Traktor/myenv/Lib/site-packages/torch/distributed/checkpoint/metadata.py

171 lines
5.1 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Dict, List, Optional, Sequence, Union
import torch
from torch.distributed.checkpoint.stateful import StatefulT
__all__ = [
"ChunkStorageMetadata",
"TensorStorageMetadata",
"BytesStorageMetadata",
"Metadata",
"MetadataIndex",
"TensorProperties",
]
@dataclass
class ChunkStorageMetadata:
"""
Each chunk is expected to have the same properties of the TensorStorageMetadata
that includes it.
"""
offsets: torch.Size
sizes: torch.Size
class _MEM_FORMAT_ENCODING(Enum):
"""Describe the memory format of a tensor."""
TORCH_CONTIGUOUS_FORMAT = 0
TORCH_CHANNELS_LAST = 1
TORCH_PRESERVE_FORMAT = 2
@dataclass
class TensorProperties:
"""Properties used to create :class:`Tensor`"""
# Regular tensor fields
dtype: torch.dtype = field(default_factory=torch.get_default_dtype)
# This field is deprecated.
layout: torch.layout = field(default=torch.strided)
# This field is deprecated.
requires_grad: bool = False
# This field is deprecated.
memory_format: torch.memory_format = field(default=torch.contiguous_format)
# This field is deprecated.
pin_memory: bool = False
def __getstate__(self):
# Since torch.memory_format cannot be pickled!
memory_format = self.memory_format
if memory_format == torch.contiguous_format:
mem_format_encoding = _MEM_FORMAT_ENCODING.TORCH_CONTIGUOUS_FORMAT
elif memory_format == torch.channels_last:
mem_format_encoding = _MEM_FORMAT_ENCODING.TORCH_CHANNELS_LAST
elif memory_format == torch.preserve_format:
mem_format_encoding = _MEM_FORMAT_ENCODING.TORCH_PRESERVE_FORMAT
else:
raise RuntimeError(f"Invalid torch.memory_format: {memory_format}")
return (
self.dtype,
self.layout,
self.requires_grad,
mem_format_encoding,
self.pin_memory,
)
def __setstate__(
self,
state,
):
(
self.dtype,
self.layout,
self.requires_grad,
mem_format_encoding,
self.pin_memory,
) = state
if mem_format_encoding == _MEM_FORMAT_ENCODING.TORCH_CONTIGUOUS_FORMAT:
memory_format = torch.contiguous_format
elif mem_format_encoding == _MEM_FORMAT_ENCODING.TORCH_CHANNELS_LAST:
memory_format = torch.channels_last
elif mem_format_encoding == _MEM_FORMAT_ENCODING.TORCH_PRESERVE_FORMAT:
memory_format = torch.preserve_format
else:
raise RuntimeError(
f"Invalid torch.memory_format encoding: {mem_format_encoding}"
)
self.memory_format = memory_format
@staticmethod
def create_from_tensor(tensor: torch.Tensor) -> "TensorProperties":
return TensorProperties(
dtype=tensor.dtype,
layout=tensor.layout,
requires_grad=tensor.requires_grad,
memory_format=torch.contiguous_format,
pin_memory=tensor.is_pinned(),
)
@dataclass
class TensorStorageMetadata:
properties: TensorProperties
size: torch.Size
chunks: List[ChunkStorageMetadata]
@dataclass
class BytesStorageMetadata:
pass
STORAGE_TYPES = Union[TensorStorageMetadata, BytesStorageMetadata]
STATE_DICT_TYPE = Dict[str, Union[StatefulT, Any]]
@dataclass
class Metadata:
"""This class represents the metadata of the checkpoint."""
# Keys are the same from the `state_dict` used.
state_dict_metadata: Dict[str, STORAGE_TYPES]
# It is the responsibility of the planner and storage plugins to ensure
# backward compatibility of the planner_data and storage_data. DCP will
# also ensure the backward compatibility of the metadata in this file and
# the metadata of the built-in planner and storage plugins.
planner_data: Any = None
storage_data: Any = None
@dataclass(frozen=True)
class MetadataIndex:
"""This class represents a lookup key for items in a state dict or Metadata."""
fqn: str
"""Fully Qualified Name of the object"""
offset: Optional[torch.Size] = None
"""If the object is a tensor, offset into the tensor we're looking for"""
index: Optional[int] = field(hash=False, compare=False, default=None)
"""
Index hint when searching for tensor chunk to speedup lookups (optional)
A common representation of a sharded tensor is as a list of chunks so to
find the index in such a list you need to linear search it.
When constructing an instance of MetadataIndex that points to that list,
one can provide the index as a hint and it will be probed first before
the linear search and thus making it significantly faster.
"""
def __init__(
self,
fqn: str,
offset: Optional[Sequence[int]] = None,
index: Optional[int] = None,
):
# We must use object.__setattr__ due to frozen=True
object.__setattr__(self, "fqn", fqn)
object.__setattr__(self, "index", index)
if offset is not None:
object.__setattr__(self, "offset", torch.Size(offset))