Traktor/myenv/Lib/site-packages/torchvision/datasets/hmdb51.py

153 lines
5.8 KiB
Python
Raw Permalink Normal View History

2024-05-26 05:12:46 +02:00
import glob
import os
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from torch import Tensor
from .folder import find_classes, make_dataset
from .video_utils import VideoClips
from .vision import VisionDataset
class HMDB51(VisionDataset):
"""
`HMDB51 <https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/>`_
dataset.
HMDB51 is an action recognition video dataset.
This dataset consider every video as a collection of video clips of fixed size, specified
by ``frames_per_clip``, where the step in frames between each clip is given by
``step_between_clips``.
To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
elements will come from video 1, and the next three elements from video 2.
Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
frames in a video might be present.
Internally, it uses a VideoClips object to handle clip creation.
Args:
root (str or ``pathlib.Path``): Root directory of the HMDB51 Dataset.
annotation_path (str): Path to the folder containing the split files.
frames_per_clip (int): Number of frames in a clip.
step_between_clips (int): Number of frames between each clip.
fold (int, optional): Which fold to use. Should be between 1 and 3.
train (bool, optional): If ``True``, creates a dataset from the train split,
otherwise from the ``test`` split.
transform (callable, optional): A function/transform that takes in a TxHxWxC video
and returns a transformed version.
output_format (str, optional): The format of the output video tensors (before transforms).
Can be either "THWC" (default) or "TCHW".
Returns:
tuple: A 3-tuple with the following entries:
- video (Tensor[T, H, W, C] or Tensor[T, C, H, W]): The `T` video frames
- audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
and `L` is the number of points
- label (int): class of the video clip
"""
data_url = "https://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar"
splits = {
"url": "https://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/test_train_splits.rar",
"md5": "15e67781e70dcfbdce2d7dbb9b3344b5",
}
TRAIN_TAG = 1
TEST_TAG = 2
def __init__(
self,
root: Union[str, Path],
annotation_path: str,
frames_per_clip: int,
step_between_clips: int = 1,
frame_rate: Optional[int] = None,
fold: int = 1,
train: bool = True,
transform: Optional[Callable] = None,
_precomputed_metadata: Optional[Dict[str, Any]] = None,
num_workers: int = 1,
_video_width: int = 0,
_video_height: int = 0,
_video_min_dimension: int = 0,
_audio_samples: int = 0,
output_format: str = "THWC",
) -> None:
super().__init__(root)
if fold not in (1, 2, 3):
raise ValueError(f"fold should be between 1 and 3, got {fold}")
extensions = ("avi",)
self.classes, class_to_idx = find_classes(self.root)
self.samples = make_dataset(
self.root,
class_to_idx,
extensions,
)
video_paths = [path for (path, _) in self.samples]
video_clips = VideoClips(
video_paths,
frames_per_clip,
step_between_clips,
frame_rate,
_precomputed_metadata,
num_workers=num_workers,
_video_width=_video_width,
_video_height=_video_height,
_video_min_dimension=_video_min_dimension,
_audio_samples=_audio_samples,
output_format=output_format,
)
# we bookkeep the full version of video clips because we want to be able
# to return the metadata of full version rather than the subset version of
# video clips
self.full_video_clips = video_clips
self.fold = fold
self.train = train
self.indices = self._select_fold(video_paths, annotation_path, fold, train)
self.video_clips = video_clips.subset(self.indices)
self.transform = transform
@property
def metadata(self) -> Dict[str, Any]:
return self.full_video_clips.metadata
def _select_fold(self, video_list: List[str], annotations_dir: str, fold: int, train: bool) -> List[int]:
target_tag = self.TRAIN_TAG if train else self.TEST_TAG
split_pattern_name = f"*test_split{fold}.txt"
split_pattern_path = os.path.join(annotations_dir, split_pattern_name)
annotation_paths = glob.glob(split_pattern_path)
selected_files = set()
for filepath in annotation_paths:
with open(filepath) as fid:
lines = fid.readlines()
for line in lines:
video_filename, tag_string = line.split()
tag = int(tag_string)
if tag == target_tag:
selected_files.add(video_filename)
indices = []
for video_index, video_path in enumerate(video_list):
if os.path.basename(video_path) in selected_files:
indices.append(video_index)
return indices
def __len__(self) -> int:
return self.video_clips.num_clips()
def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
video, audio, _, video_idx = self.video_clips.get_clip(idx)
sample_index = self.indices[video_idx]
_, class_index = self.samples[sample_index]
if self.transform is not None:
video = self.transform(video)
return video, audio, class_index