Traktor/myenv/Lib/site-packages/sklearn/neighbors/_kde.py

367 lines
12 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
"""
Kernel Density Estimation
-------------------------
"""
# Author: Jake Vanderplas <jakevdp@cs.washington.edu>
import itertools
from numbers import Integral, Real
import numpy as np
from scipy.special import gammainc
from ..base import BaseEstimator, _fit_context
from ..neighbors._base import VALID_METRICS
from ..utils import check_random_state
from ..utils._param_validation import Interval, StrOptions
from ..utils.extmath import row_norms
from ..utils.validation import _check_sample_weight, check_is_fitted
from ._ball_tree import BallTree
from ._kd_tree import KDTree
VALID_KERNELS = [
"gaussian",
"tophat",
"epanechnikov",
"exponential",
"linear",
"cosine",
]
TREE_DICT = {"ball_tree": BallTree, "kd_tree": KDTree}
# TODO: implement a brute force version for testing purposes
# TODO: create a density estimation base class?
class KernelDensity(BaseEstimator):
"""Kernel Density Estimation.
Read more in the :ref:`User Guide <kernel_density>`.
Parameters
----------
bandwidth : float or {"scott", "silverman"}, default=1.0
The bandwidth of the kernel. If bandwidth is a float, it defines the
bandwidth of the kernel. If bandwidth is a string, one of the estimation
methods is implemented.
algorithm : {'kd_tree', 'ball_tree', 'auto'}, default='auto'
The tree algorithm to use.
kernel : {'gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', \
'cosine'}, default='gaussian'
The kernel to use.
metric : str, default='euclidean'
Metric to use for distance computation. See the
documentation of `scipy.spatial.distance
<https://docs.scipy.org/doc/scipy/reference/spatial.distance.html>`_ and
the metrics listed in
:class:`~sklearn.metrics.pairwise.distance_metrics` for valid metric
values.
Not all metrics are valid with all algorithms: refer to the
documentation of :class:`BallTree` and :class:`KDTree`. Note that the
normalization of the density output is correct only for the Euclidean
distance metric.
atol : float, default=0
The desired absolute tolerance of the result. A larger tolerance will
generally lead to faster execution.
rtol : float, default=0
The desired relative tolerance of the result. A larger tolerance will
generally lead to faster execution.
breadth_first : bool, default=True
If true (default), use a breadth-first approach to the problem.
Otherwise use a depth-first approach.
leaf_size : int, default=40
Specify the leaf size of the underlying tree. See :class:`BallTree`
or :class:`KDTree` for details.
metric_params : dict, default=None
Additional parameters to be passed to the tree for use with the
metric. For more information, see the documentation of
:class:`BallTree` or :class:`KDTree`.
Attributes
----------
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
tree_ : ``BinaryTree`` instance
The tree algorithm for fast generalized N-point problems.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
bandwidth_ : float
Value of the bandwidth, given directly by the bandwidth parameter or
estimated using the 'scott' or 'silverman' method.
.. versionadded:: 1.0
See Also
--------
sklearn.neighbors.KDTree : K-dimensional tree for fast generalized N-point
problems.
sklearn.neighbors.BallTree : Ball tree for fast generalized N-point
problems.
Examples
--------
Compute a gaussian kernel density estimate with a fixed bandwidth.
>>> from sklearn.neighbors import KernelDensity
>>> import numpy as np
>>> rng = np.random.RandomState(42)
>>> X = rng.random_sample((100, 3))
>>> kde = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(X)
>>> log_density = kde.score_samples(X[:3])
>>> log_density
array([-1.52955942, -1.51462041, -1.60244657])
"""
_parameter_constraints: dict = {
"bandwidth": [
Interval(Real, 0, None, closed="neither"),
StrOptions({"scott", "silverman"}),
],
"algorithm": [StrOptions(set(TREE_DICT.keys()) | {"auto"})],
"kernel": [StrOptions(set(VALID_KERNELS))],
"metric": [
StrOptions(
set(itertools.chain(*[VALID_METRICS[alg] for alg in TREE_DICT.keys()]))
)
],
"atol": [Interval(Real, 0, None, closed="left")],
"rtol": [Interval(Real, 0, None, closed="left")],
"breadth_first": ["boolean"],
"leaf_size": [Interval(Integral, 1, None, closed="left")],
"metric_params": [None, dict],
}
def __init__(
self,
*,
bandwidth=1.0,
algorithm="auto",
kernel="gaussian",
metric="euclidean",
atol=0,
rtol=0,
breadth_first=True,
leaf_size=40,
metric_params=None,
):
self.algorithm = algorithm
self.bandwidth = bandwidth
self.kernel = kernel
self.metric = metric
self.atol = atol
self.rtol = rtol
self.breadth_first = breadth_first
self.leaf_size = leaf_size
self.metric_params = metric_params
def _choose_algorithm(self, algorithm, metric):
# given the algorithm string + metric string, choose the optimal
# algorithm to compute the result.
if algorithm == "auto":
# use KD Tree if possible
if metric in KDTree.valid_metrics:
return "kd_tree"
elif metric in BallTree.valid_metrics:
return "ball_tree"
else: # kd_tree or ball_tree
if metric not in TREE_DICT[algorithm].valid_metrics:
raise ValueError(
"invalid metric for {0}: '{1}'".format(TREE_DICT[algorithm], metric)
)
return algorithm
@_fit_context(
# KernelDensity.metric is not validated yet
prefer_skip_nested_validation=False
)
def fit(self, X, y=None, sample_weight=None):
"""Fit the Kernel Density model on the data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
y : None
Ignored. This parameter exists only for compatibility with
:class:`~sklearn.pipeline.Pipeline`.
sample_weight : array-like of shape (n_samples,), default=None
List of sample weights attached to the data X.
.. versionadded:: 0.20
Returns
-------
self : object
Returns the instance itself.
"""
algorithm = self._choose_algorithm(self.algorithm, self.metric)
if isinstance(self.bandwidth, str):
if self.bandwidth == "scott":
self.bandwidth_ = X.shape[0] ** (-1 / (X.shape[1] + 4))
elif self.bandwidth == "silverman":
self.bandwidth_ = (X.shape[0] * (X.shape[1] + 2) / 4) ** (
-1 / (X.shape[1] + 4)
)
else:
self.bandwidth_ = self.bandwidth
X = self._validate_data(X, order="C", dtype=np.float64)
if sample_weight is not None:
sample_weight = _check_sample_weight(
sample_weight, X, dtype=np.float64, only_non_negative=True
)
kwargs = self.metric_params
if kwargs is None:
kwargs = {}
self.tree_ = TREE_DICT[algorithm](
X,
metric=self.metric,
leaf_size=self.leaf_size,
sample_weight=sample_weight,
**kwargs,
)
return self
def score_samples(self, X):
"""Compute the log-likelihood of each sample under the model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
An array of points to query. Last dimension should match dimension
of training data (n_features).
Returns
-------
density : ndarray of shape (n_samples,)
Log-likelihood of each sample in `X`. These are normalized to be
probability densities, so values will be low for high-dimensional
data.
"""
check_is_fitted(self)
# The returned density is normalized to the number of points.
# For it to be a probability, we must scale it. For this reason
# we'll also scale atol.
X = self._validate_data(X, order="C", dtype=np.float64, reset=False)
if self.tree_.sample_weight is None:
N = self.tree_.data.shape[0]
else:
N = self.tree_.sum_weight
atol_N = self.atol * N
log_density = self.tree_.kernel_density(
X,
h=self.bandwidth_,
kernel=self.kernel,
atol=atol_N,
rtol=self.rtol,
breadth_first=self.breadth_first,
return_log=True,
)
log_density -= np.log(N)
return log_density
def score(self, X, y=None):
"""Compute the total log-likelihood under the model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
y : None
Ignored. This parameter exists only for compatibility with
:class:`~sklearn.pipeline.Pipeline`.
Returns
-------
logprob : float
Total log-likelihood of the data in X. This is normalized to be a
probability density, so the value will be low for high-dimensional
data.
"""
return np.sum(self.score_samples(X))
def sample(self, n_samples=1, random_state=None):
"""Generate random samples from the model.
Currently, this is implemented only for gaussian and tophat kernels.
Parameters
----------
n_samples : int, default=1
Number of samples to generate.
random_state : int, RandomState instance or None, default=None
Determines random number generation used to generate
random samples. Pass an int for reproducible results
across multiple function calls.
See :term:`Glossary <random_state>`.
Returns
-------
X : array-like of shape (n_samples, n_features)
List of samples.
"""
check_is_fitted(self)
# TODO: implement sampling for other valid kernel shapes
if self.kernel not in ["gaussian", "tophat"]:
raise NotImplementedError()
data = np.asarray(self.tree_.data)
rng = check_random_state(random_state)
u = rng.uniform(0, 1, size=n_samples)
if self.tree_.sample_weight is None:
i = (u * data.shape[0]).astype(np.int64)
else:
cumsum_weight = np.cumsum(np.asarray(self.tree_.sample_weight))
sum_weight = cumsum_weight[-1]
i = np.searchsorted(cumsum_weight, u * sum_weight)
if self.kernel == "gaussian":
return np.atleast_2d(rng.normal(data[i], self.bandwidth_))
elif self.kernel == "tophat":
# we first draw points from a d-dimensional normal distribution,
# then use an incomplete gamma function to map them to a uniform
# d-dimensional tophat distribution.
dim = data.shape[1]
X = rng.normal(size=(n_samples, dim))
s_sq = row_norms(X, squared=True)
correction = (
gammainc(0.5 * dim, 0.5 * s_sq) ** (1.0 / dim)
* self.bandwidth_
/ np.sqrt(s_sq)
)
return data[i] + X * correction[:, np.newaxis]
def _more_tags(self):
return {
"_xfail_checks": {
"check_sample_weights_invariance": (
"sample_weight must have positive values"
),
}
}