Traktor/myenv/Lib/site-packages/sympy/functions/special/delta_functions.py

665 lines
19 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
from sympy.core import S, diff
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_not
from sympy.core.relational import Eq, Ne
from sympy.functions.elementary.complexes import im, sign
from sympy.functions.elementary.piecewise import Piecewise
from sympy.polys.polyerrors import PolynomialError
from sympy.polys.polyroots import roots
from sympy.utilities.misc import filldedent
###############################################################################
################################ DELTA FUNCTION ###############################
###############################################################################
class DiracDelta(Function):
r"""
The DiracDelta function and its derivatives.
Explanation
===========
DiracDelta is not an ordinary function. It can be rigorously defined either
as a distribution or as a measure.
DiracDelta only makes sense in definite integrals, and in particular,
integrals of the form ``Integral(f(x)*DiracDelta(x - x0), (x, a, b))``,
where it equals ``f(x0)`` if ``a <= x0 <= b`` and ``0`` otherwise. Formally,
DiracDelta acts in some ways like a function that is ``0`` everywhere except
at ``0``, but in many ways it also does not. It can often be useful to treat
DiracDelta in formal ways, building up and manipulating expressions with
delta functions (which may eventually be integrated), but care must be taken
to not treat it as a real function. SymPy's ``oo`` is similar. It only
truly makes sense formally in certain contexts (such as integration limits),
but SymPy allows its use everywhere, and it tries to be consistent with
operations on it (like ``1/oo``), but it is easy to get into trouble and get
wrong results if ``oo`` is treated too much like a number. Similarly, if
DiracDelta is treated too much like a function, it is easy to get wrong or
nonsensical results.
DiracDelta function has the following properties:
1) $\frac{d}{d x} \theta(x) = \delta(x)$
2) $\int_{-\infty}^\infty \delta(x - a)f(x)\, dx = f(a)$ and $\int_{a-
\epsilon}^{a+\epsilon} \delta(x - a)f(x)\, dx = f(a)$
3) $\delta(x) = 0$ for all $x \neq 0$
4) $\delta(g(x)) = \sum_i \frac{\delta(x - x_i)}{\|g'(x_i)\|}$ where $x_i$
are the roots of $g$
5) $\delta(-x) = \delta(x)$
Derivatives of ``k``-th order of DiracDelta have the following properties:
6) $\delta(x, k) = 0$ for all $x \neq 0$
7) $\delta(-x, k) = -\delta(x, k)$ for odd $k$
8) $\delta(-x, k) = \delta(x, k)$ for even $k$
Examples
========
>>> from sympy import DiracDelta, diff, pi
>>> from sympy.abc import x, y
>>> DiracDelta(x)
DiracDelta(x)
>>> DiracDelta(1)
0
>>> DiracDelta(-1)
0
>>> DiracDelta(pi)
0
>>> DiracDelta(x - 4).subs(x, 4)
DiracDelta(0)
>>> diff(DiracDelta(x))
DiracDelta(x, 1)
>>> diff(DiracDelta(x - 1), x, 2)
DiracDelta(x - 1, 2)
>>> diff(DiracDelta(x**2 - 1), x, 2)
2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1))
>>> DiracDelta(3*x).is_simple(x)
True
>>> DiracDelta(x**2).is_simple(x)
False
>>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x)
DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y))
See Also
========
Heaviside
sympy.simplify.simplify.simplify, is_simple
sympy.functions.special.tensor_functions.KroneckerDelta
References
==========
.. [1] https://mathworld.wolfram.com/DeltaFunction.html
"""
is_real = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of a DiracDelta Function.
Explanation
===========
The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the
user-level function and ``fdiff()`` is an object method. ``fdiff()`` is
a convenience method available in the ``Function`` class. It returns
the derivative of the function without considering the chain rule.
``diff(function, x)`` calls ``Function._eval_derivative`` which in turn
calls ``fdiff()`` internally to compute the derivative of the function.
Examples
========
>>> from sympy import DiracDelta, diff
>>> from sympy.abc import x
>>> DiracDelta(x).fdiff()
DiracDelta(x, 1)
>>> DiracDelta(x, 1).fdiff()
DiracDelta(x, 2)
>>> DiracDelta(x**2 - 1).fdiff()
DiracDelta(x**2 - 1, 1)
>>> diff(DiracDelta(x, 1)).fdiff()
DiracDelta(x, 3)
Parameters
==========
argindex : integer
degree of derivative
"""
if argindex == 1:
#I didn't know if there is a better way to handle default arguments
k = 0
if len(self.args) > 1:
k = self.args[1]
return self.func(self.args[0], k + 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg, k=S.Zero):
"""
Returns a simplified form or a value of DiracDelta depending on the
argument passed by the DiracDelta object.
Explanation
===========
The ``eval()`` method is automatically called when the ``DiracDelta``
class is about to be instantiated and it returns either some simplified
instance or the unevaluated instance depending on the argument passed.
In other words, ``eval()`` method is not needed to be called explicitly,
it is being called and evaluated once the object is called.
Examples
========
>>> from sympy import DiracDelta, S
>>> from sympy.abc import x
>>> DiracDelta(x)
DiracDelta(x)
>>> DiracDelta(-x, 1)
-DiracDelta(x, 1)
>>> DiracDelta(1)
0
>>> DiracDelta(5, 1)
0
>>> DiracDelta(0)
DiracDelta(0)
>>> DiracDelta(-1)
0
>>> DiracDelta(S.NaN)
nan
>>> DiracDelta(x - 100).subs(x, 5)
0
>>> DiracDelta(x - 100).subs(x, 100)
DiracDelta(0)
Parameters
==========
k : integer
order of derivative
arg : argument passed to DiracDelta
"""
if not k.is_Integer or k.is_negative:
raise ValueError("Error: the second argument of DiracDelta must be \
a non-negative integer, %s given instead." % (k,))
if arg is S.NaN:
return S.NaN
if arg.is_nonzero:
return S.Zero
if fuzzy_not(im(arg).is_zero):
raise ValueError(filldedent('''
Function defined only for Real Values.
Complex part: %s found in %s .''' % (
repr(im(arg)), repr(arg))))
c, nc = arg.args_cnc()
if c and c[0] is S.NegativeOne:
# keep this fast and simple instead of using
# could_extract_minus_sign
if k.is_odd:
return -cls(-arg, k)
elif k.is_even:
return cls(-arg, k) if k else cls(-arg)
elif k.is_zero:
return cls(arg, evaluate=False)
def _eval_expand_diracdelta(self, **hints):
"""
Compute a simplified representation of the function using
property number 4. Pass ``wrt`` as a hint to expand the expression
with respect to a particular variable.
Explanation
===========
``wrt`` is:
- a variable with respect to which a DiracDelta expression will
get expanded.
Examples
========
>>> from sympy import DiracDelta
>>> from sympy.abc import x, y
>>> DiracDelta(x*y).expand(diracdelta=True, wrt=x)
DiracDelta(x)/Abs(y)
>>> DiracDelta(x*y).expand(diracdelta=True, wrt=y)
DiracDelta(y)/Abs(x)
>>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x)
DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3
See Also
========
is_simple, Diracdelta
"""
wrt = hints.get('wrt', None)
if wrt is None:
free = self.free_symbols
if len(free) == 1:
wrt = free.pop()
else:
raise TypeError(filldedent('''
When there is more than 1 free symbol or variable in the expression,
the 'wrt' keyword is required as a hint to expand when using the
DiracDelta hint.'''))
if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ):
return self
try:
argroots = roots(self.args[0], wrt)
result = 0
valid = True
darg = abs(diff(self.args[0], wrt))
for r, m in argroots.items():
if r.is_real is not False and m == 1:
result += self.func(wrt - r)/darg.subs(wrt, r)
else:
# don't handle non-real and if m != 1 then
# a polynomial will have a zero in the derivative (darg)
# at r
valid = False
break
if valid:
return result
except PolynomialError:
pass
return self
def is_simple(self, x):
"""
Tells whether the argument(args[0]) of DiracDelta is a linear
expression in *x*.
Examples
========
>>> from sympy import DiracDelta, cos
>>> from sympy.abc import x, y
>>> DiracDelta(x*y).is_simple(x)
True
>>> DiracDelta(x*y).is_simple(y)
True
>>> DiracDelta(x**2 + x - 2).is_simple(x)
False
>>> DiracDelta(cos(x)).is_simple(x)
False
Parameters
==========
x : can be a symbol
See Also
========
sympy.simplify.simplify.simplify, DiracDelta
"""
p = self.args[0].as_poly(x)
if p:
return p.degree() == 1
return False
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
"""
Represents DiracDelta in a piecewise form.
Examples
========
>>> from sympy import DiracDelta, Piecewise, Symbol
>>> x = Symbol('x')
>>> DiracDelta(x).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x, 0)), (0, True))
>>> DiracDelta(x - 5).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x, 5)), (0, True))
>>> DiracDelta(x**2 - 5).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x**2, 5)), (0, True))
>>> DiracDelta(x - 5, 4).rewrite(Piecewise)
DiracDelta(x - 5, 4)
"""
if len(args) == 1:
return Piecewise((DiracDelta(0), Eq(args[0], 0)), (0, True))
def _eval_rewrite_as_SingularityFunction(self, *args, **kwargs):
"""
Returns the DiracDelta expression written in the form of Singularity
Functions.
"""
from sympy.solvers import solve
from sympy.functions.special.singularity_functions import SingularityFunction
if self == DiracDelta(0):
return SingularityFunction(0, 0, -1)
if self == DiracDelta(0, 1):
return SingularityFunction(0, 0, -2)
free = self.free_symbols
if len(free) == 1:
x = (free.pop())
if len(args) == 1:
return SingularityFunction(x, solve(args[0], x)[0], -1)
return SingularityFunction(x, solve(args[0], x)[0], -args[1] - 1)
else:
# I don't know how to handle the case for DiracDelta expressions
# having arguments with more than one variable.
raise TypeError(filldedent('''
rewrite(SingularityFunction) does not support
arguments with more that one variable.'''))
###############################################################################
############################## HEAVISIDE FUNCTION #############################
###############################################################################
class Heaviside(Function):
r"""
Heaviside step function.
Explanation
===========
The Heaviside step function has the following properties:
1) $\frac{d}{d x} \theta(x) = \delta(x)$
2) $\theta(x) = \begin{cases} 0 & \text{for}\: x < 0 \\ \frac{1}{2} &
\text{for}\: x = 0 \\1 & \text{for}\: x > 0 \end{cases}$
3) $\frac{d}{d x} \max(x, 0) = \theta(x)$
Heaviside(x) is printed as $\theta(x)$ with the SymPy LaTeX printer.
The value at 0 is set differently in different fields. SymPy uses 1/2,
which is a convention from electronics and signal processing, and is
consistent with solving improper integrals by Fourier transform and
convolution.
To specify a different value of Heaviside at ``x=0``, a second argument
can be given. Using ``Heaviside(x, nan)`` gives an expression that will
evaluate to nan for x=0.
.. versionchanged:: 1.9 ``Heaviside(0)`` now returns 1/2 (before: undefined)
Examples
========
>>> from sympy import Heaviside, nan
>>> from sympy.abc import x
>>> Heaviside(9)
1
>>> Heaviside(-9)
0
>>> Heaviside(0)
1/2
>>> Heaviside(0, nan)
nan
>>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1))
Heaviside(x, 1) + 1
See Also
========
DiracDelta
References
==========
.. [1] https://mathworld.wolfram.com/HeavisideStepFunction.html
.. [2] https://dlmf.nist.gov/1.16#iv
"""
is_real = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of a Heaviside Function.
Examples
========
>>> from sympy import Heaviside, diff
>>> from sympy.abc import x
>>> Heaviside(x).fdiff()
DiracDelta(x)
>>> Heaviside(x**2 - 1).fdiff()
DiracDelta(x**2 - 1)
>>> diff(Heaviside(x)).fdiff()
DiracDelta(x, 1)
Parameters
==========
argindex : integer
order of derivative
"""
if argindex == 1:
return DiracDelta(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def __new__(cls, arg, H0=S.Half, **options):
if isinstance(H0, Heaviside) and len(H0.args) == 1:
H0 = S.Half
return super(cls, cls).__new__(cls, arg, H0, **options)
@property
def pargs(self):
"""Args without default S.Half"""
args = self.args
if args[1] is S.Half:
args = args[:1]
return args
@classmethod
def eval(cls, arg, H0=S.Half):
"""
Returns a simplified form or a value of Heaviside depending on the
argument passed by the Heaviside object.
Explanation
===========
The ``eval()`` method is automatically called when the ``Heaviside``
class is about to be instantiated and it returns either some simplified
instance or the unevaluated instance depending on the argument passed.
In other words, ``eval()`` method is not needed to be called explicitly,
it is being called and evaluated once the object is called.
Examples
========
>>> from sympy import Heaviside, S
>>> from sympy.abc import x
>>> Heaviside(x)
Heaviside(x)
>>> Heaviside(19)
1
>>> Heaviside(0)
1/2
>>> Heaviside(0, 1)
1
>>> Heaviside(-5)
0
>>> Heaviside(S.NaN)
nan
>>> Heaviside(x - 100).subs(x, 5)
0
>>> Heaviside(x - 100).subs(x, 105)
1
Parameters
==========
arg : argument passed by Heaviside object
H0 : value of Heaviside(0)
"""
if arg.is_extended_negative:
return S.Zero
elif arg.is_extended_positive:
return S.One
elif arg.is_zero:
return H0
elif arg is S.NaN:
return S.NaN
elif fuzzy_not(im(arg).is_zero):
raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) )
def _eval_rewrite_as_Piecewise(self, arg, H0=None, **kwargs):
"""
Represents Heaviside in a Piecewise form.
Examples
========
>>> from sympy import Heaviside, Piecewise, Symbol, nan
>>> x = Symbol('x')
>>> Heaviside(x).rewrite(Piecewise)
Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, True))
>>> Heaviside(x,nan).rewrite(Piecewise)
Piecewise((0, x < 0), (nan, Eq(x, 0)), (1, True))
>>> Heaviside(x - 5).rewrite(Piecewise)
Piecewise((0, x < 5), (1/2, Eq(x, 5)), (1, True))
>>> Heaviside(x**2 - 1).rewrite(Piecewise)
Piecewise((0, x**2 < 1), (1/2, Eq(x**2, 1)), (1, True))
"""
if H0 == 0:
return Piecewise((0, arg <= 0), (1, True))
if H0 == 1:
return Piecewise((0, arg < 0), (1, True))
return Piecewise((0, arg < 0), (H0, Eq(arg, 0)), (1, True))
def _eval_rewrite_as_sign(self, arg, H0=S.Half, **kwargs):
"""
Represents the Heaviside function in the form of sign function.
Explanation
===========
The value of Heaviside(0) must be 1/2 for rewriting as sign to be
strictly equivalent. For easier usage, we also allow this rewriting
when Heaviside(0) is undefined.
Examples
========
>>> from sympy import Heaviside, Symbol, sign, nan
>>> x = Symbol('x', real=True)
>>> y = Symbol('y')
>>> Heaviside(x).rewrite(sign)
sign(x)/2 + 1/2
>>> Heaviside(x, 0).rewrite(sign)
Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (0, True))
>>> Heaviside(x, nan).rewrite(sign)
Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (nan, True))
>>> Heaviside(x - 2).rewrite(sign)
sign(x - 2)/2 + 1/2
>>> Heaviside(x**2 - 2*x + 1).rewrite(sign)
sign(x**2 - 2*x + 1)/2 + 1/2
>>> Heaviside(y).rewrite(sign)
Heaviside(y)
>>> Heaviside(y**2 - 2*y + 1).rewrite(sign)
Heaviside(y**2 - 2*y + 1)
See Also
========
sign
"""
if arg.is_extended_real:
pw1 = Piecewise(
((sign(arg) + 1)/2, Ne(arg, 0)),
(Heaviside(0, H0=H0), True))
pw2 = Piecewise(
((sign(arg) + 1)/2, Eq(Heaviside(0, H0=H0), S.Half)),
(pw1, True))
return pw2
def _eval_rewrite_as_SingularityFunction(self, args, H0=S.Half, **kwargs):
"""
Returns the Heaviside expression written in the form of Singularity
Functions.
"""
from sympy.solvers import solve
from sympy.functions.special.singularity_functions import SingularityFunction
if self == Heaviside(0):
return SingularityFunction(0, 0, 0)
free = self.free_symbols
if len(free) == 1:
x = (free.pop())
return SingularityFunction(x, solve(args, x)[0], 0)
# TODO
# ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output
# SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0)
else:
# I don't know how to handle the case for Heaviside expressions
# having arguments with more than one variable.
raise TypeError(filldedent('''
rewrite(SingularityFunction) does not
support arguments with more that one variable.'''))