Traktor/newastar.py

157 lines
4.9 KiB
Python
Raw Permalink Normal View History

2024-06-09 19:53:14 +02:00
import pygame
from board import Board
from constant import width, height, rows, cols
from tractor import Tractor
from kolejka import Stan, Odwiedzone
from queue import Queue
from neuralnetwork import load_model
import pandas as pd
import heapq
from dataclasses import dataclass, field
data = pd.read_csv('dane.csv')
from decisiontree import train_decision_tree
model_path = 'model.pth'
neuralnetwork_model = load_model(model_path)
model, feature_columns = train_decision_tree(data)
fps = 5
WIN = pygame.display.set_mode((width, height))
pygame.display.set_caption('Inteligentny Traktor')
def heuristic(current_state, goal_state):
# Funkcja heurystyki (tu: Manhattan distance)
return abs(current_state.row - goal_state.row) + abs(current_state.col - goal_state.col)
def goal_test(elem, board):
# Test celu: sprawdzenie, czy w bieżącej pozycji jest brud
return board.is_dirt(elem.row, elem.col)
def cost(next_state, board):
if board.board[next_state.row][next_state.col] == 0:
this_cost = 100
elif board.board[next_state.row][next_state.col] == 1:
this_cost = 100
else:
this_cost = 1
print(board.vegetable_names[next_state.row][next_state.col], " --->", this_cost)
return this_cost
def actions(elem, istate):
# Śledzenie działań prowadzących od stanu początkowego do stanu docelowego
akcje = []
while elem.row != istate.row or elem.col != istate.col or elem.direction != istate.direction:
akcje.append(elem.a)
elem = elem.p[0]
return akcje[::-1]
def find_next_goal(board, visited):
for row in range(rows):
for col in range(cols):
if board.is_dirt(row, col) and (row, col) not in visited:
return Stan(row, col, "down")
return None
@dataclass(order=True)
class PrioritizedItem:
priority: int
item: object = field(compare=False)
def astar(istate, goalstate, board):
explored = Odwiedzone()
fringe = []
initial_priority = heuristic(istate, goalstate)
heapq.heappush(fringe, PrioritizedItem(initial_priority, istate))
moves = ["up", "left", "right"]
while fringe:
current = heapq.heappop(fringe).item
if goal_test(current, board):
return actions(current, istate), current
explored.dodaj_stan(current)
for action in moves:
stan = current.succ(action, board)
if stan is not None:
new_g = current.cost + cost(stan, board)
f = new_g + heuristic(stan, goalstate)
if not fringe_check(fringe, stan) and not explored.check(stan):
stan.parrent(current, action)
heapq.heappush(fringe, PrioritizedItem(f, stan))
return [], None
def fringe_check(fringe, stan):
for item in fringe:
if stan.direction == item.item.direction and stan.col == item.item.col and stan.row == item.item.row:
return True
return False
def main():
initial_state = Stan(9, 1, "down")
run = True
clock = pygame.time.Clock()
board = Board(load_from_file=True, filename='generated_board.npy')
tractor = Tractor(9, 1, model, feature_columns, neuralnetwork_model)
visited = set()
while run:
clock.tick(fps)
if all(not board.is_dirt(row, col) for row in range(rows) for col in range(cols)):
print("Traktor odwiedził wszystkie pola.")
break
goal_state = find_next_goal(board, visited)
if not goal_state:
print("Wszystkie pola zostały odwiedzone.")
break
akcje, nowy_stan = astar(initial_state, goal_state, board)
if not akcje:
print("Nie znaleziono ścieżki do najbliższego pola dirt.")
board = Board(load_from_file=True, filename='generated_board.npy')
initial_state = Stan(0, 1, "down")
tractor = Tractor(0, 1, model, feature_columns, neuralnetwork_model)
while board.is_rock(initial_state.row, initial_state.col):
board = Board(load_from_file=True, filename='generated_board.npy')
continue
print("akcje: >", akcje)
while akcje:
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
akcja = akcje.pop(0)
if akcja == "left":
tractor.turn_left()
elif akcja == "right":
tractor.turn_right()
elif akcja == "up":
tractor.move_forward(board)
board.draw_cubes(WIN)
tractor.draw(WIN)
pygame.display.update()
visited.add((nowy_stan.row, nowy_stan.col))
initial_state = nowy_stan
initial_state.direction = tractor.direction
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
return
pygame.quit()
main()