"root_mean_squared_log_error",
"root_mean_squared_error",
"get_scorer_names",
"silhouette_samples",
"silhouette_score",
"top_k_accuracy_score",
"v_measure_score",
"zero_one_loss",
"brier_score_loss",
]