Traktor/myenv/Lib/site-packages/sympy/calculus/util.py

842 lines
26 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
from .accumulationbounds import AccumBounds, AccumulationBounds # noqa: F401
from .singularities import singularities
from sympy.core import Pow, S
from sympy.core.function import diff, expand_mul
from sympy.core.kind import NumberKind
from sympy.core.mod import Mod
from sympy.core.numbers import equal_valued
from sympy.core.relational import Relational
from sympy.core.symbol import Symbol, Dummy
from sympy.core.sympify import _sympify
from sympy.functions.elementary.complexes import Abs, im, re
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, sin, cos, csc, sec)
from sympy.polys.polytools import degree, lcm_list
from sympy.sets.sets import (Interval, Intersection, FiniteSet, Union,
Complement)
from sympy.sets.fancysets import ImageSet
from sympy.utilities import filldedent
from sympy.utilities.iterables import iterable
def continuous_domain(f, symbol, domain):
"""
Returns the intervals in the given domain for which the function
is continuous.
This method is limited by the ability to determine the various
singularities and discontinuities of the given function.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the intervals are to be determined.
domain : :py:class:`~.Interval`
The domain over which the continuity of the symbol has to be checked.
Examples
========
>>> from sympy import Interval, Symbol, S, tan, log, pi, sqrt
>>> from sympy.calculus.util import continuous_domain
>>> x = Symbol('x')
>>> continuous_domain(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> continuous_domain(tan(x), x, Interval(0, pi))
Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi))
>>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5))
Interval(2, 5)
>>> continuous_domain(log(2*x - 1), x, S.Reals)
Interval.open(1/2, oo)
Returns
=======
:py:class:`~.Interval`
Union of all intervals where the function is continuous.
Raises
======
NotImplementedError
If the method to determine continuity of such a function
has not yet been developed.
"""
from sympy.solvers.inequalities import solve_univariate_inequality
if domain.is_subset(S.Reals):
constrained_interval = domain
for atom in f.atoms(Pow):
den = atom.exp.as_numer_denom()[1]
if den.is_even and den.is_nonzero:
constraint = solve_univariate_inequality(atom.base >= 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
for atom in f.atoms(log):
constraint = solve_univariate_inequality(atom.args[0] > 0,
symbol).as_set()
constrained_interval = Intersection(constraint,
constrained_interval)
return constrained_interval - singularities(f, symbol, domain)
def function_range(f, symbol, domain):
"""
Finds the range of a function in a given domain.
This method is limited by the ability to determine the singularities and
determine limits.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the range of function is to be determined.
domain : :py:class:`~.Interval`
The domain under which the range of the function has to be found.
Examples
========
>>> from sympy import Interval, Symbol, S, exp, log, pi, sqrt, sin, tan
>>> from sympy.calculus.util import function_range
>>> x = Symbol('x')
>>> function_range(sin(x), x, Interval(0, 2*pi))
Interval(-1, 1)
>>> function_range(tan(x), x, Interval(-pi/2, pi/2))
Interval(-oo, oo)
>>> function_range(1/x, x, S.Reals)
Union(Interval.open(-oo, 0), Interval.open(0, oo))
>>> function_range(exp(x), x, S.Reals)
Interval.open(0, oo)
>>> function_range(log(x), x, S.Reals)
Interval(-oo, oo)
>>> function_range(sqrt(x), x, Interval(-5, 9))
Interval(0, 3)
Returns
=======
:py:class:`~.Interval`
Union of all ranges for all intervals under domain where function is
continuous.
Raises
======
NotImplementedError
If any of the intervals, in the given domain, for which function
is continuous are not finite or real,
OR if the critical points of the function on the domain cannot be found.
"""
if domain is S.EmptySet:
return S.EmptySet
period = periodicity(f, symbol)
if period == S.Zero:
# the expression is constant wrt symbol
return FiniteSet(f.expand())
from sympy.series.limits import limit
from sympy.solvers.solveset import solveset
if period is not None:
if isinstance(domain, Interval):
if (domain.inf - domain.sup).is_infinite:
domain = Interval(0, period)
elif isinstance(domain, Union):
for sub_dom in domain.args:
if isinstance(sub_dom, Interval) and \
((sub_dom.inf - sub_dom.sup).is_infinite):
domain = Interval(0, period)
intervals = continuous_domain(f, symbol, domain)
range_int = S.EmptySet
if isinstance(intervals,(Interval, FiniteSet)):
interval_iter = (intervals,)
elif isinstance(intervals, Union):
interval_iter = intervals.args
else:
raise NotImplementedError(filldedent('''
Unable to find range for the given domain.
'''))
for interval in interval_iter:
if isinstance(interval, FiniteSet):
for singleton in interval:
if singleton in domain:
range_int += FiniteSet(f.subs(symbol, singleton))
elif isinstance(interval, Interval):
vals = S.EmptySet
critical_points = S.EmptySet
critical_values = S.EmptySet
bounds = ((interval.left_open, interval.inf, '+'),
(interval.right_open, interval.sup, '-'))
for is_open, limit_point, direction in bounds:
if is_open:
critical_values += FiniteSet(limit(f, symbol, limit_point, direction))
vals += critical_values
else:
vals += FiniteSet(f.subs(symbol, limit_point))
solution = solveset(f.diff(symbol), symbol, interval)
if not iterable(solution):
raise NotImplementedError(
'Unable to find critical points for {}'.format(f))
if isinstance(solution, ImageSet):
raise NotImplementedError(
'Infinite number of critical points for {}'.format(f))
critical_points += solution
for critical_point in critical_points:
vals += FiniteSet(f.subs(symbol, critical_point))
left_open, right_open = False, False
if critical_values is not S.EmptySet:
if critical_values.inf == vals.inf:
left_open = True
if critical_values.sup == vals.sup:
right_open = True
range_int += Interval(vals.inf, vals.sup, left_open, right_open)
else:
raise NotImplementedError(filldedent('''
Unable to find range for the given domain.
'''))
return range_int
def not_empty_in(finset_intersection, *syms):
"""
Finds the domain of the functions in ``finset_intersection`` in which the
``finite_set`` is not-empty.
Parameters
==========
finset_intersection : Intersection of FiniteSet
The unevaluated intersection of FiniteSet containing
real-valued functions with Union of Sets
syms : Tuple of symbols
Symbol for which domain is to be found
Raises
======
NotImplementedError
The algorithms to find the non-emptiness of the given FiniteSet are
not yet implemented.
ValueError
The input is not valid.
RuntimeError
It is a bug, please report it to the github issue tracker
(https://github.com/sympy/sympy/issues).
Examples
========
>>> from sympy import FiniteSet, Interval, not_empty_in, oo
>>> from sympy.abc import x
>>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x)
Interval(0, 2)
>>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x)
Union(Interval(1, 2), Interval(-sqrt(2), -1))
>>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x)
Union(Interval.Lopen(-2, -1), Interval(2, oo))
"""
# TODO: handle piecewise defined functions
# TODO: handle transcendental functions
# TODO: handle multivariate functions
if len(syms) == 0:
raise ValueError("One or more symbols must be given in syms.")
if finset_intersection is S.EmptySet:
return S.EmptySet
if isinstance(finset_intersection, Union):
elm_in_sets = finset_intersection.args[0]
return Union(not_empty_in(finset_intersection.args[1], *syms),
elm_in_sets)
if isinstance(finset_intersection, FiniteSet):
finite_set = finset_intersection
_sets = S.Reals
else:
finite_set = finset_intersection.args[1]
_sets = finset_intersection.args[0]
if not isinstance(finite_set, FiniteSet):
raise ValueError('A FiniteSet must be given, not %s: %s' %
(type(finite_set), finite_set))
if len(syms) == 1:
symb = syms[0]
else:
raise NotImplementedError('more than one variables %s not handled' %
(syms,))
def elm_domain(expr, intrvl):
""" Finds the domain of an expression in any given interval """
from sympy.solvers.solveset import solveset
_start = intrvl.start
_end = intrvl.end
_singularities = solveset(expr.as_numer_denom()[1], symb,
domain=S.Reals)
if intrvl.right_open:
if _end is S.Infinity:
_domain1 = S.Reals
else:
_domain1 = solveset(expr < _end, symb, domain=S.Reals)
else:
_domain1 = solveset(expr <= _end, symb, domain=S.Reals)
if intrvl.left_open:
if _start is S.NegativeInfinity:
_domain2 = S.Reals
else:
_domain2 = solveset(expr > _start, symb, domain=S.Reals)
else:
_domain2 = solveset(expr >= _start, symb, domain=S.Reals)
# domain in the interval
expr_with_sing = Intersection(_domain1, _domain2)
expr_domain = Complement(expr_with_sing, _singularities)
return expr_domain
if isinstance(_sets, Interval):
return Union(*[elm_domain(element, _sets) for element in finite_set])
if isinstance(_sets, Union):
_domain = S.EmptySet
for intrvl in _sets.args:
_domain_element = Union(*[elm_domain(element, intrvl)
for element in finite_set])
_domain = Union(_domain, _domain_element)
return _domain
def periodicity(f, symbol, check=False):
"""
Tests the given function for periodicity in the given symbol.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the period is to be determined.
check : bool, optional
The flag to verify whether the value being returned is a period or not.
Returns
=======
period
The period of the function is returned.
``None`` is returned when the function is aperiodic or has a complex period.
The value of $0$ is returned as the period of a constant function.
Raises
======
NotImplementedError
The value of the period computed cannot be verified.
Notes
=====
Currently, we do not support functions with a complex period.
The period of functions having complex periodic values such
as ``exp``, ``sinh`` is evaluated to ``None``.
The value returned might not be the "fundamental" period of the given
function i.e. it may not be the smallest periodic value of the function.
The verification of the period through the ``check`` flag is not reliable
due to internal simplification of the given expression. Hence, it is set
to ``False`` by default.
Examples
========
>>> from sympy import periodicity, Symbol, sin, cos, tan, exp
>>> x = Symbol('x')
>>> f = sin(x) + sin(2*x) + sin(3*x)
>>> periodicity(f, x)
2*pi
>>> periodicity(sin(x)*cos(x), x)
pi
>>> periodicity(exp(tan(2*x) - 1), x)
pi/2
>>> periodicity(sin(4*x)**cos(2*x), x)
pi
>>> periodicity(exp(x), x)
"""
if symbol.kind is not NumberKind:
raise NotImplementedError("Cannot use symbol of kind %s" % symbol.kind)
temp = Dummy('x', real=True)
f = f.subs(symbol, temp)
symbol = temp
def _check(orig_f, period):
'''Return the checked period or raise an error.'''
new_f = orig_f.subs(symbol, symbol + period)
if new_f.equals(orig_f):
return period
else:
raise NotImplementedError(filldedent('''
The period of the given function cannot be verified.
When `%s` was replaced with `%s + %s` in `%s`, the result
was `%s` which was not recognized as being the same as
the original function.
So either the period was wrong or the two forms were
not recognized as being equal.
Set check=False to obtain the value.''' %
(symbol, symbol, period, orig_f, new_f)))
orig_f = f
period = None
if isinstance(f, Relational):
f = f.lhs - f.rhs
f = f.simplify()
if symbol not in f.free_symbols:
return S.Zero
if isinstance(f, TrigonometricFunction):
try:
period = f.period(symbol)
except NotImplementedError:
pass
if isinstance(f, Abs):
arg = f.args[0]
if isinstance(arg, (sec, csc, cos)):
# all but tan and cot might have a
# a period that is half as large
# so recast as sin
arg = sin(arg.args[0])
period = periodicity(arg, symbol)
if period is not None and isinstance(arg, sin):
# the argument of Abs was a trigonometric other than
# cot or tan; test to see if the half-period
# is valid. Abs(arg) has behaviour equivalent to
# orig_f, so use that for test:
orig_f = Abs(arg)
try:
return _check(orig_f, period/2)
except NotImplementedError as err:
if check:
raise NotImplementedError(err)
# else let new orig_f and period be
# checked below
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
f = Pow(S.Exp1, expand_mul(f.exp))
if im(f) != 0:
period_real = periodicity(re(f), symbol)
period_imag = periodicity(im(f), symbol)
if period_real is not None and period_imag is not None:
period = lcim([period_real, period_imag])
if f.is_Pow and f.base != S.Exp1:
base, expo = f.args
base_has_sym = base.has(symbol)
expo_has_sym = expo.has(symbol)
if base_has_sym and not expo_has_sym:
period = periodicity(base, symbol)
elif expo_has_sym and not base_has_sym:
period = periodicity(expo, symbol)
else:
period = _periodicity(f.args, symbol)
elif f.is_Mul:
coeff, g = f.as_independent(symbol, as_Add=False)
if isinstance(g, TrigonometricFunction) or not equal_valued(coeff, 1):
period = periodicity(g, symbol)
else:
period = _periodicity(g.args, symbol)
elif f.is_Add:
k, g = f.as_independent(symbol)
if k is not S.Zero:
return periodicity(g, symbol)
period = _periodicity(g.args, symbol)
elif isinstance(f, Mod):
a, n = f.args
if a == symbol:
period = n
elif isinstance(a, TrigonometricFunction):
period = periodicity(a, symbol)
#check if 'f' is linear in 'symbol'
elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and
symbol not in n.free_symbols):
period = Abs(n / a.diff(symbol))
elif isinstance(f, Piecewise):
pass # not handling Piecewise yet as the return type is not favorable
elif period is None:
from sympy.solvers.decompogen import compogen, decompogen
g_s = decompogen(f, symbol)
num_of_gs = len(g_s)
if num_of_gs > 1:
for index, g in enumerate(reversed(g_s)):
start_index = num_of_gs - 1 - index
g = compogen(g_s[start_index:], symbol)
if g not in (orig_f, f): # Fix for issue 12620
period = periodicity(g, symbol)
if period is not None:
break
if period is not None:
if check:
return _check(orig_f, period)
return period
return None
def _periodicity(args, symbol):
"""
Helper for `periodicity` to find the period of a list of simpler
functions.
It uses the `lcim` method to find the least common period of
all the functions.
Parameters
==========
args : Tuple of :py:class:`~.Symbol`
All the symbols present in a function.
symbol : :py:class:`~.Symbol`
The symbol over which the function is to be evaluated.
Returns
=======
period
The least common period of the function for all the symbols
of the function.
``None`` if for at least one of the symbols the function is aperiodic.
"""
periods = []
for f in args:
period = periodicity(f, symbol)
if period is None:
return None
if period is not S.Zero:
periods.append(period)
if len(periods) > 1:
return lcim(periods)
if periods:
return periods[0]
def lcim(numbers):
"""Returns the least common integral multiple of a list of numbers.
The numbers can be rational or irrational or a mixture of both.
`None` is returned for incommensurable numbers.
Parameters
==========
numbers : list
Numbers (rational and/or irrational) for which lcim is to be found.
Returns
=======
number
lcim if it exists, otherwise ``None`` for incommensurable numbers.
Examples
========
>>> from sympy.calculus.util import lcim
>>> from sympy import S, pi
>>> lcim([S(1)/2, S(3)/4, S(5)/6])
15/2
>>> lcim([2*pi, 3*pi, pi, pi/2])
6*pi
>>> lcim([S(1), 2*pi])
"""
result = None
if all(num.is_irrational for num in numbers):
factorized_nums = [num.factor() for num in numbers]
factors_num = [num.as_coeff_Mul() for num in factorized_nums]
term = factors_num[0][1]
if all(factor == term for coeff, factor in factors_num):
common_term = term
coeffs = [coeff for coeff, factor in factors_num]
result = lcm_list(coeffs) * common_term
elif all(num.is_rational for num in numbers):
result = lcm_list(numbers)
else:
pass
return result
def is_convex(f, *syms, domain=S.Reals):
r"""Determines the convexity of the function passed in the argument.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
syms : Tuple of :py:class:`~.Symbol`
The variables with respect to which the convexity is to be determined.
domain : :py:class:`~.Interval`, optional
The domain over which the convexity of the function has to be checked.
If unspecified, S.Reals will be the default domain.
Returns
=======
bool
The method returns ``True`` if the function is convex otherwise it
returns ``False``.
Raises
======
NotImplementedError
The check for the convexity of multivariate functions is not implemented yet.
Notes
=====
To determine concavity of a function pass `-f` as the concerned function.
To determine logarithmic convexity of a function pass `\log(f)` as
concerned function.
To determine logarithmic concavity of a function pass `-\log(f)` as
concerned function.
Currently, convexity check of multivariate functions is not handled.
Examples
========
>>> from sympy import is_convex, symbols, exp, oo, Interval
>>> x = symbols('x')
>>> is_convex(exp(x), x)
True
>>> is_convex(x**3, x, domain = Interval(-1, oo))
False
>>> is_convex(1/x**2, x, domain=Interval.open(0, oo))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Convex_function
.. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf
.. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function
.. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function
.. [5] https://en.wikipedia.org/wiki/Concave_function
"""
if len(syms) > 1:
raise NotImplementedError(
"The check for the convexity of multivariate functions is not implemented yet.")
from sympy.solvers.inequalities import solve_univariate_inequality
f = _sympify(f)
var = syms[0]
if any(s in domain for s in singularities(f, var)):
return False
condition = f.diff(var, 2) < 0
if solve_univariate_inequality(condition, var, False, domain):
return False
return True
def stationary_points(f, symbol, domain=S.Reals):
"""
Returns the stationary points of a function (where derivative of the
function is 0) in the given domain.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for which the stationary points are to be determined.
domain : :py:class:`~.Interval`
The domain over which the stationary points have to be checked.
If unspecified, ``S.Reals`` will be the default domain.
Returns
=======
Set
A set of stationary points for the function. If there are no
stationary point, an :py:class:`~.EmptySet` is returned.
Examples
========
>>> from sympy import Interval, Symbol, S, sin, pi, pprint, stationary_points
>>> x = Symbol('x')
>>> stationary_points(1/x, x, S.Reals)
EmptySet
>>> pprint(stationary_points(sin(x), x), use_unicode=False)
pi 3*pi
{2*n*pi + -- | n in Integers} U {2*n*pi + ---- | n in Integers}
2 2
>>> stationary_points(sin(x),x, Interval(0, 4*pi))
{pi/2, 3*pi/2, 5*pi/2, 7*pi/2}
"""
from sympy.solvers.solveset import solveset
if domain is S.EmptySet:
return S.EmptySet
domain = continuous_domain(f, symbol, domain)
set = solveset(diff(f, symbol), symbol, domain)
return set
def maximum(f, symbol, domain=S.Reals):
"""
Returns the maximum value of a function in the given domain.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for maximum value needs to be determined.
domain : :py:class:`~.Interval`
The domain over which the maximum have to be checked.
If unspecified, then the global maximum is returned.
Returns
=======
number
Maximum value of the function in given domain.
Examples
========
>>> from sympy import Interval, Symbol, S, sin, cos, pi, maximum
>>> x = Symbol('x')
>>> f = -x**2 + 2*x + 5
>>> maximum(f, x, S.Reals)
6
>>> maximum(sin(x), x, Interval(-pi, pi/4))
sqrt(2)/2
>>> maximum(sin(x)*cos(x), x)
1/2
"""
if isinstance(symbol, Symbol):
if domain is S.EmptySet:
raise ValueError("Maximum value not defined for empty domain.")
return function_range(f, symbol, domain).sup
else:
raise ValueError("%s is not a valid symbol." % symbol)
def minimum(f, symbol, domain=S.Reals):
"""
Returns the minimum value of a function in the given domain.
Parameters
==========
f : :py:class:`~.Expr`
The concerned function.
symbol : :py:class:`~.Symbol`
The variable for minimum value needs to be determined.
domain : :py:class:`~.Interval`
The domain over which the minimum have to be checked.
If unspecified, then the global minimum is returned.
Returns
=======
number
Minimum value of the function in the given domain.
Examples
========
>>> from sympy import Interval, Symbol, S, sin, cos, minimum
>>> x = Symbol('x')
>>> f = x**2 + 2*x + 5
>>> minimum(f, x, S.Reals)
4
>>> minimum(sin(x), x, Interval(2, 3))
sin(3)
>>> minimum(sin(x)*cos(x), x)
-1/2
"""
if isinstance(symbol, Symbol):
if domain is S.EmptySet:
raise ValueError("Minimum value not defined for empty domain.")
return function_range(f, symbol, domain).inf
else:
raise ValueError("%s is not a valid symbol." % symbol)