2364 lines
51 KiB
Python
2364 lines
51 KiB
Python
|
"""Dense univariate polynomials with coefficients in Galois fields. """
|
||
|
|
||
|
from math import ceil as _ceil, sqrt as _sqrt, prod
|
||
|
|
||
|
from sympy.core.random import uniform
|
||
|
from sympy.external.gmpy import SYMPY_INTS
|
||
|
from sympy.polys.polyconfig import query
|
||
|
from sympy.polys.polyerrors import ExactQuotientFailed
|
||
|
from sympy.polys.polyutils import _sort_factors
|
||
|
|
||
|
|
||
|
def gf_crt(U, M, K=None):
|
||
|
"""
|
||
|
Chinese Remainder Theorem.
|
||
|
|
||
|
Given a set of integer residues ``u_0,...,u_n`` and a set of
|
||
|
co-prime integer moduli ``m_0,...,m_n``, returns an integer
|
||
|
``u``, such that ``u = u_i mod m_i`` for ``i = ``0,...,n``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Consider a set of residues ``U = [49, 76, 65]``
|
||
|
and a set of moduli ``M = [99, 97, 95]``. Then we have::
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_crt
|
||
|
|
||
|
>>> gf_crt([49, 76, 65], [99, 97, 95], ZZ)
|
||
|
639985
|
||
|
|
||
|
This is the correct result because::
|
||
|
|
||
|
>>> [639985 % m for m in [99, 97, 95]]
|
||
|
[49, 76, 65]
|
||
|
|
||
|
Note: this is a low-level routine with no error checking.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.ntheory.modular.crt : a higher level crt routine
|
||
|
sympy.ntheory.modular.solve_congruence
|
||
|
|
||
|
"""
|
||
|
p = prod(M, start=K.one)
|
||
|
v = K.zero
|
||
|
|
||
|
for u, m in zip(U, M):
|
||
|
e = p // m
|
||
|
s, _, _ = K.gcdex(e, m)
|
||
|
v += e*(u*s % m)
|
||
|
|
||
|
return v % p
|
||
|
|
||
|
|
||
|
def gf_crt1(M, K):
|
||
|
"""
|
||
|
First part of the Chinese Remainder Theorem.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_crt1
|
||
|
|
||
|
>>> gf_crt1([99, 97, 95], ZZ)
|
||
|
(912285, [9215, 9405, 9603], [62, 24, 12])
|
||
|
|
||
|
"""
|
||
|
E, S = [], []
|
||
|
p = prod(M, start=K.one)
|
||
|
|
||
|
for m in M:
|
||
|
E.append(p // m)
|
||
|
S.append(K.gcdex(E[-1], m)[0] % m)
|
||
|
|
||
|
return p, E, S
|
||
|
|
||
|
|
||
|
def gf_crt2(U, M, p, E, S, K):
|
||
|
"""
|
||
|
Second part of the Chinese Remainder Theorem.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_crt2
|
||
|
|
||
|
>>> U = [49, 76, 65]
|
||
|
>>> M = [99, 97, 95]
|
||
|
>>> p = 912285
|
||
|
>>> E = [9215, 9405, 9603]
|
||
|
>>> S = [62, 24, 12]
|
||
|
|
||
|
>>> gf_crt2(U, M, p, E, S, ZZ)
|
||
|
639985
|
||
|
|
||
|
"""
|
||
|
v = K.zero
|
||
|
|
||
|
for u, m, e, s in zip(U, M, E, S):
|
||
|
v += e*(u*s % m)
|
||
|
|
||
|
return v % p
|
||
|
|
||
|
|
||
|
def gf_int(a, p):
|
||
|
"""
|
||
|
Coerce ``a mod p`` to an integer in the range ``[-p/2, p/2]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_int
|
||
|
|
||
|
>>> gf_int(2, 7)
|
||
|
2
|
||
|
>>> gf_int(5, 7)
|
||
|
-2
|
||
|
|
||
|
"""
|
||
|
if a <= p // 2:
|
||
|
return a
|
||
|
else:
|
||
|
return a - p
|
||
|
|
||
|
|
||
|
def gf_degree(f):
|
||
|
"""
|
||
|
Return the leading degree of ``f``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_degree
|
||
|
|
||
|
>>> gf_degree([1, 1, 2, 0])
|
||
|
3
|
||
|
>>> gf_degree([])
|
||
|
-1
|
||
|
|
||
|
"""
|
||
|
return len(f) - 1
|
||
|
|
||
|
|
||
|
def gf_LC(f, K):
|
||
|
"""
|
||
|
Return the leading coefficient of ``f``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_LC
|
||
|
|
||
|
>>> gf_LC([3, 0, 1], ZZ)
|
||
|
3
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
return K.zero
|
||
|
else:
|
||
|
return f[0]
|
||
|
|
||
|
|
||
|
def gf_TC(f, K):
|
||
|
"""
|
||
|
Return the trailing coefficient of ``f``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_TC
|
||
|
|
||
|
>>> gf_TC([3, 0, 1], ZZ)
|
||
|
1
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
return K.zero
|
||
|
else:
|
||
|
return f[-1]
|
||
|
|
||
|
|
||
|
def gf_strip(f):
|
||
|
"""
|
||
|
Remove leading zeros from ``f``.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_strip
|
||
|
|
||
|
>>> gf_strip([0, 0, 0, 3, 0, 1])
|
||
|
[3, 0, 1]
|
||
|
|
||
|
"""
|
||
|
if not f or f[0]:
|
||
|
return f
|
||
|
|
||
|
k = 0
|
||
|
|
||
|
for coeff in f:
|
||
|
if coeff:
|
||
|
break
|
||
|
else:
|
||
|
k += 1
|
||
|
|
||
|
return f[k:]
|
||
|
|
||
|
|
||
|
def gf_trunc(f, p):
|
||
|
"""
|
||
|
Reduce all coefficients modulo ``p``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_trunc
|
||
|
|
||
|
>>> gf_trunc([7, -2, 3], 5)
|
||
|
[2, 3, 3]
|
||
|
|
||
|
"""
|
||
|
return gf_strip([ a % p for a in f ])
|
||
|
|
||
|
|
||
|
def gf_normal(f, p, K):
|
||
|
"""
|
||
|
Normalize all coefficients in ``K``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_normal
|
||
|
|
||
|
>>> gf_normal([5, 10, 21, -3], 5, ZZ)
|
||
|
[1, 2]
|
||
|
|
||
|
"""
|
||
|
return gf_trunc(list(map(K, f)), p)
|
||
|
|
||
|
|
||
|
def gf_from_dict(f, p, K):
|
||
|
"""
|
||
|
Create a ``GF(p)[x]`` polynomial from a dict.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_from_dict
|
||
|
|
||
|
>>> gf_from_dict({10: ZZ(4), 4: ZZ(33), 0: ZZ(-1)}, 5, ZZ)
|
||
|
[4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4]
|
||
|
|
||
|
"""
|
||
|
n, h = max(f.keys()), []
|
||
|
|
||
|
if isinstance(n, SYMPY_INTS):
|
||
|
for k in range(n, -1, -1):
|
||
|
h.append(f.get(k, K.zero) % p)
|
||
|
else:
|
||
|
(n,) = n
|
||
|
|
||
|
for k in range(n, -1, -1):
|
||
|
h.append(f.get((k,), K.zero) % p)
|
||
|
|
||
|
return gf_trunc(h, p)
|
||
|
|
||
|
|
||
|
def gf_to_dict(f, p, symmetric=True):
|
||
|
"""
|
||
|
Convert a ``GF(p)[x]`` polynomial to a dict.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_to_dict
|
||
|
|
||
|
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5)
|
||
|
{0: -1, 4: -2, 10: -1}
|
||
|
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5, symmetric=False)
|
||
|
{0: 4, 4: 3, 10: 4}
|
||
|
|
||
|
"""
|
||
|
n, result = gf_degree(f), {}
|
||
|
|
||
|
for k in range(0, n + 1):
|
||
|
if symmetric:
|
||
|
a = gf_int(f[n - k], p)
|
||
|
else:
|
||
|
a = f[n - k]
|
||
|
|
||
|
if a:
|
||
|
result[k] = a
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def gf_from_int_poly(f, p):
|
||
|
"""
|
||
|
Create a ``GF(p)[x]`` polynomial from ``Z[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_from_int_poly
|
||
|
|
||
|
>>> gf_from_int_poly([7, -2, 3], 5)
|
||
|
[2, 3, 3]
|
||
|
|
||
|
"""
|
||
|
return gf_trunc(f, p)
|
||
|
|
||
|
|
||
|
def gf_to_int_poly(f, p, symmetric=True):
|
||
|
"""
|
||
|
Convert a ``GF(p)[x]`` polynomial to ``Z[x]``.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_to_int_poly
|
||
|
|
||
|
>>> gf_to_int_poly([2, 3, 3], 5)
|
||
|
[2, -2, -2]
|
||
|
>>> gf_to_int_poly([2, 3, 3], 5, symmetric=False)
|
||
|
[2, 3, 3]
|
||
|
|
||
|
"""
|
||
|
if symmetric:
|
||
|
return [ gf_int(c, p) for c in f ]
|
||
|
else:
|
||
|
return f
|
||
|
|
||
|
|
||
|
def gf_neg(f, p, K):
|
||
|
"""
|
||
|
Negate a polynomial in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_neg
|
||
|
|
||
|
>>> gf_neg([3, 2, 1, 0], 5, ZZ)
|
||
|
[2, 3, 4, 0]
|
||
|
|
||
|
"""
|
||
|
return [ -coeff % p for coeff in f ]
|
||
|
|
||
|
|
||
|
def gf_add_ground(f, a, p, K):
|
||
|
"""
|
||
|
Compute ``f + a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_add_ground
|
||
|
|
||
|
>>> gf_add_ground([3, 2, 4], 2, 5, ZZ)
|
||
|
[3, 2, 1]
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
a = a % p
|
||
|
else:
|
||
|
a = (f[-1] + a) % p
|
||
|
|
||
|
if len(f) > 1:
|
||
|
return f[:-1] + [a]
|
||
|
|
||
|
if not a:
|
||
|
return []
|
||
|
else:
|
||
|
return [a]
|
||
|
|
||
|
|
||
|
def gf_sub_ground(f, a, p, K):
|
||
|
"""
|
||
|
Compute ``f - a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_sub_ground
|
||
|
|
||
|
>>> gf_sub_ground([3, 2, 4], 2, 5, ZZ)
|
||
|
[3, 2, 2]
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
a = -a % p
|
||
|
else:
|
||
|
a = (f[-1] - a) % p
|
||
|
|
||
|
if len(f) > 1:
|
||
|
return f[:-1] + [a]
|
||
|
|
||
|
if not a:
|
||
|
return []
|
||
|
else:
|
||
|
return [a]
|
||
|
|
||
|
|
||
|
def gf_mul_ground(f, a, p, K):
|
||
|
"""
|
||
|
Compute ``f * a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_mul_ground
|
||
|
|
||
|
>>> gf_mul_ground([3, 2, 4], 2, 5, ZZ)
|
||
|
[1, 4, 3]
|
||
|
|
||
|
"""
|
||
|
if not a:
|
||
|
return []
|
||
|
else:
|
||
|
return [ (a*b) % p for b in f ]
|
||
|
|
||
|
|
||
|
def gf_quo_ground(f, a, p, K):
|
||
|
"""
|
||
|
Compute ``f/a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_quo_ground
|
||
|
|
||
|
>>> gf_quo_ground(ZZ.map([3, 2, 4]), ZZ(2), 5, ZZ)
|
||
|
[4, 1, 2]
|
||
|
|
||
|
"""
|
||
|
return gf_mul_ground(f, K.invert(a, p), p, K)
|
||
|
|
||
|
|
||
|
def gf_add(f, g, p, K):
|
||
|
"""
|
||
|
Add polynomials in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_add
|
||
|
|
||
|
>>> gf_add([3, 2, 4], [2, 2, 2], 5, ZZ)
|
||
|
[4, 1]
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
return g
|
||
|
if not g:
|
||
|
return f
|
||
|
|
||
|
df = gf_degree(f)
|
||
|
dg = gf_degree(g)
|
||
|
|
||
|
if df == dg:
|
||
|
return gf_strip([ (a + b) % p for a, b in zip(f, g) ])
|
||
|
else:
|
||
|
k = abs(df - dg)
|
||
|
|
||
|
if df > dg:
|
||
|
h, f = f[:k], f[k:]
|
||
|
else:
|
||
|
h, g = g[:k], g[k:]
|
||
|
|
||
|
return h + [ (a + b) % p for a, b in zip(f, g) ]
|
||
|
|
||
|
|
||
|
def gf_sub(f, g, p, K):
|
||
|
"""
|
||
|
Subtract polynomials in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_sub
|
||
|
|
||
|
>>> gf_sub([3, 2, 4], [2, 2, 2], 5, ZZ)
|
||
|
[1, 0, 2]
|
||
|
|
||
|
"""
|
||
|
if not g:
|
||
|
return f
|
||
|
if not f:
|
||
|
return gf_neg(g, p, K)
|
||
|
|
||
|
df = gf_degree(f)
|
||
|
dg = gf_degree(g)
|
||
|
|
||
|
if df == dg:
|
||
|
return gf_strip([ (a - b) % p for a, b in zip(f, g) ])
|
||
|
else:
|
||
|
k = abs(df - dg)
|
||
|
|
||
|
if df > dg:
|
||
|
h, f = f[:k], f[k:]
|
||
|
else:
|
||
|
h, g = gf_neg(g[:k], p, K), g[k:]
|
||
|
|
||
|
return h + [ (a - b) % p for a, b in zip(f, g) ]
|
||
|
|
||
|
|
||
|
def gf_mul(f, g, p, K):
|
||
|
"""
|
||
|
Multiply polynomials in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_mul
|
||
|
|
||
|
>>> gf_mul([3, 2, 4], [2, 2, 2], 5, ZZ)
|
||
|
[1, 0, 3, 2, 3]
|
||
|
|
||
|
"""
|
||
|
df = gf_degree(f)
|
||
|
dg = gf_degree(g)
|
||
|
|
||
|
dh = df + dg
|
||
|
h = [0]*(dh + 1)
|
||
|
|
||
|
for i in range(0, dh + 1):
|
||
|
coeff = K.zero
|
||
|
|
||
|
for j in range(max(0, i - dg), min(i, df) + 1):
|
||
|
coeff += f[j]*g[i - j]
|
||
|
|
||
|
h[i] = coeff % p
|
||
|
|
||
|
return gf_strip(h)
|
||
|
|
||
|
|
||
|
def gf_sqr(f, p, K):
|
||
|
"""
|
||
|
Square polynomials in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_sqr
|
||
|
|
||
|
>>> gf_sqr([3, 2, 4], 5, ZZ)
|
||
|
[4, 2, 3, 1, 1]
|
||
|
|
||
|
"""
|
||
|
df = gf_degree(f)
|
||
|
|
||
|
dh = 2*df
|
||
|
h = [0]*(dh + 1)
|
||
|
|
||
|
for i in range(0, dh + 1):
|
||
|
coeff = K.zero
|
||
|
|
||
|
jmin = max(0, i - df)
|
||
|
jmax = min(i, df)
|
||
|
|
||
|
n = jmax - jmin + 1
|
||
|
|
||
|
jmax = jmin + n // 2 - 1
|
||
|
|
||
|
for j in range(jmin, jmax + 1):
|
||
|
coeff += f[j]*f[i - j]
|
||
|
|
||
|
coeff += coeff
|
||
|
|
||
|
if n & 1:
|
||
|
elem = f[jmax + 1]
|
||
|
coeff += elem**2
|
||
|
|
||
|
h[i] = coeff % p
|
||
|
|
||
|
return gf_strip(h)
|
||
|
|
||
|
|
||
|
def gf_add_mul(f, g, h, p, K):
|
||
|
"""
|
||
|
Returns ``f + g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_add_mul
|
||
|
>>> gf_add_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
|
||
|
[2, 3, 2, 2]
|
||
|
"""
|
||
|
return gf_add(f, gf_mul(g, h, p, K), p, K)
|
||
|
|
||
|
|
||
|
def gf_sub_mul(f, g, h, p, K):
|
||
|
"""
|
||
|
Compute ``f - g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_sub_mul
|
||
|
|
||
|
>>> gf_sub_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ)
|
||
|
[3, 3, 2, 1]
|
||
|
|
||
|
"""
|
||
|
return gf_sub(f, gf_mul(g, h, p, K), p, K)
|
||
|
|
||
|
|
||
|
def gf_expand(F, p, K):
|
||
|
"""
|
||
|
Expand results of :func:`~.factor` in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_expand
|
||
|
|
||
|
>>> gf_expand([([3, 2, 4], 1), ([2, 2], 2), ([3, 1], 3)], 5, ZZ)
|
||
|
[4, 3, 0, 3, 0, 1, 4, 1]
|
||
|
|
||
|
"""
|
||
|
if isinstance(F, tuple):
|
||
|
lc, F = F
|
||
|
else:
|
||
|
lc = K.one
|
||
|
|
||
|
g = [lc]
|
||
|
|
||
|
for f, k in F:
|
||
|
f = gf_pow(f, k, p, K)
|
||
|
g = gf_mul(g, f, p, K)
|
||
|
|
||
|
return g
|
||
|
|
||
|
|
||
|
def gf_div(f, g, p, K):
|
||
|
"""
|
||
|
Division with remainder in ``GF(p)[x]``.
|
||
|
|
||
|
Given univariate polynomials ``f`` and ``g`` with coefficients in a
|
||
|
finite field with ``p`` elements, returns polynomials ``q`` and ``r``
|
||
|
(quotient and remainder) such that ``f = q*g + r``.
|
||
|
|
||
|
Consider polynomials ``x**3 + x + 1`` and ``x**2 + x`` in GF(2)::
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_div, gf_add_mul
|
||
|
|
||
|
>>> gf_div(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
||
|
([1, 1], [1])
|
||
|
|
||
|
As result we obtained quotient ``x + 1`` and remainder ``1``, thus::
|
||
|
|
||
|
>>> gf_add_mul(ZZ.map([1]), ZZ.map([1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
||
|
[1, 0, 1, 1]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Monagan93]_
|
||
|
.. [2] [Gathen99]_
|
||
|
|
||
|
"""
|
||
|
df = gf_degree(f)
|
||
|
dg = gf_degree(g)
|
||
|
|
||
|
if not g:
|
||
|
raise ZeroDivisionError("polynomial division")
|
||
|
elif df < dg:
|
||
|
return [], f
|
||
|
|
||
|
inv = K.invert(g[0], p)
|
||
|
|
||
|
h, dq, dr = list(f), df - dg, dg - 1
|
||
|
|
||
|
for i in range(0, df + 1):
|
||
|
coeff = h[i]
|
||
|
|
||
|
for j in range(max(0, dg - i), min(df - i, dr) + 1):
|
||
|
coeff -= h[i + j - dg] * g[dg - j]
|
||
|
|
||
|
if i <= dq:
|
||
|
coeff *= inv
|
||
|
|
||
|
h[i] = coeff % p
|
||
|
|
||
|
return h[:dq + 1], gf_strip(h[dq + 1:])
|
||
|
|
||
|
|
||
|
def gf_rem(f, g, p, K):
|
||
|
"""
|
||
|
Compute polynomial remainder in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_rem
|
||
|
|
||
|
>>> gf_rem(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
||
|
[1]
|
||
|
|
||
|
"""
|
||
|
return gf_div(f, g, p, K)[1]
|
||
|
|
||
|
|
||
|
def gf_quo(f, g, p, K):
|
||
|
"""
|
||
|
Compute exact quotient in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_quo
|
||
|
|
||
|
>>> gf_quo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
||
|
[1, 1]
|
||
|
>>> gf_quo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ)
|
||
|
[3, 2, 4]
|
||
|
|
||
|
"""
|
||
|
df = gf_degree(f)
|
||
|
dg = gf_degree(g)
|
||
|
|
||
|
if not g:
|
||
|
raise ZeroDivisionError("polynomial division")
|
||
|
elif df < dg:
|
||
|
return []
|
||
|
|
||
|
inv = K.invert(g[0], p)
|
||
|
|
||
|
h, dq, dr = f[:], df - dg, dg - 1
|
||
|
|
||
|
for i in range(0, dq + 1):
|
||
|
coeff = h[i]
|
||
|
|
||
|
for j in range(max(0, dg - i), min(df - i, dr) + 1):
|
||
|
coeff -= h[i + j - dg] * g[dg - j]
|
||
|
|
||
|
h[i] = (coeff * inv) % p
|
||
|
|
||
|
return h[:dq + 1]
|
||
|
|
||
|
|
||
|
def gf_exquo(f, g, p, K):
|
||
|
"""
|
||
|
Compute polynomial quotient in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_exquo
|
||
|
|
||
|
>>> gf_exquo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ)
|
||
|
[3, 2, 4]
|
||
|
|
||
|
>>> gf_exquo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ExactQuotientFailed: [1, 1, 0] does not divide [1, 0, 1, 1]
|
||
|
|
||
|
"""
|
||
|
q, r = gf_div(f, g, p, K)
|
||
|
|
||
|
if not r:
|
||
|
return q
|
||
|
else:
|
||
|
raise ExactQuotientFailed(f, g)
|
||
|
|
||
|
|
||
|
def gf_lshift(f, n, K):
|
||
|
"""
|
||
|
Efficiently multiply ``f`` by ``x**n``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_lshift
|
||
|
|
||
|
>>> gf_lshift([3, 2, 4], 4, ZZ)
|
||
|
[3, 2, 4, 0, 0, 0, 0]
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
return f
|
||
|
else:
|
||
|
return f + [K.zero]*n
|
||
|
|
||
|
|
||
|
def gf_rshift(f, n, K):
|
||
|
"""
|
||
|
Efficiently divide ``f`` by ``x**n``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_rshift
|
||
|
|
||
|
>>> gf_rshift([1, 2, 3, 4, 0], 3, ZZ)
|
||
|
([1, 2], [3, 4, 0])
|
||
|
|
||
|
"""
|
||
|
if not n:
|
||
|
return f, []
|
||
|
else:
|
||
|
return f[:-n], f[-n:]
|
||
|
|
||
|
|
||
|
def gf_pow(f, n, p, K):
|
||
|
"""
|
||
|
Compute ``f**n`` in ``GF(p)[x]`` using repeated squaring.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_pow
|
||
|
|
||
|
>>> gf_pow([3, 2, 4], 3, 5, ZZ)
|
||
|
[2, 4, 4, 2, 2, 1, 4]
|
||
|
|
||
|
"""
|
||
|
if not n:
|
||
|
return [K.one]
|
||
|
elif n == 1:
|
||
|
return f
|
||
|
elif n == 2:
|
||
|
return gf_sqr(f, p, K)
|
||
|
|
||
|
h = [K.one]
|
||
|
|
||
|
while True:
|
||
|
if n & 1:
|
||
|
h = gf_mul(h, f, p, K)
|
||
|
n -= 1
|
||
|
|
||
|
n >>= 1
|
||
|
|
||
|
if not n:
|
||
|
break
|
||
|
|
||
|
f = gf_sqr(f, p, K)
|
||
|
|
||
|
return h
|
||
|
|
||
|
def gf_frobenius_monomial_base(g, p, K):
|
||
|
"""
|
||
|
return the list of ``x**(i*p) mod g in Z_p`` for ``i = 0, .., n - 1``
|
||
|
where ``n = gf_degree(g)``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_frobenius_monomial_base
|
||
|
>>> g = ZZ.map([1, 0, 2, 1])
|
||
|
>>> gf_frobenius_monomial_base(g, 5, ZZ)
|
||
|
[[1], [4, 4, 2], [1, 2]]
|
||
|
|
||
|
"""
|
||
|
n = gf_degree(g)
|
||
|
if n == 0:
|
||
|
return []
|
||
|
b = [0]*n
|
||
|
b[0] = [1]
|
||
|
if p < n:
|
||
|
for i in range(1, n):
|
||
|
mon = gf_lshift(b[i - 1], p, K)
|
||
|
b[i] = gf_rem(mon, g, p, K)
|
||
|
elif n > 1:
|
||
|
b[1] = gf_pow_mod([K.one, K.zero], p, g, p, K)
|
||
|
for i in range(2, n):
|
||
|
b[i] = gf_mul(b[i - 1], b[1], p, K)
|
||
|
b[i] = gf_rem(b[i], g, p, K)
|
||
|
|
||
|
return b
|
||
|
|
||
|
def gf_frobenius_map(f, g, b, p, K):
|
||
|
"""
|
||
|
compute gf_pow_mod(f, p, g, p, K) using the Frobenius map
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
f, g : polynomials in ``GF(p)[x]``
|
||
|
b : frobenius monomial base
|
||
|
p : prime number
|
||
|
K : domain
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_frobenius_monomial_base, gf_frobenius_map
|
||
|
>>> f = ZZ.map([2, 1, 0, 1])
|
||
|
>>> g = ZZ.map([1, 0, 2, 1])
|
||
|
>>> p = 5
|
||
|
>>> b = gf_frobenius_monomial_base(g, p, ZZ)
|
||
|
>>> r = gf_frobenius_map(f, g, b, p, ZZ)
|
||
|
>>> gf_frobenius_map(f, g, b, p, ZZ)
|
||
|
[4, 0, 3]
|
||
|
"""
|
||
|
m = gf_degree(g)
|
||
|
if gf_degree(f) >= m:
|
||
|
f = gf_rem(f, g, p, K)
|
||
|
if not f:
|
||
|
return []
|
||
|
n = gf_degree(f)
|
||
|
sf = [f[-1]]
|
||
|
for i in range(1, n + 1):
|
||
|
v = gf_mul_ground(b[i], f[n - i], p, K)
|
||
|
sf = gf_add(sf, v, p, K)
|
||
|
return sf
|
||
|
|
||
|
def _gf_pow_pnm1d2(f, n, g, b, p, K):
|
||
|
"""
|
||
|
utility function for ``gf_edf_zassenhaus``
|
||
|
Compute ``f**((p**n - 1) // 2)`` in ``GF(p)[x]/(g)``
|
||
|
``f**((p**n - 1) // 2) = (f*f**p*...*f**(p**n - 1))**((p - 1) // 2)``
|
||
|
"""
|
||
|
f = gf_rem(f, g, p, K)
|
||
|
h = f
|
||
|
r = f
|
||
|
for i in range(1, n):
|
||
|
h = gf_frobenius_map(h, g, b, p, K)
|
||
|
r = gf_mul(r, h, p, K)
|
||
|
r = gf_rem(r, g, p, K)
|
||
|
|
||
|
res = gf_pow_mod(r, (p - 1)//2, g, p, K)
|
||
|
return res
|
||
|
|
||
|
def gf_pow_mod(f, n, g, p, K):
|
||
|
"""
|
||
|
Compute ``f**n`` in ``GF(p)[x]/(g)`` using repeated squaring.
|
||
|
|
||
|
Given polynomials ``f`` and ``g`` in ``GF(p)[x]`` and a non-negative
|
||
|
integer ``n``, efficiently computes ``f**n (mod g)`` i.e. the remainder
|
||
|
of ``f**n`` from division by ``g``, using the repeated squaring algorithm.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_pow_mod
|
||
|
|
||
|
>>> gf_pow_mod(ZZ.map([3, 2, 4]), 3, ZZ.map([1, 1]), 5, ZZ)
|
||
|
[]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Gathen99]_
|
||
|
|
||
|
"""
|
||
|
if not n:
|
||
|
return [K.one]
|
||
|
elif n == 1:
|
||
|
return gf_rem(f, g, p, K)
|
||
|
elif n == 2:
|
||
|
return gf_rem(gf_sqr(f, p, K), g, p, K)
|
||
|
|
||
|
h = [K.one]
|
||
|
|
||
|
while True:
|
||
|
if n & 1:
|
||
|
h = gf_mul(h, f, p, K)
|
||
|
h = gf_rem(h, g, p, K)
|
||
|
n -= 1
|
||
|
|
||
|
n >>= 1
|
||
|
|
||
|
if not n:
|
||
|
break
|
||
|
|
||
|
f = gf_sqr(f, p, K)
|
||
|
f = gf_rem(f, g, p, K)
|
||
|
|
||
|
return h
|
||
|
|
||
|
|
||
|
def gf_gcd(f, g, p, K):
|
||
|
"""
|
||
|
Euclidean Algorithm in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_gcd
|
||
|
|
||
|
>>> gf_gcd(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
|
||
|
[1, 3]
|
||
|
|
||
|
"""
|
||
|
while g:
|
||
|
f, g = g, gf_rem(f, g, p, K)
|
||
|
|
||
|
return gf_monic(f, p, K)[1]
|
||
|
|
||
|
|
||
|
def gf_lcm(f, g, p, K):
|
||
|
"""
|
||
|
Compute polynomial LCM in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_lcm
|
||
|
|
||
|
>>> gf_lcm(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
|
||
|
[1, 2, 0, 4]
|
||
|
|
||
|
"""
|
||
|
if not f or not g:
|
||
|
return []
|
||
|
|
||
|
h = gf_quo(gf_mul(f, g, p, K),
|
||
|
gf_gcd(f, g, p, K), p, K)
|
||
|
|
||
|
return gf_monic(h, p, K)[1]
|
||
|
|
||
|
|
||
|
def gf_cofactors(f, g, p, K):
|
||
|
"""
|
||
|
Compute polynomial GCD and cofactors in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_cofactors
|
||
|
|
||
|
>>> gf_cofactors(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ)
|
||
|
([1, 3], [3, 3], [2, 1])
|
||
|
|
||
|
"""
|
||
|
if not f and not g:
|
||
|
return ([], [], [])
|
||
|
|
||
|
h = gf_gcd(f, g, p, K)
|
||
|
|
||
|
return (h, gf_quo(f, h, p, K),
|
||
|
gf_quo(g, h, p, K))
|
||
|
|
||
|
|
||
|
def gf_gcdex(f, g, p, K):
|
||
|
"""
|
||
|
Extended Euclidean Algorithm in ``GF(p)[x]``.
|
||
|
|
||
|
Given polynomials ``f`` and ``g`` in ``GF(p)[x]``, computes polynomials
|
||
|
``s``, ``t`` and ``h``, such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.
|
||
|
The typical application of EEA is solving polynomial diophantine equations.
|
||
|
|
||
|
Consider polynomials ``f = (x + 7) (x + 1)``, ``g = (x + 7) (x**2 + 1)``
|
||
|
in ``GF(11)[x]``. Application of Extended Euclidean Algorithm gives::
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_gcdex, gf_mul, gf_add
|
||
|
|
||
|
>>> s, t, g = gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ)
|
||
|
>>> s, t, g
|
||
|
([5, 6], [6], [1, 7])
|
||
|
|
||
|
As result we obtained polynomials ``s = 5*x + 6`` and ``t = 6``, and
|
||
|
additionally ``gcd(f, g) = x + 7``. This is correct because::
|
||
|
|
||
|
>>> S = gf_mul(s, ZZ.map([1, 8, 7]), 11, ZZ)
|
||
|
>>> T = gf_mul(t, ZZ.map([1, 7, 1, 7]), 11, ZZ)
|
||
|
|
||
|
>>> gf_add(S, T, 11, ZZ) == [1, 7]
|
||
|
True
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Gathen99]_
|
||
|
|
||
|
"""
|
||
|
if not (f or g):
|
||
|
return [K.one], [], []
|
||
|
|
||
|
p0, r0 = gf_monic(f, p, K)
|
||
|
p1, r1 = gf_monic(g, p, K)
|
||
|
|
||
|
if not f:
|
||
|
return [], [K.invert(p1, p)], r1
|
||
|
if not g:
|
||
|
return [K.invert(p0, p)], [], r0
|
||
|
|
||
|
s0, s1 = [K.invert(p0, p)], []
|
||
|
t0, t1 = [], [K.invert(p1, p)]
|
||
|
|
||
|
while True:
|
||
|
Q, R = gf_div(r0, r1, p, K)
|
||
|
|
||
|
if not R:
|
||
|
break
|
||
|
|
||
|
(lc, r1), r0 = gf_monic(R, p, K), r1
|
||
|
|
||
|
inv = K.invert(lc, p)
|
||
|
|
||
|
s = gf_sub_mul(s0, s1, Q, p, K)
|
||
|
t = gf_sub_mul(t0, t1, Q, p, K)
|
||
|
|
||
|
s1, s0 = gf_mul_ground(s, inv, p, K), s1
|
||
|
t1, t0 = gf_mul_ground(t, inv, p, K), t1
|
||
|
|
||
|
return s1, t1, r1
|
||
|
|
||
|
|
||
|
def gf_monic(f, p, K):
|
||
|
"""
|
||
|
Compute LC and a monic polynomial in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_monic
|
||
|
|
||
|
>>> gf_monic(ZZ.map([3, 2, 4]), 5, ZZ)
|
||
|
(3, [1, 4, 3])
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
return K.zero, []
|
||
|
else:
|
||
|
lc = f[0]
|
||
|
|
||
|
if K.is_one(lc):
|
||
|
return lc, list(f)
|
||
|
else:
|
||
|
return lc, gf_quo_ground(f, lc, p, K)
|
||
|
|
||
|
|
||
|
def gf_diff(f, p, K):
|
||
|
"""
|
||
|
Differentiate polynomial in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_diff
|
||
|
|
||
|
>>> gf_diff([3, 2, 4], 5, ZZ)
|
||
|
[1, 2]
|
||
|
|
||
|
"""
|
||
|
df = gf_degree(f)
|
||
|
|
||
|
h, n = [K.zero]*df, df
|
||
|
|
||
|
for coeff in f[:-1]:
|
||
|
coeff *= K(n)
|
||
|
coeff %= p
|
||
|
|
||
|
if coeff:
|
||
|
h[df - n] = coeff
|
||
|
|
||
|
n -= 1
|
||
|
|
||
|
return gf_strip(h)
|
||
|
|
||
|
|
||
|
def gf_eval(f, a, p, K):
|
||
|
"""
|
||
|
Evaluate ``f(a)`` in ``GF(p)`` using Horner scheme.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_eval
|
||
|
|
||
|
>>> gf_eval([3, 2, 4], 2, 5, ZZ)
|
||
|
0
|
||
|
|
||
|
"""
|
||
|
result = K.zero
|
||
|
|
||
|
for c in f:
|
||
|
result *= a
|
||
|
result += c
|
||
|
result %= p
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def gf_multi_eval(f, A, p, K):
|
||
|
"""
|
||
|
Evaluate ``f(a)`` for ``a`` in ``[a_1, ..., a_n]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_multi_eval
|
||
|
|
||
|
>>> gf_multi_eval([3, 2, 4], [0, 1, 2, 3, 4], 5, ZZ)
|
||
|
[4, 4, 0, 2, 0]
|
||
|
|
||
|
"""
|
||
|
return [ gf_eval(f, a, p, K) for a in A ]
|
||
|
|
||
|
|
||
|
def gf_compose(f, g, p, K):
|
||
|
"""
|
||
|
Compute polynomial composition ``f(g)`` in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_compose
|
||
|
|
||
|
>>> gf_compose([3, 2, 4], [2, 2, 2], 5, ZZ)
|
||
|
[2, 4, 0, 3, 0]
|
||
|
|
||
|
"""
|
||
|
if len(g) <= 1:
|
||
|
return gf_strip([gf_eval(f, gf_LC(g, K), p, K)])
|
||
|
|
||
|
if not f:
|
||
|
return []
|
||
|
|
||
|
h = [f[0]]
|
||
|
|
||
|
for c in f[1:]:
|
||
|
h = gf_mul(h, g, p, K)
|
||
|
h = gf_add_ground(h, c, p, K)
|
||
|
|
||
|
return h
|
||
|
|
||
|
|
||
|
def gf_compose_mod(g, h, f, p, K):
|
||
|
"""
|
||
|
Compute polynomial composition ``g(h)`` in ``GF(p)[x]/(f)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_compose_mod
|
||
|
|
||
|
>>> gf_compose_mod(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 2]), ZZ.map([4, 3]), 5, ZZ)
|
||
|
[4]
|
||
|
|
||
|
"""
|
||
|
if not g:
|
||
|
return []
|
||
|
|
||
|
comp = [g[0]]
|
||
|
|
||
|
for a in g[1:]:
|
||
|
comp = gf_mul(comp, h, p, K)
|
||
|
comp = gf_add_ground(comp, a, p, K)
|
||
|
comp = gf_rem(comp, f, p, K)
|
||
|
|
||
|
return comp
|
||
|
|
||
|
|
||
|
def gf_trace_map(a, b, c, n, f, p, K):
|
||
|
"""
|
||
|
Compute polynomial trace map in ``GF(p)[x]/(f)``.
|
||
|
|
||
|
Given a polynomial ``f`` in ``GF(p)[x]``, polynomials ``a``, ``b``,
|
||
|
``c`` in the quotient ring ``GF(p)[x]/(f)`` such that ``b = c**t
|
||
|
(mod f)`` for some positive power ``t`` of ``p``, and a positive
|
||
|
integer ``n``, returns a mapping::
|
||
|
|
||
|
a -> a**t**n, a + a**t + a**t**2 + ... + a**t**n (mod f)
|
||
|
|
||
|
In factorization context, ``b = x**p mod f`` and ``c = x mod f``.
|
||
|
This way we can efficiently compute trace polynomials in equal
|
||
|
degree factorization routine, much faster than with other methods,
|
||
|
like iterated Frobenius algorithm, for large degrees.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_trace_map
|
||
|
|
||
|
>>> gf_trace_map([1, 2], [4, 4], [1, 1], 4, [3, 2, 4], 5, ZZ)
|
||
|
([1, 3], [1, 3])
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Gathen92]_
|
||
|
|
||
|
"""
|
||
|
u = gf_compose_mod(a, b, f, p, K)
|
||
|
v = b
|
||
|
|
||
|
if n & 1:
|
||
|
U = gf_add(a, u, p, K)
|
||
|
V = b
|
||
|
else:
|
||
|
U = a
|
||
|
V = c
|
||
|
|
||
|
n >>= 1
|
||
|
|
||
|
while n:
|
||
|
u = gf_add(u, gf_compose_mod(u, v, f, p, K), p, K)
|
||
|
v = gf_compose_mod(v, v, f, p, K)
|
||
|
|
||
|
if n & 1:
|
||
|
U = gf_add(U, gf_compose_mod(u, V, f, p, K), p, K)
|
||
|
V = gf_compose_mod(v, V, f, p, K)
|
||
|
|
||
|
n >>= 1
|
||
|
|
||
|
return gf_compose_mod(a, V, f, p, K), U
|
||
|
|
||
|
def _gf_trace_map(f, n, g, b, p, K):
|
||
|
"""
|
||
|
utility for ``gf_edf_shoup``
|
||
|
"""
|
||
|
f = gf_rem(f, g, p, K)
|
||
|
h = f
|
||
|
r = f
|
||
|
for i in range(1, n):
|
||
|
h = gf_frobenius_map(h, g, b, p, K)
|
||
|
r = gf_add(r, h, p, K)
|
||
|
r = gf_rem(r, g, p, K)
|
||
|
return r
|
||
|
|
||
|
|
||
|
def gf_random(n, p, K):
|
||
|
"""
|
||
|
Generate a random polynomial in ``GF(p)[x]`` of degree ``n``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_random
|
||
|
>>> gf_random(10, 5, ZZ) #doctest: +SKIP
|
||
|
[1, 2, 3, 2, 1, 1, 1, 2, 0, 4, 2]
|
||
|
|
||
|
"""
|
||
|
return [K.one] + [ K(int(uniform(0, p))) for i in range(0, n) ]
|
||
|
|
||
|
|
||
|
def gf_irreducible(n, p, K):
|
||
|
"""
|
||
|
Generate random irreducible polynomial of degree ``n`` in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_irreducible
|
||
|
>>> gf_irreducible(10, 5, ZZ) #doctest: +SKIP
|
||
|
[1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]
|
||
|
|
||
|
"""
|
||
|
while True:
|
||
|
f = gf_random(n, p, K)
|
||
|
if gf_irreducible_p(f, p, K):
|
||
|
return f
|
||
|
|
||
|
|
||
|
def gf_irred_p_ben_or(f, p, K):
|
||
|
"""
|
||
|
Ben-Or's polynomial irreducibility test over finite fields.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_irred_p_ben_or
|
||
|
|
||
|
>>> gf_irred_p_ben_or(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
|
||
|
True
|
||
|
>>> gf_irred_p_ben_or(ZZ.map([3, 2, 4]), 5, ZZ)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
n = gf_degree(f)
|
||
|
|
||
|
if n <= 1:
|
||
|
return True
|
||
|
|
||
|
_, f = gf_monic(f, p, K)
|
||
|
if n < 5:
|
||
|
H = h = gf_pow_mod([K.one, K.zero], p, f, p, K)
|
||
|
|
||
|
for i in range(0, n//2):
|
||
|
g = gf_sub(h, [K.one, K.zero], p, K)
|
||
|
|
||
|
if gf_gcd(f, g, p, K) == [K.one]:
|
||
|
h = gf_compose_mod(h, H, f, p, K)
|
||
|
else:
|
||
|
return False
|
||
|
else:
|
||
|
b = gf_frobenius_monomial_base(f, p, K)
|
||
|
H = h = gf_frobenius_map([K.one, K.zero], f, b, p, K)
|
||
|
for i in range(0, n//2):
|
||
|
g = gf_sub(h, [K.one, K.zero], p, K)
|
||
|
if gf_gcd(f, g, p, K) == [K.one]:
|
||
|
h = gf_frobenius_map(h, f, b, p, K)
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
def gf_irred_p_rabin(f, p, K):
|
||
|
"""
|
||
|
Rabin's polynomial irreducibility test over finite fields.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_irred_p_rabin
|
||
|
|
||
|
>>> gf_irred_p_rabin(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
|
||
|
True
|
||
|
>>> gf_irred_p_rabin(ZZ.map([3, 2, 4]), 5, ZZ)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
n = gf_degree(f)
|
||
|
|
||
|
if n <= 1:
|
||
|
return True
|
||
|
|
||
|
_, f = gf_monic(f, p, K)
|
||
|
|
||
|
x = [K.one, K.zero]
|
||
|
|
||
|
from sympy.ntheory import factorint
|
||
|
|
||
|
indices = { n//d for d in factorint(n) }
|
||
|
|
||
|
b = gf_frobenius_monomial_base(f, p, K)
|
||
|
h = b[1]
|
||
|
|
||
|
for i in range(1, n):
|
||
|
if i in indices:
|
||
|
g = gf_sub(h, x, p, K)
|
||
|
|
||
|
if gf_gcd(f, g, p, K) != [K.one]:
|
||
|
return False
|
||
|
|
||
|
h = gf_frobenius_map(h, f, b, p, K)
|
||
|
|
||
|
return h == x
|
||
|
|
||
|
_irred_methods = {
|
||
|
'ben-or': gf_irred_p_ben_or,
|
||
|
'rabin': gf_irred_p_rabin,
|
||
|
}
|
||
|
|
||
|
|
||
|
def gf_irreducible_p(f, p, K):
|
||
|
"""
|
||
|
Test irreducibility of a polynomial ``f`` in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_irreducible_p
|
||
|
|
||
|
>>> gf_irreducible_p(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ)
|
||
|
True
|
||
|
>>> gf_irreducible_p(ZZ.map([3, 2, 4]), 5, ZZ)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
method = query('GF_IRRED_METHOD')
|
||
|
|
||
|
if method is not None:
|
||
|
irred = _irred_methods[method](f, p, K)
|
||
|
else:
|
||
|
irred = gf_irred_p_rabin(f, p, K)
|
||
|
|
||
|
return irred
|
||
|
|
||
|
|
||
|
def gf_sqf_p(f, p, K):
|
||
|
"""
|
||
|
Return ``True`` if ``f`` is square-free in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_sqf_p
|
||
|
|
||
|
>>> gf_sqf_p(ZZ.map([3, 2, 4]), 5, ZZ)
|
||
|
True
|
||
|
>>> gf_sqf_p(ZZ.map([2, 4, 4, 2, 2, 1, 4]), 5, ZZ)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
_, f = gf_monic(f, p, K)
|
||
|
|
||
|
if not f:
|
||
|
return True
|
||
|
else:
|
||
|
return gf_gcd(f, gf_diff(f, p, K), p, K) == [K.one]
|
||
|
|
||
|
|
||
|
def gf_sqf_part(f, p, K):
|
||
|
"""
|
||
|
Return square-free part of a ``GF(p)[x]`` polynomial.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_sqf_part
|
||
|
|
||
|
>>> gf_sqf_part(ZZ.map([1, 1, 3, 0, 1, 0, 2, 2, 1]), 5, ZZ)
|
||
|
[1, 4, 3]
|
||
|
|
||
|
"""
|
||
|
_, sqf = gf_sqf_list(f, p, K)
|
||
|
|
||
|
g = [K.one]
|
||
|
|
||
|
for f, _ in sqf:
|
||
|
g = gf_mul(g, f, p, K)
|
||
|
|
||
|
return g
|
||
|
|
||
|
|
||
|
def gf_sqf_list(f, p, K, all=False):
|
||
|
"""
|
||
|
Return the square-free decomposition of a ``GF(p)[x]`` polynomial.
|
||
|
|
||
|
Given a polynomial ``f`` in ``GF(p)[x]``, returns the leading coefficient
|
||
|
of ``f`` and a square-free decomposition ``f_1**e_1 f_2**e_2 ... f_k**e_k``
|
||
|
such that all ``f_i`` are monic polynomials and ``(f_i, f_j)`` for ``i != j``
|
||
|
are co-prime and ``e_1 ... e_k`` are given in increasing order. All trivial
|
||
|
terms (i.e. ``f_i = 1``) are not included in the output.
|
||
|
|
||
|
Consider polynomial ``f = x**11 + 1`` over ``GF(11)[x]``::
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> from sympy.polys.galoistools import (
|
||
|
... gf_from_dict, gf_diff, gf_sqf_list, gf_pow,
|
||
|
... )
|
||
|
... # doctest: +NORMALIZE_WHITESPACE
|
||
|
|
||
|
>>> f = gf_from_dict({11: ZZ(1), 0: ZZ(1)}, 11, ZZ)
|
||
|
|
||
|
Note that ``f'(x) = 0``::
|
||
|
|
||
|
>>> gf_diff(f, 11, ZZ)
|
||
|
[]
|
||
|
|
||
|
This phenomenon does not happen in characteristic zero. However we can
|
||
|
still compute square-free decomposition of ``f`` using ``gf_sqf()``::
|
||
|
|
||
|
>>> gf_sqf_list(f, 11, ZZ)
|
||
|
(1, [([1, 1], 11)])
|
||
|
|
||
|
We obtained factorization ``f = (x + 1)**11``. This is correct because::
|
||
|
|
||
|
>>> gf_pow([1, 1], 11, 11, ZZ) == f
|
||
|
True
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Geddes92]_
|
||
|
|
||
|
"""
|
||
|
n, sqf, factors, r = 1, False, [], int(p)
|
||
|
|
||
|
lc, f = gf_monic(f, p, K)
|
||
|
|
||
|
if gf_degree(f) < 1:
|
||
|
return lc, []
|
||
|
|
||
|
while True:
|
||
|
F = gf_diff(f, p, K)
|
||
|
|
||
|
if F != []:
|
||
|
g = gf_gcd(f, F, p, K)
|
||
|
h = gf_quo(f, g, p, K)
|
||
|
|
||
|
i = 1
|
||
|
|
||
|
while h != [K.one]:
|
||
|
G = gf_gcd(g, h, p, K)
|
||
|
H = gf_quo(h, G, p, K)
|
||
|
|
||
|
if gf_degree(H) > 0:
|
||
|
factors.append((H, i*n))
|
||
|
|
||
|
g, h, i = gf_quo(g, G, p, K), G, i + 1
|
||
|
|
||
|
if g == [K.one]:
|
||
|
sqf = True
|
||
|
else:
|
||
|
f = g
|
||
|
|
||
|
if not sqf:
|
||
|
d = gf_degree(f) // r
|
||
|
|
||
|
for i in range(0, d + 1):
|
||
|
f[i] = f[i*r]
|
||
|
|
||
|
f, n = f[:d + 1], n*r
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
if all:
|
||
|
raise ValueError("'all=True' is not supported yet")
|
||
|
|
||
|
return lc, factors
|
||
|
|
||
|
|
||
|
def gf_Qmatrix(f, p, K):
|
||
|
"""
|
||
|
Calculate Berlekamp's ``Q`` matrix.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_Qmatrix
|
||
|
|
||
|
>>> gf_Qmatrix([3, 2, 4], 5, ZZ)
|
||
|
[[1, 0],
|
||
|
[3, 4]]
|
||
|
|
||
|
>>> gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ)
|
||
|
[[1, 0, 0, 0],
|
||
|
[0, 4, 0, 0],
|
||
|
[0, 0, 1, 0],
|
||
|
[0, 0, 0, 4]]
|
||
|
|
||
|
"""
|
||
|
n, r = gf_degree(f), int(p)
|
||
|
|
||
|
q = [K.one] + [K.zero]*(n - 1)
|
||
|
Q = [list(q)] + [[]]*(n - 1)
|
||
|
|
||
|
for i in range(1, (n - 1)*r + 1):
|
||
|
qq, c = [(-q[-1]*f[-1]) % p], q[-1]
|
||
|
|
||
|
for j in range(1, n):
|
||
|
qq.append((q[j - 1] - c*f[-j - 1]) % p)
|
||
|
|
||
|
if not (i % r):
|
||
|
Q[i//r] = list(qq)
|
||
|
|
||
|
q = qq
|
||
|
|
||
|
return Q
|
||
|
|
||
|
|
||
|
def gf_Qbasis(Q, p, K):
|
||
|
"""
|
||
|
Compute a basis of the kernel of ``Q``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_Qmatrix, gf_Qbasis
|
||
|
|
||
|
>>> gf_Qbasis(gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ), 5, ZZ)
|
||
|
[[1, 0, 0, 0], [0, 0, 1, 0]]
|
||
|
|
||
|
>>> gf_Qbasis(gf_Qmatrix([3, 2, 4], 5, ZZ), 5, ZZ)
|
||
|
[[1, 0]]
|
||
|
|
||
|
"""
|
||
|
Q, n = [ list(q) for q in Q ], len(Q)
|
||
|
|
||
|
for k in range(0, n):
|
||
|
Q[k][k] = (Q[k][k] - K.one) % p
|
||
|
|
||
|
for k in range(0, n):
|
||
|
for i in range(k, n):
|
||
|
if Q[k][i]:
|
||
|
break
|
||
|
else:
|
||
|
continue
|
||
|
|
||
|
inv = K.invert(Q[k][i], p)
|
||
|
|
||
|
for j in range(0, n):
|
||
|
Q[j][i] = (Q[j][i]*inv) % p
|
||
|
|
||
|
for j in range(0, n):
|
||
|
t = Q[j][k]
|
||
|
Q[j][k] = Q[j][i]
|
||
|
Q[j][i] = t
|
||
|
|
||
|
for i in range(0, n):
|
||
|
if i != k:
|
||
|
q = Q[k][i]
|
||
|
|
||
|
for j in range(0, n):
|
||
|
Q[j][i] = (Q[j][i] - Q[j][k]*q) % p
|
||
|
|
||
|
for i in range(0, n):
|
||
|
for j in range(0, n):
|
||
|
if i == j:
|
||
|
Q[i][j] = (K.one - Q[i][j]) % p
|
||
|
else:
|
||
|
Q[i][j] = (-Q[i][j]) % p
|
||
|
|
||
|
basis = []
|
||
|
|
||
|
for q in Q:
|
||
|
if any(q):
|
||
|
basis.append(q)
|
||
|
|
||
|
return basis
|
||
|
|
||
|
|
||
|
def gf_berlekamp(f, p, K):
|
||
|
"""
|
||
|
Factor a square-free ``f`` in ``GF(p)[x]`` for small ``p``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_berlekamp
|
||
|
|
||
|
>>> gf_berlekamp([1, 0, 0, 0, 1], 5, ZZ)
|
||
|
[[1, 0, 2], [1, 0, 3]]
|
||
|
|
||
|
"""
|
||
|
Q = gf_Qmatrix(f, p, K)
|
||
|
V = gf_Qbasis(Q, p, K)
|
||
|
|
||
|
for i, v in enumerate(V):
|
||
|
V[i] = gf_strip(list(reversed(v)))
|
||
|
|
||
|
factors = [f]
|
||
|
|
||
|
for k in range(1, len(V)):
|
||
|
for f in list(factors):
|
||
|
s = K.zero
|
||
|
|
||
|
while s < p:
|
||
|
g = gf_sub_ground(V[k], s, p, K)
|
||
|
h = gf_gcd(f, g, p, K)
|
||
|
|
||
|
if h != [K.one] and h != f:
|
||
|
factors.remove(f)
|
||
|
|
||
|
f = gf_quo(f, h, p, K)
|
||
|
factors.extend([f, h])
|
||
|
|
||
|
if len(factors) == len(V):
|
||
|
return _sort_factors(factors, multiple=False)
|
||
|
|
||
|
s += K.one
|
||
|
|
||
|
return _sort_factors(factors, multiple=False)
|
||
|
|
||
|
|
||
|
def gf_ddf_zassenhaus(f, p, K):
|
||
|
"""
|
||
|
Cantor-Zassenhaus: Deterministic Distinct Degree Factorization
|
||
|
|
||
|
Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes
|
||
|
partial distinct degree factorization ``f_1 ... f_d`` of ``f`` where
|
||
|
``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a
|
||
|
list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0``
|
||
|
is an argument to the equal degree factorization routine.
|
||
|
|
||
|
Consider the polynomial ``x**15 - 1`` in ``GF(11)[x]``::
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_from_dict
|
||
|
|
||
|
>>> f = gf_from_dict({15: ZZ(1), 0: ZZ(-1)}, 11, ZZ)
|
||
|
|
||
|
Distinct degree factorization gives::
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_ddf_zassenhaus
|
||
|
|
||
|
>>> gf_ddf_zassenhaus(f, 11, ZZ)
|
||
|
[([1, 0, 0, 0, 0, 10], 1), ([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)]
|
||
|
|
||
|
which means ``x**15 - 1 = (x**5 - 1) (x**10 + x**5 + 1)``. To obtain
|
||
|
factorization into irreducibles, use equal degree factorization
|
||
|
procedure (EDF) with each of the factors.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Gathen99]_
|
||
|
.. [2] [Geddes92]_
|
||
|
|
||
|
"""
|
||
|
i, g, factors = 1, [K.one, K.zero], []
|
||
|
|
||
|
b = gf_frobenius_monomial_base(f, p, K)
|
||
|
while 2*i <= gf_degree(f):
|
||
|
g = gf_frobenius_map(g, f, b, p, K)
|
||
|
h = gf_gcd(f, gf_sub(g, [K.one, K.zero], p, K), p, K)
|
||
|
|
||
|
if h != [K.one]:
|
||
|
factors.append((h, i))
|
||
|
|
||
|
f = gf_quo(f, h, p, K)
|
||
|
g = gf_rem(g, f, p, K)
|
||
|
b = gf_frobenius_monomial_base(f, p, K)
|
||
|
|
||
|
i += 1
|
||
|
|
||
|
if f != [K.one]:
|
||
|
return factors + [(f, gf_degree(f))]
|
||
|
else:
|
||
|
return factors
|
||
|
|
||
|
|
||
|
def gf_edf_zassenhaus(f, n, p, K):
|
||
|
"""
|
||
|
Cantor-Zassenhaus: Probabilistic Equal Degree Factorization
|
||
|
|
||
|
Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and
|
||
|
an integer ``n``, such that ``n`` divides ``deg(f)``, returns all
|
||
|
irreducible factors ``f_1,...,f_d`` of ``f``, each of degree ``n``.
|
||
|
EDF procedure gives complete factorization over Galois fields.
|
||
|
|
||
|
Consider the square-free polynomial ``f = x**3 + x**2 + x + 1`` in
|
||
|
``GF(5)[x]``. Let's compute its irreducible factors of degree one::
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_edf_zassenhaus
|
||
|
|
||
|
>>> gf_edf_zassenhaus([1,1,1,1], 1, 5, ZZ)
|
||
|
[[1, 1], [1, 2], [1, 3]]
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The case p == 2 is handled by Cohen's Algorithm 3.4.8. The case p odd is
|
||
|
as in Geddes Algorithm 8.9 (or Cohen's Algorithm 3.4.6).
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Gathen99]_
|
||
|
.. [2] [Geddes92]_ Algorithm 8.9
|
||
|
.. [3] [Cohen93]_ Algorithm 3.4.8
|
||
|
|
||
|
"""
|
||
|
factors = [f]
|
||
|
|
||
|
if gf_degree(f) <= n:
|
||
|
return factors
|
||
|
|
||
|
N = gf_degree(f) // n
|
||
|
if p != 2:
|
||
|
b = gf_frobenius_monomial_base(f, p, K)
|
||
|
|
||
|
t = [K.one, K.zero]
|
||
|
while len(factors) < N:
|
||
|
if p == 2:
|
||
|
h = r = t
|
||
|
|
||
|
for i in range(n - 1):
|
||
|
r = gf_pow_mod(r, 2, f, p, K)
|
||
|
h = gf_add(h, r, p, K)
|
||
|
|
||
|
g = gf_gcd(f, h, p, K)
|
||
|
t += [K.zero, K.zero]
|
||
|
else:
|
||
|
r = gf_random(2 * n - 1, p, K)
|
||
|
h = _gf_pow_pnm1d2(r, n, f, b, p, K)
|
||
|
g = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K)
|
||
|
|
||
|
if g != [K.one] and g != f:
|
||
|
factors = gf_edf_zassenhaus(g, n, p, K) \
|
||
|
+ gf_edf_zassenhaus(gf_quo(f, g, p, K), n, p, K)
|
||
|
|
||
|
return _sort_factors(factors, multiple=False)
|
||
|
|
||
|
|
||
|
def gf_ddf_shoup(f, p, K):
|
||
|
"""
|
||
|
Kaltofen-Shoup: Deterministic Distinct Degree Factorization
|
||
|
|
||
|
Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes
|
||
|
partial distinct degree factorization ``f_1,...,f_d`` of ``f`` where
|
||
|
``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a
|
||
|
list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0``
|
||
|
is an argument to the equal degree factorization routine.
|
||
|
|
||
|
This algorithm is an improved version of Zassenhaus algorithm for
|
||
|
large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_ddf_shoup, gf_from_dict
|
||
|
|
||
|
>>> f = gf_from_dict({6: ZZ(1), 5: ZZ(-1), 4: ZZ(1), 3: ZZ(1), 1: ZZ(-1)}, 3, ZZ)
|
||
|
|
||
|
>>> gf_ddf_shoup(f, 3, ZZ)
|
||
|
[([1, 1, 0], 1), ([1, 1, 0, 1, 2], 2)]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Kaltofen98]_
|
||
|
.. [2] [Shoup95]_
|
||
|
.. [3] [Gathen92]_
|
||
|
|
||
|
"""
|
||
|
n = gf_degree(f)
|
||
|
k = int(_ceil(_sqrt(n//2)))
|
||
|
b = gf_frobenius_monomial_base(f, p, K)
|
||
|
h = gf_frobenius_map([K.one, K.zero], f, b, p, K)
|
||
|
# U[i] = x**(p**i)
|
||
|
U = [[K.one, K.zero], h] + [K.zero]*(k - 1)
|
||
|
|
||
|
for i in range(2, k + 1):
|
||
|
U[i] = gf_frobenius_map(U[i-1], f, b, p, K)
|
||
|
|
||
|
h, U = U[k], U[:k]
|
||
|
# V[i] = x**(p**(k*(i+1)))
|
||
|
V = [h] + [K.zero]*(k - 1)
|
||
|
|
||
|
for i in range(1, k):
|
||
|
V[i] = gf_compose_mod(V[i - 1], h, f, p, K)
|
||
|
|
||
|
factors = []
|
||
|
|
||
|
for i, v in enumerate(V):
|
||
|
h, j = [K.one], k - 1
|
||
|
|
||
|
for u in U:
|
||
|
g = gf_sub(v, u, p, K)
|
||
|
h = gf_mul(h, g, p, K)
|
||
|
h = gf_rem(h, f, p, K)
|
||
|
|
||
|
g = gf_gcd(f, h, p, K)
|
||
|
f = gf_quo(f, g, p, K)
|
||
|
|
||
|
for u in reversed(U):
|
||
|
h = gf_sub(v, u, p, K)
|
||
|
F = gf_gcd(g, h, p, K)
|
||
|
|
||
|
if F != [K.one]:
|
||
|
factors.append((F, k*(i + 1) - j))
|
||
|
|
||
|
g, j = gf_quo(g, F, p, K), j - 1
|
||
|
|
||
|
if f != [K.one]:
|
||
|
factors.append((f, gf_degree(f)))
|
||
|
|
||
|
return factors
|
||
|
|
||
|
def gf_edf_shoup(f, n, p, K):
|
||
|
"""
|
||
|
Gathen-Shoup: Probabilistic Equal Degree Factorization
|
||
|
|
||
|
Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and integer
|
||
|
``n`` such that ``n`` divides ``deg(f)``, returns all irreducible factors
|
||
|
``f_1,...,f_d`` of ``f``, each of degree ``n``. This is a complete
|
||
|
factorization over Galois fields.
|
||
|
|
||
|
This algorithm is an improved version of Zassenhaus algorithm for
|
||
|
large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_edf_shoup
|
||
|
|
||
|
>>> gf_edf_shoup(ZZ.map([1, 2837, 2277]), 1, 2917, ZZ)
|
||
|
[[1, 852], [1, 1985]]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Shoup91]_
|
||
|
.. [2] [Gathen92]_
|
||
|
|
||
|
"""
|
||
|
N, q = gf_degree(f), int(p)
|
||
|
|
||
|
if not N:
|
||
|
return []
|
||
|
if N <= n:
|
||
|
return [f]
|
||
|
|
||
|
factors, x = [f], [K.one, K.zero]
|
||
|
|
||
|
r = gf_random(N - 1, p, K)
|
||
|
|
||
|
if p == 2:
|
||
|
h = gf_pow_mod(x, q, f, p, K)
|
||
|
H = gf_trace_map(r, h, x, n - 1, f, p, K)[1]
|
||
|
h1 = gf_gcd(f, H, p, K)
|
||
|
h2 = gf_quo(f, h1, p, K)
|
||
|
|
||
|
factors = gf_edf_shoup(h1, n, p, K) \
|
||
|
+ gf_edf_shoup(h2, n, p, K)
|
||
|
else:
|
||
|
b = gf_frobenius_monomial_base(f, p, K)
|
||
|
H = _gf_trace_map(r, n, f, b, p, K)
|
||
|
h = gf_pow_mod(H, (q - 1)//2, f, p, K)
|
||
|
|
||
|
h1 = gf_gcd(f, h, p, K)
|
||
|
h2 = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K)
|
||
|
h3 = gf_quo(f, gf_mul(h1, h2, p, K), p, K)
|
||
|
|
||
|
factors = gf_edf_shoup(h1, n, p, K) \
|
||
|
+ gf_edf_shoup(h2, n, p, K) \
|
||
|
+ gf_edf_shoup(h3, n, p, K)
|
||
|
|
||
|
return _sort_factors(factors, multiple=False)
|
||
|
|
||
|
|
||
|
def gf_zassenhaus(f, p, K):
|
||
|
"""
|
||
|
Factor a square-free ``f`` in ``GF(p)[x]`` for medium ``p``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_zassenhaus
|
||
|
|
||
|
>>> gf_zassenhaus(ZZ.map([1, 4, 3]), 5, ZZ)
|
||
|
[[1, 1], [1, 3]]
|
||
|
|
||
|
"""
|
||
|
factors = []
|
||
|
|
||
|
for factor, n in gf_ddf_zassenhaus(f, p, K):
|
||
|
factors += gf_edf_zassenhaus(factor, n, p, K)
|
||
|
|
||
|
return _sort_factors(factors, multiple=False)
|
||
|
|
||
|
|
||
|
def gf_shoup(f, p, K):
|
||
|
"""
|
||
|
Factor a square-free ``f`` in ``GF(p)[x]`` for large ``p``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_shoup
|
||
|
|
||
|
>>> gf_shoup(ZZ.map([1, 4, 3]), 5, ZZ)
|
||
|
[[1, 1], [1, 3]]
|
||
|
|
||
|
"""
|
||
|
factors = []
|
||
|
|
||
|
for factor, n in gf_ddf_shoup(f, p, K):
|
||
|
factors += gf_edf_shoup(factor, n, p, K)
|
||
|
|
||
|
return _sort_factors(factors, multiple=False)
|
||
|
|
||
|
_factor_methods = {
|
||
|
'berlekamp': gf_berlekamp, # ``p`` : small
|
||
|
'zassenhaus': gf_zassenhaus, # ``p`` : medium
|
||
|
'shoup': gf_shoup, # ``p`` : large
|
||
|
}
|
||
|
|
||
|
|
||
|
def gf_factor_sqf(f, p, K, method=None):
|
||
|
"""
|
||
|
Factor a square-free polynomial ``f`` in ``GF(p)[x]``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_factor_sqf
|
||
|
|
||
|
>>> gf_factor_sqf(ZZ.map([3, 2, 4]), 5, ZZ)
|
||
|
(3, [[1, 1], [1, 3]])
|
||
|
|
||
|
"""
|
||
|
lc, f = gf_monic(f, p, K)
|
||
|
|
||
|
if gf_degree(f) < 1:
|
||
|
return lc, []
|
||
|
|
||
|
method = method or query('GF_FACTOR_METHOD')
|
||
|
|
||
|
if method is not None:
|
||
|
factors = _factor_methods[method](f, p, K)
|
||
|
else:
|
||
|
factors = gf_zassenhaus(f, p, K)
|
||
|
|
||
|
return lc, factors
|
||
|
|
||
|
|
||
|
def gf_factor(f, p, K):
|
||
|
"""
|
||
|
Factor (non square-free) polynomials in ``GF(p)[x]``.
|
||
|
|
||
|
Given a possibly non square-free polynomial ``f`` in ``GF(p)[x]``,
|
||
|
returns its complete factorization into irreducibles::
|
||
|
|
||
|
f_1(x)**e_1 f_2(x)**e_2 ... f_d(x)**e_d
|
||
|
|
||
|
where each ``f_i`` is a monic polynomial and ``gcd(f_i, f_j) == 1``,
|
||
|
for ``i != j``. The result is given as a tuple consisting of the
|
||
|
leading coefficient of ``f`` and a list of factors of ``f`` with
|
||
|
their multiplicities.
|
||
|
|
||
|
The algorithm proceeds by first computing square-free decomposition
|
||
|
of ``f`` and then iteratively factoring each of square-free factors.
|
||
|
|
||
|
Consider a non square-free polynomial ``f = (7*x + 1) (x + 2)**2`` in
|
||
|
``GF(11)[x]``. We obtain its factorization into irreducibles as follows::
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.galoistools import gf_factor
|
||
|
|
||
|
>>> gf_factor(ZZ.map([5, 2, 7, 2]), 11, ZZ)
|
||
|
(5, [([1, 2], 1), ([1, 8], 2)])
|
||
|
|
||
|
We arrived with factorization ``f = 5 (x + 2) (x + 8)**2``. We did not
|
||
|
recover the exact form of the input polynomial because we requested to
|
||
|
get monic factors of ``f`` and its leading coefficient separately.
|
||
|
|
||
|
Square-free factors of ``f`` can be factored into irreducibles over
|
||
|
``GF(p)`` using three very different methods:
|
||
|
|
||
|
Berlekamp
|
||
|
efficient for very small values of ``p`` (usually ``p < 25``)
|
||
|
Cantor-Zassenhaus
|
||
|
efficient on average input and with "typical" ``p``
|
||
|
Shoup-Kaltofen-Gathen
|
||
|
efficient with very large inputs and modulus
|
||
|
|
||
|
If you want to use a specific factorization method, instead of the default
|
||
|
one, set ``GF_FACTOR_METHOD`` with one of ``berlekamp``, ``zassenhaus`` or
|
||
|
``shoup`` values.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Gathen99]_
|
||
|
|
||
|
"""
|
||
|
lc, f = gf_monic(f, p, K)
|
||
|
|
||
|
if gf_degree(f) < 1:
|
||
|
return lc, []
|
||
|
|
||
|
factors = []
|
||
|
|
||
|
for g, n in gf_sqf_list(f, p, K)[1]:
|
||
|
for h in gf_factor_sqf(g, p, K)[1]:
|
||
|
factors.append((h, n))
|
||
|
|
||
|
return lc, _sort_factors(factors)
|
||
|
|
||
|
|
||
|
def gf_value(f, a):
|
||
|
"""
|
||
|
Value of polynomial 'f' at 'a' in field R.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_value
|
||
|
|
||
|
>>> gf_value([1, 7, 2, 4], 11)
|
||
|
2204
|
||
|
|
||
|
"""
|
||
|
result = 0
|
||
|
for c in f:
|
||
|
result *= a
|
||
|
result += c
|
||
|
return result
|
||
|
|
||
|
|
||
|
def linear_congruence(a, b, m):
|
||
|
"""
|
||
|
Returns the values of x satisfying a*x congruent b mod(m)
|
||
|
|
||
|
Here m is positive integer and a, b are natural numbers.
|
||
|
This function returns only those values of x which are distinct mod(m).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import linear_congruence
|
||
|
|
||
|
>>> linear_congruence(3, 12, 15)
|
||
|
[4, 9, 14]
|
||
|
|
||
|
There are 3 solutions distinct mod(15) since gcd(a, m) = gcd(3, 15) = 3.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Linear_congruence_theorem
|
||
|
|
||
|
"""
|
||
|
from sympy.polys.polytools import gcdex
|
||
|
if a % m == 0:
|
||
|
if b % m == 0:
|
||
|
return list(range(m))
|
||
|
else:
|
||
|
return []
|
||
|
r, _, g = gcdex(a, m)
|
||
|
if b % g != 0:
|
||
|
return []
|
||
|
return [(r * b // g + t * m // g) % m for t in range(g)]
|
||
|
|
||
|
|
||
|
def _raise_mod_power(x, s, p, f):
|
||
|
"""
|
||
|
Used in gf_csolve to generate solutions of f(x) cong 0 mod(p**(s + 1))
|
||
|
from the solutions of f(x) cong 0 mod(p**s).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import _raise_mod_power
|
||
|
>>> from sympy.polys.galoistools import csolve_prime
|
||
|
|
||
|
These is the solutions of f(x) = x**2 + x + 7 cong 0 mod(3)
|
||
|
|
||
|
>>> f = [1, 1, 7]
|
||
|
>>> csolve_prime(f, 3)
|
||
|
[1]
|
||
|
>>> [ i for i in range(3) if not (i**2 + i + 7) % 3]
|
||
|
[1]
|
||
|
|
||
|
The solutions of f(x) cong 0 mod(9) are constructed from the
|
||
|
values returned from _raise_mod_power:
|
||
|
|
||
|
>>> x, s, p = 1, 1, 3
|
||
|
>>> V = _raise_mod_power(x, s, p, f)
|
||
|
>>> [x + v * p**s for v in V]
|
||
|
[1, 4, 7]
|
||
|
|
||
|
And these are confirmed with the following:
|
||
|
|
||
|
>>> [ i for i in range(3**2) if not (i**2 + i + 7) % 3**2]
|
||
|
[1, 4, 7]
|
||
|
|
||
|
"""
|
||
|
from sympy.polys.domains import ZZ
|
||
|
f_f = gf_diff(f, p, ZZ)
|
||
|
alpha = gf_value(f_f, x)
|
||
|
beta = - gf_value(f, x) // p**s
|
||
|
return linear_congruence(alpha, beta, p)
|
||
|
|
||
|
|
||
|
def csolve_prime(f, p, e=1):
|
||
|
"""
|
||
|
Solutions of f(x) congruent 0 mod(p**e).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.galoistools import csolve_prime
|
||
|
|
||
|
>>> csolve_prime([1, 1, 7], 3, 1)
|
||
|
[1]
|
||
|
>>> csolve_prime([1, 1, 7], 3, 2)
|
||
|
[1, 4, 7]
|
||
|
|
||
|
Solutions [7, 4, 1] (mod 3**2) are generated by ``_raise_mod_power()``
|
||
|
from solution [1] (mod 3).
|
||
|
"""
|
||
|
from sympy.polys.domains import ZZ
|
||
|
X1 = [i for i in range(p) if gf_eval(f, i, p, ZZ) == 0]
|
||
|
if e == 1:
|
||
|
return X1
|
||
|
X = []
|
||
|
S = list(zip(X1, [1]*len(X1)))
|
||
|
while S:
|
||
|
x, s = S.pop()
|
||
|
if s == e:
|
||
|
X.append(x)
|
||
|
else:
|
||
|
s1 = s + 1
|
||
|
ps = p**s
|
||
|
S.extend([(x + v*ps, s1) for v in _raise_mod_power(x, s, p, f)])
|
||
|
return sorted(X)
|
||
|
|
||
|
|
||
|
def gf_csolve(f, n):
|
||
|
"""
|
||
|
To solve f(x) congruent 0 mod(n).
|
||
|
|
||
|
n is divided into canonical factors and f(x) cong 0 mod(p**e) will be
|
||
|
solved for each factor. Applying the Chinese Remainder Theorem to the
|
||
|
results returns the final answers.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Solve [1, 1, 7] congruent 0 mod(189):
|
||
|
|
||
|
>>> from sympy.polys.galoistools import gf_csolve
|
||
|
>>> gf_csolve([1, 1, 7], 189)
|
||
|
[13, 49, 76, 112, 139, 175]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] 'An introduction to the Theory of Numbers' 5th Edition by Ivan Niven,
|
||
|
Zuckerman and Montgomery.
|
||
|
|
||
|
"""
|
||
|
from sympy.polys.domains import ZZ
|
||
|
from sympy.ntheory import factorint
|
||
|
P = factorint(n)
|
||
|
X = [csolve_prime(f, p, e) for p, e in P.items()]
|
||
|
pools = list(map(tuple, X))
|
||
|
perms = [[]]
|
||
|
for pool in pools:
|
||
|
perms = [x + [y] for x in perms for y in pool]
|
||
|
dist_factors = [pow(p, e) for p, e in P.items()]
|
||
|
return sorted([gf_crt(per, dist_factors, ZZ) for per in perms])
|