Traktor/myenv/Lib/site-packages/torch/onnx/symbolic_opset16.py

188 lines
6.4 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
"""This file exports ONNX ops for opset 16.
Note [ONNX Operators that are added/updated in opset 16]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
https://github.com/onnx/onnx/blob/main/docs/Changelog.md#version-16-of-the-default-onnx-operator-set
New operators:
GridSample https://github.com/onnx/onnx/pull/3557
Updated operators:
Identity
If
LeakyRelu
Loop
PRelu
RoiAlign
Scan
ScatterElements
ScatterND
Where
GreaterOrEqual
LessOrEqual
"""
# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in README.md
import functools
import torch
from torch.nn.functional import (
GRID_SAMPLE_INTERPOLATION_MODES,
GRID_SAMPLE_PADDING_MODES,
)
from torch.onnx import _type_utils, errors, symbolic_helper, utils
from torch.onnx._internal import _beartype, jit_utils, registration
_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=16)
# note (mkozuki): Why `grid_sampler` instead of `grid_sample`?
# Because `torch.nn.functional.grid_sample` calls `torch.grid_sampler`.
@_onnx_symbolic("aten::grid_sampler")
@symbolic_helper.parse_args("v", "v", "i", "i", "b")
@_beartype.beartype
def grid_sampler(
g: jit_utils.GraphContext,
input,
grid,
mode_enum,
padding_mode_enum,
align_corners,
):
# Check the input and grid tensor rank beforehand.
if symbolic_helper._get_tensor_rank(input) == 5:
return symbolic_helper._onnx_unsupported("GridSample with 5D volumetric input")
mode_s = {v: k for k, v in GRID_SAMPLE_INTERPOLATION_MODES.items()}[mode_enum] # type: ignore[call-arg]
padding_mode_s = {v: k for k, v in GRID_SAMPLE_PADDING_MODES.items()}[padding_mode_enum] # type: ignore[call-arg]
return g.op(
"GridSample",
input,
grid,
align_corners_i=int(align_corners),
mode_s=mode_s,
padding_mode_s=padding_mode_s,
)
@_onnx_symbolic("aten::scatter_add")
@symbolic_helper.parse_args("v", "i", "v", "v")
@_beartype.beartype
def scatter_add(g: jit_utils.GraphContext, self, dim, index, src):
if symbolic_helper.is_caffe2_aten_fallback():
return g.at("scatter", self, dim, index, src, overload_name="src")
src_type = _type_utils.JitScalarType.from_value(
src, _type_utils.JitScalarType.UNDEFINED
)
src_sizes = symbolic_helper._get_tensor_sizes(src)
index_sizes = symbolic_helper._get_tensor_sizes(index)
if len(src_sizes) != len(index_sizes):
return symbolic_helper._unimplemented(
"scatter_add",
f"`index` ({index_sizes}) should have the same dimensionality as `src` ({src_sizes})",
)
# PyTorch only allows index shape <= src shape, so we can only consider
# taking index as subset size to src, like PyTorch does. When sizes for src
# and index are not matched or there are dynamic axes, we take index shape to
# slice src to accommodate.
if src_sizes != index_sizes or None in index_sizes:
adjusted_shape = g.op("Shape", index)
starts = g.op("Constant", value_t=torch.tensor([0] * len(index_sizes)))
src = g.op("Slice", src, starts, adjusted_shape)
src = symbolic_helper._maybe_get_scalar(src)
if symbolic_helper._is_value(src):
return g.op("ScatterElements", self, index, src, axis_i=dim, reduction_s="add")
else:
# Check if scalar "src" has same type as self (PyTorch allows different
# type for scalar src (but not when src is tensor)). If not, insert Cast node.
if _type_utils.JitScalarType.from_value(self) != src_type:
src = g.op(
"Cast",
src,
to_i=_type_utils.JitScalarType.from_value(self).onnx_type(),
)
return g.op(
"ScatterElements",
self,
index,
src,
axis_i=dim,
reduction_s="add",
)
@_onnx_symbolic("aten::scatter_reduce")
@symbolic_helper.parse_args("v", "i", "v", "v", "s", "b")
@_beartype.beartype
def scatter_reduce(
g: jit_utils.GraphContext,
self: torch._C.Value,
dim: int,
index: torch._C.Value,
src: torch._C.Value,
reduce: str,
include_self: bool,
):
if reduce == "mean":
raise errors.OnnxExporterError(
"ONNX does not support mean reduction for scatter_reduce"
)
if not include_self:
raise errors.OnnxExporterError(
"ONNX does not support include_self=False for scatter_reduce"
)
reduce_mode = { # convert torch string name to onnx string name
"mean": "none", # 'mean' doesn't support in ONNX 1.14 definition
"sum": "add",
"prod": "mul",
"amin": "min",
"amax": "max",
}
onnx_reduce = reduce_mode[reduce]
self_rank = g.op("Size", g.op("Shape", self))
# if self_rank == 0: # assert (index_rank == 0 and rank_src == 0)
self_rank_is_zero = g.op(
"Equal", self_rank, g.op("Constant", value_t=torch.tensor(0, dtype=torch.int64))
)
if_op, (if_context, else_context), _ = jit_utils.add_op_with_blocks(
g, "If", self_rank_is_zero, n_blocks=2, outputs=3
)
neg_1 = if_context.op("Constant", value_t=torch.tensor([-1], dtype=torch.int64))
self_reshape = if_context.op("Reshape", self, neg_1)
utils._add_output_to_block(if_context.block, self_reshape)
index_reshape = if_context.op("Reshape", index, neg_1)
utils._add_output_to_block(if_context.block, index_reshape)
src_reshape = if_context.op("Reshape", src, neg_1)
utils._add_output_to_block(if_context.block, src_reshape)
self_identity = else_context.op("Identity", self)
utils._add_output_to_block(else_context.block, self_identity)
index_identitye = else_context.op("Identity", index)
utils._add_output_to_block(else_context.block, index_identitye)
src_identity = else_context.op("Identity", src)
utils._add_output_to_block(else_context.block, src_identity)
result = g.op("ScatterElements", *if_op, axis_i=dim, reduction_s=onnx_reduce)
# if self_rank == 0:
if_op, (if_context, else_context), _ = jit_utils.add_op_with_blocks(
g, "If", self_rank_is_zero, n_blocks=2, outputs=1
)
result_squeezed = if_context.op("Squeeze", result)
utils._add_output_to_block(if_context.block, result_squeezed)
result_identity = else_context.op("Identity", result)
utils._add_output_to_block(else_context.block, result_identity)
result_final = if_op.node().output()
return result_final