Traktor/myenv/Lib/site-packages/sympy/logic/algorithms/dpll.py

309 lines
9.0 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
"""Implementation of DPLL algorithm
Further improvements: eliminate calls to pl_true, implement branching rules,
efficient unit propagation.
References:
- https://en.wikipedia.org/wiki/DPLL_algorithm
- https://www.researchgate.net/publication/242384772_Implementations_of_the_DPLL_Algorithm
"""
from sympy.core.sorting import default_sort_key
from sympy.logic.boolalg import Or, Not, conjuncts, disjuncts, to_cnf, \
to_int_repr, _find_predicates
from sympy.assumptions.cnf import CNF
from sympy.logic.inference import pl_true, literal_symbol
def dpll_satisfiable(expr):
"""
Check satisfiability of a propositional sentence.
It returns a model rather than True when it succeeds
>>> from sympy.abc import A, B
>>> from sympy.logic.algorithms.dpll import dpll_satisfiable
>>> dpll_satisfiable(A & ~B)
{A: True, B: False}
>>> dpll_satisfiable(A & ~A)
False
"""
if not isinstance(expr, CNF):
clauses = conjuncts(to_cnf(expr))
else:
clauses = expr.clauses
if False in clauses:
return False
symbols = sorted(_find_predicates(expr), key=default_sort_key)
symbols_int_repr = set(range(1, len(symbols) + 1))
clauses_int_repr = to_int_repr(clauses, symbols)
result = dpll_int_repr(clauses_int_repr, symbols_int_repr, {})
if not result:
return result
output = {}
for key in result:
output.update({symbols[key - 1]: result[key]})
return output
def dpll(clauses, symbols, model):
"""
Compute satisfiability in a partial model.
Clauses is an array of conjuncts.
>>> from sympy.abc import A, B, D
>>> from sympy.logic.algorithms.dpll import dpll
>>> dpll([A, B, D], [A, B], {D: False})
False
"""
# compute DP kernel
P, value = find_unit_clause(clauses, model)
while P:
model.update({P: value})
symbols.remove(P)
if not value:
P = ~P
clauses = unit_propagate(clauses, P)
P, value = find_unit_clause(clauses, model)
P, value = find_pure_symbol(symbols, clauses)
while P:
model.update({P: value})
symbols.remove(P)
if not value:
P = ~P
clauses = unit_propagate(clauses, P)
P, value = find_pure_symbol(symbols, clauses)
# end DP kernel
unknown_clauses = []
for c in clauses:
val = pl_true(c, model)
if val is False:
return False
if val is not True:
unknown_clauses.append(c)
if not unknown_clauses:
return model
if not clauses:
return model
P = symbols.pop()
model_copy = model.copy()
model.update({P: True})
model_copy.update({P: False})
symbols_copy = symbols[:]
return (dpll(unit_propagate(unknown_clauses, P), symbols, model) or
dpll(unit_propagate(unknown_clauses, Not(P)), symbols_copy, model_copy))
def dpll_int_repr(clauses, symbols, model):
"""
Compute satisfiability in a partial model.
Arguments are expected to be in integer representation
>>> from sympy.logic.algorithms.dpll import dpll_int_repr
>>> dpll_int_repr([{1}, {2}, {3}], {1, 2}, {3: False})
False
"""
# compute DP kernel
P, value = find_unit_clause_int_repr(clauses, model)
while P:
model.update({P: value})
symbols.remove(P)
if not value:
P = -P
clauses = unit_propagate_int_repr(clauses, P)
P, value = find_unit_clause_int_repr(clauses, model)
P, value = find_pure_symbol_int_repr(symbols, clauses)
while P:
model.update({P: value})
symbols.remove(P)
if not value:
P = -P
clauses = unit_propagate_int_repr(clauses, P)
P, value = find_pure_symbol_int_repr(symbols, clauses)
# end DP kernel
unknown_clauses = []
for c in clauses:
val = pl_true_int_repr(c, model)
if val is False:
return False
if val is not True:
unknown_clauses.append(c)
if not unknown_clauses:
return model
P = symbols.pop()
model_copy = model.copy()
model.update({P: True})
model_copy.update({P: False})
symbols_copy = symbols.copy()
return (dpll_int_repr(unit_propagate_int_repr(unknown_clauses, P), symbols, model) or
dpll_int_repr(unit_propagate_int_repr(unknown_clauses, -P), symbols_copy, model_copy))
### helper methods for DPLL
def pl_true_int_repr(clause, model={}):
"""
Lightweight version of pl_true.
Argument clause represents the set of args of an Or clause. This is used
inside dpll_int_repr, it is not meant to be used directly.
>>> from sympy.logic.algorithms.dpll import pl_true_int_repr
>>> pl_true_int_repr({1, 2}, {1: False})
>>> pl_true_int_repr({1, 2}, {1: False, 2: False})
False
"""
result = False
for lit in clause:
if lit < 0:
p = model.get(-lit)
if p is not None:
p = not p
else:
p = model.get(lit)
if p is True:
return True
elif p is None:
result = None
return result
def unit_propagate(clauses, symbol):
"""
Returns an equivalent set of clauses
If a set of clauses contains the unit clause l, the other clauses are
simplified by the application of the two following rules:
1. every clause containing l is removed
2. in every clause that contains ~l this literal is deleted
Arguments are expected to be in CNF.
>>> from sympy.abc import A, B, D
>>> from sympy.logic.algorithms.dpll import unit_propagate
>>> unit_propagate([A | B, D | ~B, B], B)
[D, B]
"""
output = []
for c in clauses:
if c.func != Or:
output.append(c)
continue
for arg in c.args:
if arg == ~symbol:
output.append(Or(*[x for x in c.args if x != ~symbol]))
break
if arg == symbol:
break
else:
output.append(c)
return output
def unit_propagate_int_repr(clauses, s):
"""
Same as unit_propagate, but arguments are expected to be in integer
representation
>>> from sympy.logic.algorithms.dpll import unit_propagate_int_repr
>>> unit_propagate_int_repr([{1, 2}, {3, -2}, {2}], 2)
[{3}]
"""
negated = {-s}
return [clause - negated for clause in clauses if s not in clause]
def find_pure_symbol(symbols, unknown_clauses):
"""
Find a symbol and its value if it appears only as a positive literal
(or only as a negative) in clauses.
>>> from sympy.abc import A, B, D
>>> from sympy.logic.algorithms.dpll import find_pure_symbol
>>> find_pure_symbol([A, B, D], [A|~B,~B|~D,D|A])
(A, True)
"""
for sym in symbols:
found_pos, found_neg = False, False
for c in unknown_clauses:
if not found_pos and sym in disjuncts(c):
found_pos = True
if not found_neg and Not(sym) in disjuncts(c):
found_neg = True
if found_pos != found_neg:
return sym, found_pos
return None, None
def find_pure_symbol_int_repr(symbols, unknown_clauses):
"""
Same as find_pure_symbol, but arguments are expected
to be in integer representation
>>> from sympy.logic.algorithms.dpll import find_pure_symbol_int_repr
>>> find_pure_symbol_int_repr({1,2,3},
... [{1, -2}, {-2, -3}, {3, 1}])
(1, True)
"""
all_symbols = set().union(*unknown_clauses)
found_pos = all_symbols.intersection(symbols)
found_neg = all_symbols.intersection([-s for s in symbols])
for p in found_pos:
if -p not in found_neg:
return p, True
for p in found_neg:
if -p not in found_pos:
return -p, False
return None, None
def find_unit_clause(clauses, model):
"""
A unit clause has only 1 variable that is not bound in the model.
>>> from sympy.abc import A, B, D
>>> from sympy.logic.algorithms.dpll import find_unit_clause
>>> find_unit_clause([A | B | D, B | ~D, A | ~B], {A:True})
(B, False)
"""
for clause in clauses:
num_not_in_model = 0
for literal in disjuncts(clause):
sym = literal_symbol(literal)
if sym not in model:
num_not_in_model += 1
P, value = sym, not isinstance(literal, Not)
if num_not_in_model == 1:
return P, value
return None, None
def find_unit_clause_int_repr(clauses, model):
"""
Same as find_unit_clause, but arguments are expected to be in
integer representation.
>>> from sympy.logic.algorithms.dpll import find_unit_clause_int_repr
>>> find_unit_clause_int_repr([{1, 2, 3},
... {2, -3}, {1, -2}], {1: True})
(2, False)
"""
bound = set(model) | {-sym for sym in model}
for clause in clauses:
unbound = clause - bound
if len(unbound) == 1:
p = unbound.pop()
if p < 0:
return -p, False
else:
return p, True
return None, None