Traktor/myenv/Lib/site-packages/sympy/polys/domains/fractionfield.py

185 lines
5.8 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
"""Implementation of :class:`FractionField` class. """
from sympy.polys.domains.compositedomain import CompositeDomain
from sympy.polys.domains.field import Field
from sympy.polys.polyerrors import CoercionFailed, GeneratorsError
from sympy.utilities import public
@public
class FractionField(Field, CompositeDomain):
"""A class for representing multivariate rational function fields. """
is_FractionField = is_Frac = True
has_assoc_Ring = True
has_assoc_Field = True
def __init__(self, domain_or_field, symbols=None, order=None):
from sympy.polys.fields import FracField
if isinstance(domain_or_field, FracField) and symbols is None and order is None:
field = domain_or_field
else:
field = FracField(symbols, domain_or_field, order)
self.field = field
self.dtype = field.dtype
self.gens = field.gens
self.ngens = field.ngens
self.symbols = field.symbols
self.domain = field.domain
# TODO: remove this
self.dom = self.domain
def new(self, element):
return self.field.field_new(element)
@property
def zero(self):
return self.field.zero
@property
def one(self):
return self.field.one
@property
def order(self):
return self.field.order
@property
def is_Exact(self):
return self.domain.is_Exact
def get_exact(self):
return FractionField(self.domain.get_exact(), self.symbols)
def __str__(self):
return str(self.domain) + '(' + ','.join(map(str, self.symbols)) + ')'
def __hash__(self):
return hash((self.__class__.__name__, self.dtype.field, self.domain, self.symbols))
def __eq__(self, other):
"""Returns ``True`` if two domains are equivalent. """
return isinstance(other, FractionField) and \
(self.dtype.field, self.domain, self.symbols) ==\
(other.dtype.field, other.domain, other.symbols)
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
return a.as_expr()
def from_sympy(self, a):
"""Convert SymPy's expression to ``dtype``. """
return self.field.from_expr(a)
def from_ZZ(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_ZZ_python(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_QQ(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
dom = K1.domain
conv = dom.convert_from
if dom.is_ZZ:
return K1(conv(K0.numer(a), K0)) / K1(conv(K0.denom(a), K0))
else:
return K1(conv(a, K0))
def from_QQ_python(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpz`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpq`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_GaussianRationalField(K1, a, K0):
"""Convert a ``GaussianRational`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_GaussianIntegerRing(K1, a, K0):
"""Convert a ``GaussianInteger`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_RealField(K1, a, K0):
"""Convert a mpmath ``mpf`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_ComplexField(K1, a, K0):
"""Convert a mpmath ``mpf`` object to ``dtype``. """
return K1(K1.domain.convert(a, K0))
def from_AlgebraicField(K1, a, K0):
"""Convert an algebraic number to ``dtype``. """
if K1.domain != K0:
a = K1.domain.convert_from(a, K0)
if a is not None:
return K1.new(a)
def from_PolynomialRing(K1, a, K0):
"""Convert a polynomial to ``dtype``. """
if a.is_ground:
return K1.convert_from(a.coeff(1), K0.domain)
try:
return K1.new(a.set_ring(K1.field.ring))
except (CoercionFailed, GeneratorsError):
# XXX: We get here if K1=ZZ(x,y) and K0=QQ[x,y]
# and the poly a in K0 has non-integer coefficients.
# It seems that K1.new can handle this but K1.new doesn't work
# when K0.domain is an algebraic field...
try:
return K1.new(a)
except (CoercionFailed, GeneratorsError):
return None
def from_FractionField(K1, a, K0):
"""Convert a rational function to ``dtype``. """
try:
return a.set_field(K1.field)
except (CoercionFailed, GeneratorsError):
return None
def get_ring(self):
"""Returns a field associated with ``self``. """
return self.field.to_ring().to_domain()
def is_positive(self, a):
"""Returns True if ``LC(a)`` is positive. """
return self.domain.is_positive(a.numer.LC)
def is_negative(self, a):
"""Returns True if ``LC(a)`` is negative. """
return self.domain.is_negative(a.numer.LC)
def is_nonpositive(self, a):
"""Returns True if ``LC(a)`` is non-positive. """
return self.domain.is_nonpositive(a.numer.LC)
def is_nonnegative(self, a):
"""Returns True if ``LC(a)`` is non-negative. """
return self.domain.is_nonnegative(a.numer.LC)
def numer(self, a):
"""Returns numerator of ``a``. """
return a.numer
def denom(self, a):
"""Returns denominator of ``a``. """
return a.denom
def factorial(self, a):
"""Returns factorial of ``a``. """
return self.dtype(self.domain.factorial(a))