Traktor/myenv/Lib/site-packages/sympy/vector/operators.py

336 lines
9.3 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
import collections
from sympy.core.expr import Expr
from sympy.core import sympify, S, preorder_traversal
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.vector import Vector, VectorMul, VectorAdd, Cross, Dot
from sympy.core.function import Derivative
from sympy.core.add import Add
from sympy.core.mul import Mul
def _get_coord_systems(expr):
g = preorder_traversal(expr)
ret = set()
for i in g:
if isinstance(i, CoordSys3D):
ret.add(i)
g.skip()
return frozenset(ret)
def _split_mul_args_wrt_coordsys(expr):
d = collections.defaultdict(lambda: S.One)
for i in expr.args:
d[_get_coord_systems(i)] *= i
return list(d.values())
class Gradient(Expr):
"""
Represents unevaluated Gradient.
Examples
========
>>> from sympy.vector import CoordSys3D, Gradient
>>> R = CoordSys3D('R')
>>> s = R.x*R.y*R.z
>>> Gradient(s)
Gradient(R.x*R.y*R.z)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **hints):
return gradient(self._expr, doit=True)
class Divergence(Expr):
"""
Represents unevaluated Divergence.
Examples
========
>>> from sympy.vector import CoordSys3D, Divergence
>>> R = CoordSys3D('R')
>>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> Divergence(v)
Divergence(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **hints):
return divergence(self._expr, doit=True)
class Curl(Expr):
"""
Represents unevaluated Curl.
Examples
========
>>> from sympy.vector import CoordSys3D, Curl
>>> R = CoordSys3D('R')
>>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> Curl(v)
Curl(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **hints):
return curl(self._expr, doit=True)
def curl(vect, doit=True):
"""
Returns the curl of a vector field computed wrt the base scalars
of the given coordinate system.
Parameters
==========
vect : Vector
The vector operand
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, curl
>>> R = CoordSys3D('R')
>>> v1 = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> curl(v1)
0
>>> v2 = R.x*R.y*R.z*R.i
>>> curl(v2)
R.x*R.y*R.j + (-R.x*R.z)*R.k
"""
coord_sys = _get_coord_systems(vect)
if len(coord_sys) == 0:
return Vector.zero
elif len(coord_sys) == 1:
coord_sys = next(iter(coord_sys))
i, j, k = coord_sys.base_vectors()
x, y, z = coord_sys.base_scalars()
h1, h2, h3 = coord_sys.lame_coefficients()
vectx = vect.dot(i)
vecty = vect.dot(j)
vectz = vect.dot(k)
outvec = Vector.zero
outvec += (Derivative(vectz * h3, y) -
Derivative(vecty * h2, z)) * i / (h2 * h3)
outvec += (Derivative(vectx * h1, z) -
Derivative(vectz * h3, x)) * j / (h1 * h3)
outvec += (Derivative(vecty * h2, x) -
Derivative(vectx * h1, y)) * k / (h2 * h1)
if doit:
return outvec.doit()
return outvec
else:
if isinstance(vect, (Add, VectorAdd)):
from sympy.vector import express
try:
cs = next(iter(coord_sys))
args = [express(i, cs, variables=True) for i in vect.args]
except ValueError:
args = vect.args
return VectorAdd.fromiter(curl(i, doit=doit) for i in args)
elif isinstance(vect, (Mul, VectorMul)):
vector = [i for i in vect.args if isinstance(i, (Vector, Cross, Gradient))][0]
scalar = Mul.fromiter(i for i in vect.args if not isinstance(i, (Vector, Cross, Gradient)))
res = Cross(gradient(scalar), vector).doit() + scalar*curl(vector, doit=doit)
if doit:
return res.doit()
return res
elif isinstance(vect, (Cross, Curl, Gradient)):
return Curl(vect)
else:
raise Curl(vect)
def divergence(vect, doit=True):
"""
Returns the divergence of a vector field computed wrt the base
scalars of the given coordinate system.
Parameters
==========
vector : Vector
The vector operand
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, divergence
>>> R = CoordSys3D('R')
>>> v1 = R.x*R.y*R.z * (R.i+R.j+R.k)
>>> divergence(v1)
R.x*R.y + R.x*R.z + R.y*R.z
>>> v2 = 2*R.y*R.z*R.j
>>> divergence(v2)
2*R.z
"""
coord_sys = _get_coord_systems(vect)
if len(coord_sys) == 0:
return S.Zero
elif len(coord_sys) == 1:
if isinstance(vect, (Cross, Curl, Gradient)):
return Divergence(vect)
# TODO: is case of many coord systems, this gets a random one:
coord_sys = next(iter(coord_sys))
i, j, k = coord_sys.base_vectors()
x, y, z = coord_sys.base_scalars()
h1, h2, h3 = coord_sys.lame_coefficients()
vx = _diff_conditional(vect.dot(i), x, h2, h3) \
/ (h1 * h2 * h3)
vy = _diff_conditional(vect.dot(j), y, h3, h1) \
/ (h1 * h2 * h3)
vz = _diff_conditional(vect.dot(k), z, h1, h2) \
/ (h1 * h2 * h3)
res = vx + vy + vz
if doit:
return res.doit()
return res
else:
if isinstance(vect, (Add, VectorAdd)):
return Add.fromiter(divergence(i, doit=doit) for i in vect.args)
elif isinstance(vect, (Mul, VectorMul)):
vector = [i for i in vect.args if isinstance(i, (Vector, Cross, Gradient))][0]
scalar = Mul.fromiter(i for i in vect.args if not isinstance(i, (Vector, Cross, Gradient)))
res = Dot(vector, gradient(scalar)) + scalar*divergence(vector, doit=doit)
if doit:
return res.doit()
return res
elif isinstance(vect, (Cross, Curl, Gradient)):
return Divergence(vect)
else:
raise Divergence(vect)
def gradient(scalar_field, doit=True):
"""
Returns the vector gradient of a scalar field computed wrt the
base scalars of the given coordinate system.
Parameters
==========
scalar_field : SymPy Expr
The scalar field to compute the gradient of
doit : bool
If True, the result is returned after calling .doit() on
each component. Else, the returned expression contains
Derivative instances
Examples
========
>>> from sympy.vector import CoordSys3D, gradient
>>> R = CoordSys3D('R')
>>> s1 = R.x*R.y*R.z
>>> gradient(s1)
R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> s2 = 5*R.x**2*R.z
>>> gradient(s2)
10*R.x*R.z*R.i + 5*R.x**2*R.k
"""
coord_sys = _get_coord_systems(scalar_field)
if len(coord_sys) == 0:
return Vector.zero
elif len(coord_sys) == 1:
coord_sys = next(iter(coord_sys))
h1, h2, h3 = coord_sys.lame_coefficients()
i, j, k = coord_sys.base_vectors()
x, y, z = coord_sys.base_scalars()
vx = Derivative(scalar_field, x) / h1
vy = Derivative(scalar_field, y) / h2
vz = Derivative(scalar_field, z) / h3
if doit:
return (vx * i + vy * j + vz * k).doit()
return vx * i + vy * j + vz * k
else:
if isinstance(scalar_field, (Add, VectorAdd)):
return VectorAdd.fromiter(gradient(i) for i in scalar_field.args)
if isinstance(scalar_field, (Mul, VectorMul)):
s = _split_mul_args_wrt_coordsys(scalar_field)
return VectorAdd.fromiter(scalar_field / i * gradient(i) for i in s)
return Gradient(scalar_field)
class Laplacian(Expr):
"""
Represents unevaluated Laplacian.
Examples
========
>>> from sympy.vector import CoordSys3D, Laplacian
>>> R = CoordSys3D('R')
>>> v = 3*R.x**3*R.y**2*R.z**3
>>> Laplacian(v)
Laplacian(3*R.x**3*R.y**2*R.z**3)
"""
def __new__(cls, expr):
expr = sympify(expr)
obj = Expr.__new__(cls, expr)
obj._expr = expr
return obj
def doit(self, **hints):
from sympy.vector.functions import laplacian
return laplacian(self._expr)
def _diff_conditional(expr, base_scalar, coeff_1, coeff_2):
"""
First re-expresses expr in the system that base_scalar belongs to.
If base_scalar appears in the re-expressed form, differentiates
it wrt base_scalar.
Else, returns 0
"""
from sympy.vector.functions import express
new_expr = express(expr, base_scalar.system, variables=True)
arg = coeff_1 * coeff_2 * new_expr
return Derivative(arg, base_scalar) if arg else S.Zero