Traktor/myenv/Lib/site-packages/torch/onnx/symbolic_caffe2.py

360 lines
11 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
import importlib
import inspect
from torch.onnx import symbolic_helper, symbolic_opset9 as opset9
from torch.onnx._internal import jit_utils, registration
def register_quantized_ops(domain: str, version: int):
# Register all quantized ops
module = importlib.import_module("torch.onnx.symbolic_caffe2")
quant_version_ops = inspect.getmembers(module)
aten_q_ops = {
"relu",
"_empty_affine_quantized",
"dequantize",
"quantize_per_tensor",
"upsample_nearest2d",
"avg_pool2d",
"reshape",
"slice",
"cat",
"max_pool2d",
"sigmoid",
}
for op, func in quant_version_ops:
name = f"{domain}::{op}"
if inspect.isfunction(func) and not registration.registry.is_registered_op(
name, version
):
if op in aten_q_ops:
# Override the builtin aten ops
registration.registry.register(
f"aten::{op}", version, func, custom=True
)
registration.registry.register(name, version, func)
def _permute_helper(g: jit_utils.GraphContext, input, axes):
quant_args = {
"axes_i": axes,
"Y_scale_f": symbolic_helper._node_get(input.node(), "Y_scale"),
"Y_zero_point_i": symbolic_helper._node_get(input.node(), "Y_zero_point"),
}
output = g.op("_caffe2::Int8Transpose", input, **quant_args)
symbolic_helper._quantized_ops.add(output)
return output
def nchw2nhwc(g: jit_utils.GraphContext, input):
axes = [0, 2, 3, 1]
return _permute_helper(g, input, axes)
def nhwc2nchw(g: jit_utils.GraphContext, input):
axes = [0, 3, 1, 2]
return _permute_helper(g, input, axes)
def linear_prepack(g: jit_utils.GraphContext, weight, bias):
# Mapping to a dummy caffe2 prepack node.
# During the onnx -> c2 conversion we can look up original weight and bias
# from this node
output = g.op("_caffe2::WeightPrepack", weight, bias)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v", "v", "v", "f", "i")
def linear(g: jit_utils.GraphContext, input, weight, bias, scale, zero_point):
kwargs = {
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8FC", input, weight, bias, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
def conv_prepack(
g: jit_utils.GraphContext, input, weight, bias, stride, padding, dilation, groups
):
# Mapping to a dummy caffe2 prepack node.
# During the onnx -> c2 conversion we can look up original weight and bias
# from this node
output = g.op("_caffe2::WeightPrepack", input, weight, bias)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v", "v", "v", "is", "is", "is", "i", "f", "i")
def conv2d(
g: jit_utils.GraphContext,
input,
weight,
bias,
stride,
padding,
dilation,
groups,
scale,
zero_point,
):
kernel_size = weight.node()["shape"][1:3]
kwargs = {
"strides_i": stride,
"pads_i": padding + padding,
"dilations_i": dilation,
"group_i": groups,
"kernels_i": kernel_size,
"order_s": "NHWC",
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8Conv", input, weight, bias, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v", "v", "v", "is", "is", "is", "i", "f", "i")
def conv2d_relu(
g: jit_utils.GraphContext,
input,
weight,
bias,
stride,
padding,
dilation,
groups,
scale,
zero_point,
):
kernel_size = weight.node()["shape"][1:3]
kwargs = {
"strides_i": stride,
"pads_i": padding + padding,
"dilations_i": dilation,
"group_i": groups,
"kernels_i": kernel_size,
"order_s": "NHWC",
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8ConvRelu", input, weight, bias, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v", "v", "f", "i")
def add(g: jit_utils.GraphContext, input_a, input_b, scale, zero_point):
kwargs = {
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8Add", input_a, input_b, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v")
def relu(g: jit_utils.GraphContext, input):
if input not in symbolic_helper._quantized_ops:
return opset9.relu(g, input)
kwargs = {
"Y_scale_f": symbolic_helper._node_get(input.node(), "Y_scale"),
"Y_zero_point_i": symbolic_helper._node_get(input.node(), "Y_zero_point"),
}
output = g.op("_caffe2::Int8Relu", input, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v", "f", "i", "t")
def quantize_per_tensor(g: jit_utils.GraphContext, input, scale, zero_point, dtype):
kwargs = {
"Y_scale_f": scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8Quantize", input, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v")
def dequantize(g: jit_utils.GraphContext, input):
return g.op("_caffe2::Int8Dequantize", input)
@symbolic_helper.parse_args("v", "t", "t", "t", "t", "t", "t", "t")
def _empty_affine_quantized(
g: jit_utils.GraphContext,
input,
shape,
scale,
zero_point,
dtype,
pin_memory,
memory_format,
layout,
):
return input
def upsample_nearest2d(
g: jit_utils.GraphContext,
input,
output_size,
align_corners=None,
scales_h=None,
scales_w=None,
):
if input not in symbolic_helper._quantized_ops:
return opset9.upsample_nearest2d(g, input, output_size, align_corners) # type: ignore[attr-defined]
output_size = symbolic_helper._parse_arg(output_size, "is")
kwargs = {
"output_size_i": output_size,
"Y_scale_f": symbolic_helper._node_get(input.node(), "Y_scale"),
"Y_zero_point_i": symbolic_helper._node_get(input.node(), "Y_zero_point"),
}
input = nchw2nhwc(g, input)
output = g.op("_caffe2::Int8ResizeNearest", input, **kwargs)
output = nhwc2nchw(g, output)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v", "is", "is", "is", "is", "i")
def max_pool2d(
g: jit_utils.GraphContext,
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode,
):
if input not in symbolic_helper._quantized_ops:
return opset9.max_pool2d( # type: ignore[attr-defined]
g, input, kernel_size, stride, padding, dilation, ceil_mode
)
kwargs = {
"strides_i": stride,
"pads_i": padding + padding,
"kernel_i": kernel_size[0],
"order_s": "NHWC",
"Y_scale_f": symbolic_helper._node_get(input.node(), "Y_scale"),
"Y_zero_point_i": symbolic_helper._node_get(input.node(), "Y_zero_point"),
}
input = nchw2nhwc(g, input)
output = g.op("_caffe2::Int8MaxPool", input, **kwargs)
output = nhwc2nchw(g, output)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v", "is", "is", "is", "i", "i", "none")
def avg_pool2d(
g: jit_utils.GraphContext,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override=None,
):
if input not in symbolic_helper._quantized_ops:
return opset9.avg_pool2d( # type: ignore[attr-defined]
g,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override,
)
kwargs = {
"strides_i": stride,
"pads_i": padding + padding,
"kernel_i": kernel_size[0],
"order_s": "NHWC",
"Y_scale_f": symbolic_helper._node_get(input.node(), "Y_scale"),
"Y_zero_point_i": symbolic_helper._node_get(input.node(), "Y_zero_point"),
}
input = nchw2nhwc(g, input)
output = g.op("_caffe2::Int8AveragePool", input, **kwargs)
output = nhwc2nchw(g, output)
symbolic_helper._quantized_ops.add(output)
return output
def reshape(g: jit_utils.GraphContext, input, shape):
if input not in symbolic_helper._quantized_ops:
return opset9.reshape(g, input, shape)
kwargs = {
"Y_scale_f": symbolic_helper._node_get(input.node(), "Y_scale"),
"Y_zero_point_i": symbolic_helper._node_get(input.node(), "Y_zero_point"),
}
output = g.op("_caffe2::Int8Reshape", input, shape, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v", "v", "v", "v", "i")
def slice(g: jit_utils.GraphContext, input, dim, start, end, step):
if input not in symbolic_helper._quantized_ops:
return opset9.slice(g, input, dim, start, end, step)
if step != 1:
raise RuntimeError("ONNX quantized slice export only works for step 1.")
start = symbolic_helper._parse_arg(start, "i")
end = symbolic_helper._parse_arg(end, "i")
dim = symbolic_helper._parse_arg(dim, "i")
kwargs = {
"start_idx_i": start,
"end_idx_i": end,
"dim_i": dim,
"Y_scale_f": symbolic_helper._node_get(input.node(), "Y_scale"),
"Y_zero_point_i": symbolic_helper._node_get(input.node(), "Y_zero_point"),
}
output = g.op("_caffe2::Int8Slice", input, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
def cat(g: jit_utils.GraphContext, tensor_list, dim, scale=None, zero_point=None):
tensors = symbolic_helper._unpack_list(tensor_list)
input = tensors[0]
if input not in symbolic_helper._quantized_ops:
return opset9.cat(g, tensor_list, dim)
dim = symbolic_helper._parse_arg(dim, "i")
kwargs = {
"Y_scale_f": tensors[0].node()["Y_scale"],
"Y_zero_point_i": tensors[0].node()["Y_zero_point"],
}
output = g.op("_caffe2::Int8Concat", *tensors, axis_i=dim, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output
@symbolic_helper.parse_args("v")
def sigmoid(g: jit_utils.GraphContext, input):
if input not in symbolic_helper._quantized_ops:
return opset9.sigmoid(g, input)
# Caffe2 expects the output scale to be 1/2^8
# and output zero_point to be 0 (quint8 type)
out_scale = 1.0 / 256
zero_point = 0
kwargs = {
"Y_scale_f": out_scale,
"Y_zero_point_i": zero_point,
}
output = g.op("_caffe2::Int8Sigmoid", input, **kwargs)
symbolic_helper._quantized_ops.add(output)
return output