Traktor/myenv/Lib/site-packages/sklearn/preprocessing/tests/test_polynomial.py

1259 lines
41 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
import sys
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from scipy import sparse
from scipy.interpolate import BSpline
from scipy.sparse import random as sparse_random
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import (
KBinsDiscretizer,
PolynomialFeatures,
SplineTransformer,
)
from sklearn.preprocessing._csr_polynomial_expansion import (
_calc_expanded_nnz,
_calc_total_nnz,
_get_sizeof_LARGEST_INT_t,
)
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils.fixes import (
CSC_CONTAINERS,
CSR_CONTAINERS,
parse_version,
sp_version,
)
@pytest.mark.parametrize("est", (PolynomialFeatures, SplineTransformer))
def test_polynomial_and_spline_array_order(est):
"""Test that output array has the given order."""
X = np.arange(10).reshape(5, 2)
def is_c_contiguous(a):
return np.isfortran(a.T)
assert is_c_contiguous(est().fit_transform(X))
assert is_c_contiguous(est(order="C").fit_transform(X))
assert np.isfortran(est(order="F").fit_transform(X))
@pytest.mark.parametrize(
"params, err_msg",
[
({"knots": [[1]]}, r"Number of knots, knots.shape\[0\], must be >= 2."),
({"knots": [[1, 1], [2, 2]]}, r"knots.shape\[1\] == n_features is violated"),
({"knots": [[1], [0]]}, "knots must be sorted without duplicates."),
],
)
def test_spline_transformer_input_validation(params, err_msg):
"""Test that we raise errors for invalid input in SplineTransformer."""
X = [[1], [2]]
with pytest.raises(ValueError, match=err_msg):
SplineTransformer(**params).fit(X)
@pytest.mark.parametrize("extrapolation", ["continue", "periodic"])
def test_spline_transformer_integer_knots(extrapolation):
"""Test that SplineTransformer accepts integer value knot positions."""
X = np.arange(20).reshape(10, 2)
knots = [[0, 1], [1, 2], [5, 5], [11, 10], [12, 11]]
_ = SplineTransformer(
degree=3, knots=knots, extrapolation=extrapolation
).fit_transform(X)
def test_spline_transformer_feature_names():
"""Test that SplineTransformer generates correct features name."""
X = np.arange(20).reshape(10, 2)
splt = SplineTransformer(n_knots=3, degree=3, include_bias=True).fit(X)
feature_names = splt.get_feature_names_out()
assert_array_equal(
feature_names,
[
"x0_sp_0",
"x0_sp_1",
"x0_sp_2",
"x0_sp_3",
"x0_sp_4",
"x1_sp_0",
"x1_sp_1",
"x1_sp_2",
"x1_sp_3",
"x1_sp_4",
],
)
splt = SplineTransformer(n_knots=3, degree=3, include_bias=False).fit(X)
feature_names = splt.get_feature_names_out(["a", "b"])
assert_array_equal(
feature_names,
[
"a_sp_0",
"a_sp_1",
"a_sp_2",
"a_sp_3",
"b_sp_0",
"b_sp_1",
"b_sp_2",
"b_sp_3",
],
)
@pytest.mark.parametrize(
"extrapolation",
["constant", "linear", "continue", "periodic"],
)
@pytest.mark.parametrize("degree", [2, 3])
def test_split_transform_feature_names_extrapolation_degree(extrapolation, degree):
"""Test feature names are correct for different extrapolations and degree.
Non-regression test for gh-25292.
"""
X = np.arange(20).reshape(10, 2)
splt = SplineTransformer(degree=degree, extrapolation=extrapolation).fit(X)
feature_names = splt.get_feature_names_out(["a", "b"])
assert len(feature_names) == splt.n_features_out_
X_trans = splt.transform(X)
assert X_trans.shape[1] == len(feature_names)
@pytest.mark.parametrize("degree", range(1, 5))
@pytest.mark.parametrize("n_knots", range(3, 5))
@pytest.mark.parametrize("knots", ["uniform", "quantile"])
@pytest.mark.parametrize("extrapolation", ["constant", "periodic"])
def test_spline_transformer_unity_decomposition(degree, n_knots, knots, extrapolation):
"""Test that B-splines are indeed a decomposition of unity.
Splines basis functions must sum up to 1 per row, if we stay in between boundaries.
"""
X = np.linspace(0, 1, 100)[:, None]
# make the boundaries 0 and 1 part of X_train, for sure.
X_train = np.r_[[[0]], X[::2, :], [[1]]]
X_test = X[1::2, :]
if extrapolation == "periodic":
n_knots = n_knots + degree # periodic splines require degree < n_knots
splt = SplineTransformer(
n_knots=n_knots,
degree=degree,
knots=knots,
include_bias=True,
extrapolation=extrapolation,
)
splt.fit(X_train)
for X in [X_train, X_test]:
assert_allclose(np.sum(splt.transform(X), axis=1), 1)
@pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
def test_spline_transformer_linear_regression(bias, intercept):
"""Test that B-splines fit a sinusodial curve pretty well."""
X = np.linspace(0, 10, 100)[:, None]
y = np.sin(X[:, 0]) + 2 # +2 to avoid the value 0 in assert_allclose
pipe = Pipeline(
steps=[
(
"spline",
SplineTransformer(
n_knots=15,
degree=3,
include_bias=bias,
extrapolation="constant",
),
),
("ols", LinearRegression(fit_intercept=intercept)),
]
)
pipe.fit(X, y)
assert_allclose(pipe.predict(X), y, rtol=1e-3)
@pytest.mark.parametrize(
["knots", "n_knots", "sample_weight", "expected_knots"],
[
("uniform", 3, None, np.array([[0, 2], [3, 8], [6, 14]])),
(
"uniform",
3,
np.array([0, 0, 1, 1, 0, 3, 1]),
np.array([[2, 2], [4, 8], [6, 14]]),
),
("uniform", 4, None, np.array([[0, 2], [2, 6], [4, 10], [6, 14]])),
("quantile", 3, None, np.array([[0, 2], [3, 3], [6, 14]])),
(
"quantile",
3,
np.array([0, 0, 1, 1, 0, 3, 1]),
np.array([[2, 2], [5, 8], [6, 14]]),
),
],
)
def test_spline_transformer_get_base_knot_positions(
knots, n_knots, sample_weight, expected_knots
):
"""Check the behaviour to find knot positions with and without sample_weight."""
X = np.array([[0, 2], [0, 2], [2, 2], [3, 3], [4, 6], [5, 8], [6, 14]])
base_knots = SplineTransformer._get_base_knot_positions(
X=X, knots=knots, n_knots=n_knots, sample_weight=sample_weight
)
assert_allclose(base_knots, expected_knots)
@pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
def test_spline_transformer_periodic_linear_regression(bias, intercept):
"""Test that B-splines fit a periodic curve pretty well."""
# "+ 3" to avoid the value 0 in assert_allclose
def f(x):
return np.sin(2 * np.pi * x) - np.sin(8 * np.pi * x) + 3
X = np.linspace(0, 1, 101)[:, None]
pipe = Pipeline(
steps=[
(
"spline",
SplineTransformer(
n_knots=20,
degree=3,
include_bias=bias,
extrapolation="periodic",
),
),
("ols", LinearRegression(fit_intercept=intercept)),
]
)
pipe.fit(X, f(X[:, 0]))
# Generate larger array to check periodic extrapolation
X_ = np.linspace(-1, 2, 301)[:, None]
predictions = pipe.predict(X_)
assert_allclose(predictions, f(X_[:, 0]), atol=0.01, rtol=0.01)
assert_allclose(predictions[0:100], predictions[100:200], rtol=1e-3)
def test_spline_transformer_periodic_spline_backport():
"""Test that the backport of extrapolate="periodic" works correctly"""
X = np.linspace(-2, 3.5, 10)[:, None]
degree = 2
# Use periodic extrapolation backport in SplineTransformer
transformer = SplineTransformer(
degree=degree, extrapolation="periodic", knots=[[-1.0], [0.0], [1.0]]
)
Xt = transformer.fit_transform(X)
# Use periodic extrapolation in BSpline
coef = np.array([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])
spl = BSpline(np.arange(-3, 4), coef, degree, "periodic")
Xspl = spl(X[:, 0])
assert_allclose(Xt, Xspl)
def test_spline_transformer_periodic_splines_periodicity():
"""Test if shifted knots result in the same transformation up to permutation."""
X = np.linspace(0, 10, 101)[:, None]
transformer_1 = SplineTransformer(
degree=3,
extrapolation="periodic",
knots=[[0.0], [1.0], [3.0], [4.0], [5.0], [8.0]],
)
transformer_2 = SplineTransformer(
degree=3,
extrapolation="periodic",
knots=[[1.0], [3.0], [4.0], [5.0], [8.0], [9.0]],
)
Xt_1 = transformer_1.fit_transform(X)
Xt_2 = transformer_2.fit_transform(X)
assert_allclose(Xt_1, Xt_2[:, [4, 0, 1, 2, 3]])
@pytest.mark.parametrize("degree", [3, 5])
def test_spline_transformer_periodic_splines_smoothness(degree):
"""Test that spline transformation is smooth at first / last knot."""
X = np.linspace(-2, 10, 10_000)[:, None]
transformer = SplineTransformer(
degree=degree,
extrapolation="periodic",
knots=[[0.0], [1.0], [3.0], [4.0], [5.0], [8.0]],
)
Xt = transformer.fit_transform(X)
delta = (X.max() - X.min()) / len(X)
tol = 10 * delta
dXt = Xt
# We expect splines of degree `degree` to be (`degree`-1) times
# continuously differentiable. I.e. for d = 0, ..., `degree` - 1 the d-th
# derivative should be continuous. This is the case if the (d+1)-th
# numerical derivative is reasonably small (smaller than `tol` in absolute
# value). We thus compute d-th numeric derivatives for d = 1, ..., `degree`
# and compare them to `tol`.
#
# Note that the 0-th derivative is the function itself, such that we are
# also checking its continuity.
for d in range(1, degree + 1):
# Check continuity of the (d-1)-th derivative
diff = np.diff(dXt, axis=0)
assert np.abs(diff).max() < tol
# Compute d-th numeric derivative
dXt = diff / delta
# As degree `degree` splines are not `degree` times continuously
# differentiable at the knots, the `degree + 1`-th numeric derivative
# should have spikes at the knots.
diff = np.diff(dXt, axis=0)
assert np.abs(diff).max() > 1
@pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
@pytest.mark.parametrize("degree", [1, 2, 3, 4, 5])
def test_spline_transformer_extrapolation(bias, intercept, degree):
"""Test that B-spline extrapolation works correctly."""
# we use a straight line for that
X = np.linspace(-1, 1, 100)[:, None]
y = X.squeeze()
# 'constant'
pipe = Pipeline(
[
[
"spline",
SplineTransformer(
n_knots=4,
degree=degree,
include_bias=bias,
extrapolation="constant",
),
],
["ols", LinearRegression(fit_intercept=intercept)],
]
)
pipe.fit(X, y)
assert_allclose(pipe.predict([[-10], [5]]), [-1, 1])
# 'linear'
pipe = Pipeline(
[
[
"spline",
SplineTransformer(
n_knots=4,
degree=degree,
include_bias=bias,
extrapolation="linear",
),
],
["ols", LinearRegression(fit_intercept=intercept)],
]
)
pipe.fit(X, y)
assert_allclose(pipe.predict([[-10], [5]]), [-10, 5])
# 'error'
splt = SplineTransformer(
n_knots=4, degree=degree, include_bias=bias, extrapolation="error"
)
splt.fit(X)
msg = "X contains values beyond the limits of the knots"
with pytest.raises(ValueError, match=msg):
splt.transform([[-10]])
with pytest.raises(ValueError, match=msg):
splt.transform([[5]])
def test_spline_transformer_kbindiscretizer():
"""Test that a B-spline of degree=0 is equivalent to KBinsDiscretizer."""
rng = np.random.RandomState(97531)
X = rng.randn(200).reshape(200, 1)
n_bins = 5
n_knots = n_bins + 1
splt = SplineTransformer(
n_knots=n_knots, degree=0, knots="quantile", include_bias=True
)
splines = splt.fit_transform(X)
kbd = KBinsDiscretizer(n_bins=n_bins, encode="onehot-dense", strategy="quantile")
kbins = kbd.fit_transform(X)
# Though they should be exactly equal, we test approximately with high
# accuracy.
assert_allclose(splines, kbins, rtol=1e-13)
@pytest.mark.skipif(
sp_version < parse_version("1.8.0"),
reason="The option `sparse_output` is available as of scipy 1.8.0",
)
@pytest.mark.parametrize("degree", range(1, 3))
@pytest.mark.parametrize("knots", ["uniform", "quantile"])
@pytest.mark.parametrize(
"extrapolation", ["error", "constant", "linear", "continue", "periodic"]
)
@pytest.mark.parametrize("include_bias", [False, True])
def test_spline_transformer_sparse_output(
degree, knots, extrapolation, include_bias, global_random_seed
):
rng = np.random.RandomState(global_random_seed)
X = rng.randn(200).reshape(40, 5)
splt_dense = SplineTransformer(
degree=degree,
knots=knots,
extrapolation=extrapolation,
include_bias=include_bias,
sparse_output=False,
)
splt_sparse = SplineTransformer(
degree=degree,
knots=knots,
extrapolation=extrapolation,
include_bias=include_bias,
sparse_output=True,
)
splt_dense.fit(X)
splt_sparse.fit(X)
X_trans_sparse = splt_sparse.transform(X)
X_trans_dense = splt_dense.transform(X)
assert sparse.issparse(X_trans_sparse) and X_trans_sparse.format == "csr"
assert_allclose(X_trans_dense, X_trans_sparse.toarray())
# extrapolation regime
X_min = np.amin(X, axis=0)
X_max = np.amax(X, axis=0)
X_extra = np.r_[
np.linspace(X_min - 5, X_min, 10), np.linspace(X_max, X_max + 5, 10)
]
if extrapolation == "error":
msg = "X contains values beyond the limits of the knots"
with pytest.raises(ValueError, match=msg):
splt_dense.transform(X_extra)
msg = "Out of bounds"
with pytest.raises(ValueError, match=msg):
splt_sparse.transform(X_extra)
else:
assert_allclose(
splt_dense.transform(X_extra), splt_sparse.transform(X_extra).toarray()
)
@pytest.mark.skipif(
sp_version >= parse_version("1.8.0"),
reason="The option `sparse_output` is available as of scipy 1.8.0",
)
def test_spline_transformer_sparse_output_raise_error_for_old_scipy():
"""Test that SplineTransformer with sparse=True raises for scipy<1.8.0."""
X = [[1], [2]]
with pytest.raises(ValueError, match="scipy>=1.8.0"):
SplineTransformer(sparse_output=True).fit(X)
@pytest.mark.parametrize("n_knots", [5, 10])
@pytest.mark.parametrize("include_bias", [True, False])
@pytest.mark.parametrize("degree", [3, 4])
@pytest.mark.parametrize(
"extrapolation", ["error", "constant", "linear", "continue", "periodic"]
)
@pytest.mark.parametrize("sparse_output", [False, True])
def test_spline_transformer_n_features_out(
n_knots, include_bias, degree, extrapolation, sparse_output
):
"""Test that transform results in n_features_out_ features."""
if sparse_output and sp_version < parse_version("1.8.0"):
pytest.skip("The option `sparse_output` is available as of scipy 1.8.0")
splt = SplineTransformer(
n_knots=n_knots,
degree=degree,
include_bias=include_bias,
extrapolation=extrapolation,
sparse_output=sparse_output,
)
X = np.linspace(0, 1, 10)[:, None]
splt.fit(X)
assert splt.transform(X).shape[1] == splt.n_features_out_
@pytest.mark.parametrize(
"params, err_msg",
[
({"degree": (-1, 2)}, r"degree=\(min_degree, max_degree\) must"),
({"degree": (0, 1.5)}, r"degree=\(min_degree, max_degree\) must"),
({"degree": (3, 2)}, r"degree=\(min_degree, max_degree\) must"),
({"degree": (1, 2, 3)}, r"int or tuple \(min_degree, max_degree\)"),
],
)
def test_polynomial_features_input_validation(params, err_msg):
"""Test that we raise errors for invalid input in PolynomialFeatures."""
X = [[1], [2]]
with pytest.raises(ValueError, match=err_msg):
PolynomialFeatures(**params).fit(X)
@pytest.fixture()
def single_feature_degree3():
X = np.arange(6)[:, np.newaxis]
P = np.hstack([np.ones_like(X), X, X**2, X**3])
return X, P
@pytest.mark.parametrize(
"degree, include_bias, interaction_only, indices",
[
(3, True, False, slice(None, None)),
(3, False, False, slice(1, None)),
(3, True, True, [0, 1]),
(3, False, True, [1]),
((2, 3), True, False, [0, 2, 3]),
((2, 3), False, False, [2, 3]),
((2, 3), True, True, [0]),
((2, 3), False, True, []),
],
)
@pytest.mark.parametrize("X_container", [None] + CSR_CONTAINERS + CSC_CONTAINERS)
def test_polynomial_features_one_feature(
single_feature_degree3,
degree,
include_bias,
interaction_only,
indices,
X_container,
):
"""Test PolynomialFeatures on single feature up to degree 3."""
X, P = single_feature_degree3
if X_container is not None:
X = X_container(X)
tf = PolynomialFeatures(
degree=degree, include_bias=include_bias, interaction_only=interaction_only
).fit(X)
out = tf.transform(X)
if X_container is not None:
out = out.toarray()
assert_allclose(out, P[:, indices])
if tf.n_output_features_ > 0:
assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
@pytest.fixture()
def two_features_degree3():
X = np.arange(6).reshape((3, 2))
x1 = X[:, :1]
x2 = X[:, 1:]
P = np.hstack(
[
x1**0 * x2**0, # 0
x1**1 * x2**0, # 1
x1**0 * x2**1, # 2
x1**2 * x2**0, # 3
x1**1 * x2**1, # 4
x1**0 * x2**2, # 5
x1**3 * x2**0, # 6
x1**2 * x2**1, # 7
x1**1 * x2**2, # 8
x1**0 * x2**3, # 9
]
)
return X, P
@pytest.mark.parametrize(
"degree, include_bias, interaction_only, indices",
[
(2, True, False, slice(0, 6)),
(2, False, False, slice(1, 6)),
(2, True, True, [0, 1, 2, 4]),
(2, False, True, [1, 2, 4]),
((2, 2), True, False, [0, 3, 4, 5]),
((2, 2), False, False, [3, 4, 5]),
((2, 2), True, True, [0, 4]),
((2, 2), False, True, [4]),
(3, True, False, slice(None, None)),
(3, False, False, slice(1, None)),
(3, True, True, [0, 1, 2, 4]),
(3, False, True, [1, 2, 4]),
((2, 3), True, False, [0, 3, 4, 5, 6, 7, 8, 9]),
((2, 3), False, False, slice(3, None)),
((2, 3), True, True, [0, 4]),
((2, 3), False, True, [4]),
((3, 3), True, False, [0, 6, 7, 8, 9]),
((3, 3), False, False, [6, 7, 8, 9]),
((3, 3), True, True, [0]),
((3, 3), False, True, []), # would need 3 input features
],
)
@pytest.mark.parametrize("X_container", [None] + CSR_CONTAINERS + CSC_CONTAINERS)
def test_polynomial_features_two_features(
two_features_degree3,
degree,
include_bias,
interaction_only,
indices,
X_container,
):
"""Test PolynomialFeatures on 2 features up to degree 3."""
X, P = two_features_degree3
if X_container is not None:
X = X_container(X)
tf = PolynomialFeatures(
degree=degree, include_bias=include_bias, interaction_only=interaction_only
).fit(X)
out = tf.transform(X)
if X_container is not None:
out = out.toarray()
assert_allclose(out, P[:, indices])
if tf.n_output_features_ > 0:
assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
def test_polynomial_feature_names():
X = np.arange(30).reshape(10, 3)
poly = PolynomialFeatures(degree=2, include_bias=True).fit(X)
feature_names = poly.get_feature_names_out()
assert_array_equal(
["1", "x0", "x1", "x2", "x0^2", "x0 x1", "x0 x2", "x1^2", "x1 x2", "x2^2"],
feature_names,
)
assert len(feature_names) == poly.transform(X).shape[1]
poly = PolynomialFeatures(degree=3, include_bias=False).fit(X)
feature_names = poly.get_feature_names_out(["a", "b", "c"])
assert_array_equal(
[
"a",
"b",
"c",
"a^2",
"a b",
"a c",
"b^2",
"b c",
"c^2",
"a^3",
"a^2 b",
"a^2 c",
"a b^2",
"a b c",
"a c^2",
"b^3",
"b^2 c",
"b c^2",
"c^3",
],
feature_names,
)
assert len(feature_names) == poly.transform(X).shape[1]
poly = PolynomialFeatures(degree=(2, 3), include_bias=False).fit(X)
feature_names = poly.get_feature_names_out(["a", "b", "c"])
assert_array_equal(
[
"a^2",
"a b",
"a c",
"b^2",
"b c",
"c^2",
"a^3",
"a^2 b",
"a^2 c",
"a b^2",
"a b c",
"a c^2",
"b^3",
"b^2 c",
"b c^2",
"c^3",
],
feature_names,
)
assert len(feature_names) == poly.transform(X).shape[1]
poly = PolynomialFeatures(
degree=(3, 3), include_bias=True, interaction_only=True
).fit(X)
feature_names = poly.get_feature_names_out(["a", "b", "c"])
assert_array_equal(["1", "a b c"], feature_names)
assert len(feature_names) == poly.transform(X).shape[1]
# test some unicode
poly = PolynomialFeatures(degree=1, include_bias=True).fit(X)
feature_names = poly.get_feature_names_out(["\u0001F40D", "\u262e", "\u05d0"])
assert_array_equal(["1", "\u0001F40D", "\u262e", "\u05d0"], feature_names)
@pytest.mark.parametrize(
["deg", "include_bias", "interaction_only", "dtype"],
[
(1, True, False, int),
(2, True, False, int),
(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64),
(4, False, False, np.float64),
(4, False, True, np.float64),
],
)
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_polynomial_features_csc_X(
deg, include_bias, interaction_only, dtype, csc_container
):
rng = np.random.RandomState(0)
X = rng.randint(0, 2, (100, 2))
X_csc = csc_container(X)
est = PolynomialFeatures(
deg, include_bias=include_bias, interaction_only=interaction_only
)
Xt_csc = est.fit_transform(X_csc.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype))
assert sparse.issparse(Xt_csc) and Xt_csc.format == "csc"
assert Xt_csc.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csc.toarray(), Xt_dense)
@pytest.mark.parametrize(
["deg", "include_bias", "interaction_only", "dtype"],
[
(1, True, False, int),
(2, True, False, int),
(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64),
],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_polynomial_features_csr_X(
deg, include_bias, interaction_only, dtype, csr_container
):
rng = np.random.RandomState(0)
X = rng.randint(0, 2, (100, 2))
X_csr = csr_container(X)
est = PolynomialFeatures(
deg, include_bias=include_bias, interaction_only=interaction_only
)
Xt_csr = est.fit_transform(X_csr.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype, copy=False))
assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
@pytest.mark.parametrize("n_features", [1, 4, 5])
@pytest.mark.parametrize(
"min_degree, max_degree", [(0, 1), (0, 2), (1, 3), (0, 4), (3, 4)]
)
@pytest.mark.parametrize("interaction_only", [True, False])
@pytest.mark.parametrize("include_bias", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_num_combinations(
n_features, min_degree, max_degree, interaction_only, include_bias, csr_container
):
"""
Test that n_output_features_ is calculated correctly.
"""
x = csr_container(([1], ([0], [n_features - 1])))
est = PolynomialFeatures(
degree=max_degree,
interaction_only=interaction_only,
include_bias=include_bias,
)
est.fit(x)
num_combos = est.n_output_features_
combos = PolynomialFeatures._combinations(
n_features=n_features,
min_degree=0,
max_degree=max_degree,
interaction_only=interaction_only,
include_bias=include_bias,
)
assert num_combos == sum([1 for _ in combos])
@pytest.mark.parametrize(
["deg", "include_bias", "interaction_only", "dtype"],
[
(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64),
],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_polynomial_features_csr_X_floats(
deg, include_bias, interaction_only, dtype, csr_container
):
X_csr = csr_container(sparse_random(1000, 10, 0.5, random_state=0))
X = X_csr.toarray()
est = PolynomialFeatures(
deg, include_bias=include_bias, interaction_only=interaction_only
)
Xt_csr = est.fit_transform(X_csr.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype))
assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
@pytest.mark.parametrize(
["zero_row_index", "deg", "interaction_only"],
[
(0, 2, True),
(1, 2, True),
(2, 2, True),
(0, 3, True),
(1, 3, True),
(2, 3, True),
(0, 2, False),
(1, 2, False),
(2, 2, False),
(0, 3, False),
(1, 3, False),
(2, 3, False),
],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_polynomial_features_csr_X_zero_row(
zero_row_index, deg, interaction_only, csr_container
):
X_csr = csr_container(sparse_random(3, 10, 1.0, random_state=0))
X_csr[zero_row_index, :] = 0.0
X = X_csr.toarray()
est = PolynomialFeatures(deg, include_bias=False, interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
# This degree should always be one more than the highest degree supported by
# _csr_expansion.
@pytest.mark.parametrize(
["include_bias", "interaction_only"],
[(True, True), (True, False), (False, True), (False, False)],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_polynomial_features_csr_X_degree_4(
include_bias, interaction_only, csr_container
):
X_csr = csr_container(sparse_random(1000, 10, 0.5, random_state=0))
X = X_csr.toarray()
est = PolynomialFeatures(
4, include_bias=include_bias, interaction_only=interaction_only
)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
@pytest.mark.parametrize(
["deg", "dim", "interaction_only"],
[
(2, 1, True),
(2, 2, True),
(3, 1, True),
(3, 2, True),
(3, 3, True),
(2, 1, False),
(2, 2, False),
(3, 1, False),
(3, 2, False),
(3, 3, False),
],
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_polynomial_features_csr_X_dim_edges(deg, dim, interaction_only, csr_container):
X_csr = csr_container(sparse_random(1000, dim, 0.5, random_state=0))
X = X_csr.toarray()
est = PolynomialFeatures(deg, interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert sparse.issparse(Xt_csr) and Xt_csr.format == "csr"
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.toarray(), Xt_dense)
@pytest.mark.parametrize("interaction_only", [True, False])
@pytest.mark.parametrize("include_bias", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_csr_polynomial_expansion_index_overflow_non_regression(
interaction_only, include_bias, csr_container
):
"""Check the automatic index dtype promotion to `np.int64` when needed.
This ensures that sufficiently large input configurations get
properly promoted to use `np.int64` for index and indptr representation
while preserving data integrity. Non-regression test for gh-16803.
Note that this is only possible for Python runtimes with a 64 bit address
space. On 32 bit platforms, a `ValueError` is raised instead.
"""
def degree_2_calc(d, i, j):
if interaction_only:
return d * i - (i**2 + 3 * i) // 2 - 1 + j
else:
return d * i - (i**2 + i) // 2 + j
n_samples = 13
n_features = 120001
data_dtype = np.float32
data = np.arange(1, 5, dtype=np.int64)
row = np.array([n_samples - 2, n_samples - 2, n_samples - 1, n_samples - 1])
# An int64 dtype is required to avoid overflow error on Windows within the
# `degree_2_calc` function.
col = np.array(
[n_features - 2, n_features - 1, n_features - 2, n_features - 1], dtype=np.int64
)
X = csr_container(
(data, (row, col)),
shape=(n_samples, n_features),
dtype=data_dtype,
)
pf = PolynomialFeatures(
interaction_only=interaction_only, include_bias=include_bias, degree=2
)
# Calculate the number of combinations a-priori, and if needed check for
# the correct ValueError and terminate the test early.
num_combinations = pf._num_combinations(
n_features=n_features,
min_degree=0,
max_degree=2,
interaction_only=pf.interaction_only,
include_bias=pf.include_bias,
)
if num_combinations > np.iinfo(np.intp).max:
msg = (
r"The output that would result from the current configuration would have"
r" \d* features which is too large to be indexed"
)
with pytest.raises(ValueError, match=msg):
pf.fit(X)
return
X_trans = pf.fit_transform(X)
row_nonzero, col_nonzero = X_trans.nonzero()
n_degree_1_features_out = n_features + include_bias
max_degree_2_idx = (
degree_2_calc(n_features, col[int(not interaction_only)], col[1])
+ n_degree_1_features_out
)
# Account for bias of all samples except last one which will be handled
# separately since there are distinct data values before it
data_target = [1] * (n_samples - 2) if include_bias else []
col_nonzero_target = [0] * (n_samples - 2) if include_bias else []
for i in range(2):
x = data[2 * i]
y = data[2 * i + 1]
x_idx = col[2 * i]
y_idx = col[2 * i + 1]
if include_bias:
data_target.append(1)
col_nonzero_target.append(0)
data_target.extend([x, y])
col_nonzero_target.extend(
[x_idx + int(include_bias), y_idx + int(include_bias)]
)
if not interaction_only:
data_target.extend([x * x, x * y, y * y])
col_nonzero_target.extend(
[
degree_2_calc(n_features, x_idx, x_idx) + n_degree_1_features_out,
degree_2_calc(n_features, x_idx, y_idx) + n_degree_1_features_out,
degree_2_calc(n_features, y_idx, y_idx) + n_degree_1_features_out,
]
)
else:
data_target.extend([x * y])
col_nonzero_target.append(
degree_2_calc(n_features, x_idx, y_idx) + n_degree_1_features_out
)
nnz_per_row = int(include_bias) + 3 + 2 * int(not interaction_only)
assert pf.n_output_features_ == max_degree_2_idx + 1
assert X_trans.dtype == data_dtype
assert X_trans.shape == (n_samples, max_degree_2_idx + 1)
assert X_trans.indptr.dtype == X_trans.indices.dtype == np.int64
# Ensure that dtype promotion was actually required:
assert X_trans.indices.max() > np.iinfo(np.int32).max
row_nonzero_target = list(range(n_samples - 2)) if include_bias else []
row_nonzero_target.extend(
[n_samples - 2] * nnz_per_row + [n_samples - 1] * nnz_per_row
)
assert_allclose(X_trans.data, data_target)
assert_array_equal(row_nonzero, row_nonzero_target)
assert_array_equal(col_nonzero, col_nonzero_target)
@pytest.mark.parametrize(
"degree, n_features",
[
# Needs promotion to int64 when interaction_only=False
(2, 65535),
(3, 2344),
# This guarantees that the intermediate operation when calculating
# output columns would overflow a C-long, hence checks that python-
# longs are being used.
(2, int(np.sqrt(np.iinfo(np.int64).max) + 1)),
(3, 65535),
# This case tests the second clause of the overflow check which
# takes into account the value of `n_features` itself.
(2, int(np.sqrt(np.iinfo(np.int64).max))),
],
)
@pytest.mark.parametrize("interaction_only", [True, False])
@pytest.mark.parametrize("include_bias", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_csr_polynomial_expansion_index_overflow(
degree, n_features, interaction_only, include_bias, csr_container
):
"""Tests known edge-cases to the dtype promotion strategy and custom
Cython code, including a current bug in the upstream
`scipy.sparse.hstack`.
"""
data = [1.0]
row = [0]
col = [n_features - 1]
# First degree index
expected_indices = [
n_features - 1 + int(include_bias),
]
# Second degree index
expected_indices.append(n_features * (n_features + 1) // 2 + expected_indices[0])
# Third degree index
expected_indices.append(
n_features * (n_features + 1) * (n_features + 2) // 6 + expected_indices[1]
)
X = csr_container((data, (row, col)))
pf = PolynomialFeatures(
interaction_only=interaction_only, include_bias=include_bias, degree=degree
)
# Calculate the number of combinations a-priori, and if needed check for
# the correct ValueError and terminate the test early.
num_combinations = pf._num_combinations(
n_features=n_features,
min_degree=0,
max_degree=degree,
interaction_only=pf.interaction_only,
include_bias=pf.include_bias,
)
if num_combinations > np.iinfo(np.intp).max:
msg = (
r"The output that would result from the current configuration would have"
r" \d* features which is too large to be indexed"
)
with pytest.raises(ValueError, match=msg):
pf.fit(X)
return
# In SciPy < 1.8, a bug occurs when an intermediate matrix in
# `to_stack` in `hstack` fits within int32 however would require int64 when
# combined with all previous matrices in `to_stack`.
if sp_version < parse_version("1.8.0"):
has_bug = False
max_int32 = np.iinfo(np.int32).max
cumulative_size = n_features + include_bias
for deg in range(2, degree + 1):
max_indptr = _calc_total_nnz(X.indptr, interaction_only, deg)
max_indices = _calc_expanded_nnz(n_features, interaction_only, deg) - 1
cumulative_size += max_indices + 1
needs_int64 = max(max_indices, max_indptr) > max_int32
has_bug |= not needs_int64 and cumulative_size > max_int32
if has_bug:
msg = r"In scipy versions `<1.8.0`, the function `scipy.sparse.hstack`"
with pytest.raises(ValueError, match=msg):
X_trans = pf.fit_transform(X)
return
# When `n_features>=65535`, `scipy.sparse.hstack` may not use the right
# dtype for representing indices and indptr if `n_features` is still
# small enough so that each block matrix's indices and indptr arrays
# can be represented with `np.int32`. We test `n_features==65535`
# since it is guaranteed to run into this bug.
if (
sp_version < parse_version("1.9.2")
and n_features == 65535
and degree == 2
and not interaction_only
): # pragma: no cover
msg = r"In scipy versions `<1.9.2`, the function `scipy.sparse.hstack`"
with pytest.raises(ValueError, match=msg):
X_trans = pf.fit_transform(X)
return
X_trans = pf.fit_transform(X)
expected_dtype = np.int64 if num_combinations > np.iinfo(np.int32).max else np.int32
# Terms higher than first degree
non_bias_terms = 1 + (degree - 1) * int(not interaction_only)
expected_nnz = int(include_bias) + non_bias_terms
assert X_trans.dtype == X.dtype
assert X_trans.shape == (1, pf.n_output_features_)
assert X_trans.indptr.dtype == X_trans.indices.dtype == expected_dtype
assert X_trans.nnz == expected_nnz
if include_bias:
assert X_trans[0, 0] == pytest.approx(1.0)
for idx in range(non_bias_terms):
assert X_trans[0, expected_indices[idx]] == pytest.approx(1.0)
offset = interaction_only * n_features
if degree == 3:
offset *= 1 + n_features
assert pf.n_output_features_ == expected_indices[degree - 1] + 1 - offset
@pytest.mark.parametrize("interaction_only", [True, False])
@pytest.mark.parametrize("include_bias", [True, False])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_csr_polynomial_expansion_too_large_to_index(
interaction_only, include_bias, csr_container
):
n_features = np.iinfo(np.int64).max // 2
data = [1.0]
row = [0]
col = [n_features - 1]
X = csr_container((data, (row, col)))
pf = PolynomialFeatures(
interaction_only=interaction_only, include_bias=include_bias, degree=(2, 2)
)
msg = (
r"The output that would result from the current configuration would have \d*"
r" features which is too large to be indexed"
)
with pytest.raises(ValueError, match=msg):
pf.fit(X)
with pytest.raises(ValueError, match=msg):
pf.fit_transform(X)
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
def test_polynomial_features_behaviour_on_zero_degree(sparse_container):
"""Check that PolynomialFeatures raises error when degree=0 and include_bias=False,
and output a single constant column when include_bias=True
"""
X = np.ones((10, 2))
poly = PolynomialFeatures(degree=0, include_bias=False)
err_msg = (
"Setting degree to zero and include_bias to False would result in"
" an empty output array."
)
with pytest.raises(ValueError, match=err_msg):
poly.fit_transform(X)
poly = PolynomialFeatures(degree=(0, 0), include_bias=False)
err_msg = (
"Setting both min_degree and max_degree to zero and include_bias to"
" False would result in an empty output array."
)
with pytest.raises(ValueError, match=err_msg):
poly.fit_transform(X)
for _X in [X, sparse_container(X)]:
poly = PolynomialFeatures(degree=0, include_bias=True)
output = poly.fit_transform(_X)
# convert to dense array if needed
if sparse.issparse(output):
output = output.toarray()
assert_array_equal(output, np.ones((X.shape[0], 1)))
def test_sizeof_LARGEST_INT_t():
# On Windows, scikit-learn is typically compiled with MSVC that
# does not support int128 arithmetic (at the time of writing):
# https://stackoverflow.com/a/6761962/163740
if sys.platform == "win32" or (
sys.maxsize <= 2**32 and sys.platform != "emscripten"
):
expected_size = 8
else:
expected_size = 16
assert _get_sizeof_LARGEST_INT_t() == expected_size
@pytest.mark.xfail(
sys.platform == "win32",
reason=(
"On Windows, scikit-learn is typically compiled with MSVC that does not support"
" int128 arithmetic (at the time of writing)"
),
run=True,
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_csr_polynomial_expansion_windows_fail(csr_container):
# Minimum needed to ensure integer overflow occurs while guaranteeing an
# int64-indexable output.
n_features = int(np.iinfo(np.int64).max ** (1 / 3) + 3)
data = [1.0]
row = [0]
col = [n_features - 1]
# First degree index
expected_indices = [
n_features - 1,
]
# Second degree index
expected_indices.append(
int(n_features * (n_features + 1) // 2 + expected_indices[0])
)
# Third degree index
expected_indices.append(
int(n_features * (n_features + 1) * (n_features + 2) // 6 + expected_indices[1])
)
X = csr_container((data, (row, col)))
pf = PolynomialFeatures(interaction_only=False, include_bias=False, degree=3)
if sys.maxsize <= 2**32:
msg = (
r"The output that would result from the current configuration would"
r" have \d*"
r" features which is too large to be indexed"
)
with pytest.raises(ValueError, match=msg):
pf.fit_transform(X)
else:
X_trans = pf.fit_transform(X)
for idx in range(3):
assert X_trans[0, expected_indices[idx]] == pytest.approx(1.0)