1103 lines
32 KiB
Python
1103 lines
32 KiB
Python
|
from __future__ import print_function
|
||
|
|
||
|
from copy import copy
|
||
|
|
||
|
from ..libmp.backend import xrange
|
||
|
|
||
|
class OptimizationMethods(object):
|
||
|
def __init__(ctx):
|
||
|
pass
|
||
|
|
||
|
##############
|
||
|
# 1D-SOLVERS #
|
||
|
##############
|
||
|
|
||
|
class Newton:
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Needs starting points x0 close to the root.
|
||
|
|
||
|
Pro:
|
||
|
|
||
|
* converges fast
|
||
|
* sometimes more robust than secant with bad second starting point
|
||
|
|
||
|
Contra:
|
||
|
|
||
|
* converges slowly for multiple roots
|
||
|
* needs first derivative
|
||
|
* 2 function evaluations per iteration
|
||
|
"""
|
||
|
maxsteps = 20
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
if len(x0) == 1:
|
||
|
self.x0 = x0[0]
|
||
|
else:
|
||
|
raise ValueError('expected 1 starting point, got %i' % len(x0))
|
||
|
self.f = f
|
||
|
if not 'df' in kwargs:
|
||
|
def df(x):
|
||
|
return self.ctx.diff(f, x)
|
||
|
else:
|
||
|
df = kwargs['df']
|
||
|
self.df = df
|
||
|
|
||
|
def __iter__(self):
|
||
|
f = self.f
|
||
|
df = self.df
|
||
|
x0 = self.x0
|
||
|
while True:
|
||
|
x1 = x0 - f(x0) / df(x0)
|
||
|
error = abs(x1 - x0)
|
||
|
x0 = x1
|
||
|
yield (x1, error)
|
||
|
|
||
|
class Secant:
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Needs starting points x0 and x1 close to the root.
|
||
|
x1 defaults to x0 + 0.25.
|
||
|
|
||
|
Pro:
|
||
|
|
||
|
* converges fast
|
||
|
|
||
|
Contra:
|
||
|
|
||
|
* converges slowly for multiple roots
|
||
|
"""
|
||
|
maxsteps = 30
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
if len(x0) == 1:
|
||
|
self.x0 = x0[0]
|
||
|
self.x1 = self.x0 + 0.25
|
||
|
elif len(x0) == 2:
|
||
|
self.x0 = x0[0]
|
||
|
self.x1 = x0[1]
|
||
|
else:
|
||
|
raise ValueError('expected 1 or 2 starting points, got %i' % len(x0))
|
||
|
self.f = f
|
||
|
|
||
|
def __iter__(self):
|
||
|
f = self.f
|
||
|
x0 = self.x0
|
||
|
x1 = self.x1
|
||
|
f0 = f(x0)
|
||
|
while True:
|
||
|
f1 = f(x1)
|
||
|
l = x1 - x0
|
||
|
if not l:
|
||
|
break
|
||
|
s = (f1 - f0) / l
|
||
|
if not s:
|
||
|
break
|
||
|
x0, x1 = x1, x1 - f1/s
|
||
|
f0 = f1
|
||
|
yield x1, abs(l)
|
||
|
|
||
|
class MNewton:
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Needs starting point x0 close to the root.
|
||
|
Uses modified Newton's method that converges fast regardless of the
|
||
|
multiplicity of the root.
|
||
|
|
||
|
Pro:
|
||
|
|
||
|
* converges fast for multiple roots
|
||
|
|
||
|
Contra:
|
||
|
|
||
|
* needs first and second derivative of f
|
||
|
* 3 function evaluations per iteration
|
||
|
"""
|
||
|
maxsteps = 20
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
if not len(x0) == 1:
|
||
|
raise ValueError('expected 1 starting point, got %i' % len(x0))
|
||
|
self.x0 = x0[0]
|
||
|
self.f = f
|
||
|
if not 'df' in kwargs:
|
||
|
def df(x):
|
||
|
return self.ctx.diff(f, x)
|
||
|
else:
|
||
|
df = kwargs['df']
|
||
|
self.df = df
|
||
|
if not 'd2f' in kwargs:
|
||
|
def d2f(x):
|
||
|
return self.ctx.diff(df, x)
|
||
|
else:
|
||
|
d2f = kwargs['df']
|
||
|
self.d2f = d2f
|
||
|
|
||
|
def __iter__(self):
|
||
|
x = self.x0
|
||
|
f = self.f
|
||
|
df = self.df
|
||
|
d2f = self.d2f
|
||
|
while True:
|
||
|
prevx = x
|
||
|
fx = f(x)
|
||
|
if fx == 0:
|
||
|
break
|
||
|
dfx = df(x)
|
||
|
d2fx = d2f(x)
|
||
|
# x = x - F(x)/F'(x) with F(x) = f(x)/f'(x)
|
||
|
x -= fx / (dfx - fx * d2fx / dfx)
|
||
|
error = abs(x - prevx)
|
||
|
yield x, error
|
||
|
|
||
|
class Halley:
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Needs a starting point x0 close to the root.
|
||
|
Uses Halley's method with cubic convergence rate.
|
||
|
|
||
|
Pro:
|
||
|
|
||
|
* converges even faster the Newton's method
|
||
|
* useful when computing with *many* digits
|
||
|
|
||
|
Contra:
|
||
|
|
||
|
* needs first and second derivative of f
|
||
|
* 3 function evaluations per iteration
|
||
|
* converges slowly for multiple roots
|
||
|
"""
|
||
|
|
||
|
maxsteps = 20
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
if not len(x0) == 1:
|
||
|
raise ValueError('expected 1 starting point, got %i' % len(x0))
|
||
|
self.x0 = x0[0]
|
||
|
self.f = f
|
||
|
if not 'df' in kwargs:
|
||
|
def df(x):
|
||
|
return self.ctx.diff(f, x)
|
||
|
else:
|
||
|
df = kwargs['df']
|
||
|
self.df = df
|
||
|
if not 'd2f' in kwargs:
|
||
|
def d2f(x):
|
||
|
return self.ctx.diff(df, x)
|
||
|
else:
|
||
|
d2f = kwargs['df']
|
||
|
self.d2f = d2f
|
||
|
|
||
|
def __iter__(self):
|
||
|
x = self.x0
|
||
|
f = self.f
|
||
|
df = self.df
|
||
|
d2f = self.d2f
|
||
|
while True:
|
||
|
prevx = x
|
||
|
fx = f(x)
|
||
|
dfx = df(x)
|
||
|
d2fx = d2f(x)
|
||
|
x -= 2*fx*dfx / (2*dfx**2 - fx*d2fx)
|
||
|
error = abs(x - prevx)
|
||
|
yield x, error
|
||
|
|
||
|
class Muller:
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Needs starting points x0, x1 and x2 close to the root.
|
||
|
x1 defaults to x0 + 0.25; x2 to x1 + 0.25.
|
||
|
Uses Muller's method that converges towards complex roots.
|
||
|
|
||
|
Pro:
|
||
|
|
||
|
* converges fast (somewhat faster than secant)
|
||
|
* can find complex roots
|
||
|
|
||
|
Contra:
|
||
|
|
||
|
* converges slowly for multiple roots
|
||
|
* may have complex values for real starting points and real roots
|
||
|
|
||
|
http://en.wikipedia.org/wiki/Muller's_method
|
||
|
"""
|
||
|
maxsteps = 30
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
if len(x0) == 1:
|
||
|
self.x0 = x0[0]
|
||
|
self.x1 = self.x0 + 0.25
|
||
|
self.x2 = self.x1 + 0.25
|
||
|
elif len(x0) == 2:
|
||
|
self.x0 = x0[0]
|
||
|
self.x1 = x0[1]
|
||
|
self.x2 = self.x1 + 0.25
|
||
|
elif len(x0) == 3:
|
||
|
self.x0 = x0[0]
|
||
|
self.x1 = x0[1]
|
||
|
self.x2 = x0[2]
|
||
|
else:
|
||
|
raise ValueError('expected 1, 2 or 3 starting points, got %i'
|
||
|
% len(x0))
|
||
|
self.f = f
|
||
|
self.verbose = kwargs['verbose']
|
||
|
|
||
|
def __iter__(self):
|
||
|
f = self.f
|
||
|
x0 = self.x0
|
||
|
x1 = self.x1
|
||
|
x2 = self.x2
|
||
|
fx0 = f(x0)
|
||
|
fx1 = f(x1)
|
||
|
fx2 = f(x2)
|
||
|
while True:
|
||
|
# TODO: maybe refactoring with function for divided differences
|
||
|
# calculate divided differences
|
||
|
fx2x1 = (fx1 - fx2) / (x1 - x2)
|
||
|
fx2x0 = (fx0 - fx2) / (x0 - x2)
|
||
|
fx1x0 = (fx0 - fx1) / (x0 - x1)
|
||
|
w = fx2x1 + fx2x0 - fx1x0
|
||
|
fx2x1x0 = (fx1x0 - fx2x1) / (x0 - x2)
|
||
|
if w == 0 and fx2x1x0 == 0:
|
||
|
if self.verbose:
|
||
|
print('canceled with')
|
||
|
print('x0 =', x0, ', x1 =', x1, 'and x2 =', x2)
|
||
|
break
|
||
|
x0 = x1
|
||
|
fx0 = fx1
|
||
|
x1 = x2
|
||
|
fx1 = fx2
|
||
|
# denominator should be as large as possible => choose sign
|
||
|
r = self.ctx.sqrt(w**2 - 4*fx2*fx2x1x0)
|
||
|
if abs(w - r) > abs(w + r):
|
||
|
r = -r
|
||
|
x2 -= 2*fx2 / (w + r)
|
||
|
fx2 = f(x2)
|
||
|
error = abs(x2 - x1)
|
||
|
yield x2, error
|
||
|
|
||
|
# TODO: consider raising a ValueError when there's no sign change in a and b
|
||
|
class Bisection:
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Uses bisection method to find a root of f in [a, b].
|
||
|
Might fail for multiple roots (needs sign change).
|
||
|
|
||
|
Pro:
|
||
|
|
||
|
* robust and reliable
|
||
|
|
||
|
Contra:
|
||
|
|
||
|
* converges slowly
|
||
|
* needs sign change
|
||
|
"""
|
||
|
maxsteps = 100
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
if len(x0) != 2:
|
||
|
raise ValueError('expected interval of 2 points, got %i' % len(x0))
|
||
|
self.f = f
|
||
|
self.a = x0[0]
|
||
|
self.b = x0[1]
|
||
|
|
||
|
def __iter__(self):
|
||
|
f = self.f
|
||
|
a = self.a
|
||
|
b = self.b
|
||
|
l = b - a
|
||
|
fb = f(b)
|
||
|
while True:
|
||
|
m = self.ctx.ldexp(a + b, -1)
|
||
|
fm = f(m)
|
||
|
sign = fm * fb
|
||
|
if sign < 0:
|
||
|
a = m
|
||
|
elif sign > 0:
|
||
|
b = m
|
||
|
fb = fm
|
||
|
else:
|
||
|
yield m, self.ctx.zero
|
||
|
l /= 2
|
||
|
yield (a + b)/2, abs(l)
|
||
|
|
||
|
def _getm(method):
|
||
|
"""
|
||
|
Return a function to calculate m for Illinois-like methods.
|
||
|
"""
|
||
|
if method == 'illinois':
|
||
|
def getm(fz, fb):
|
||
|
return 0.5
|
||
|
elif method == 'pegasus':
|
||
|
def getm(fz, fb):
|
||
|
return fb/(fb + fz)
|
||
|
elif method == 'anderson':
|
||
|
def getm(fz, fb):
|
||
|
m = 1 - fz/fb
|
||
|
if m > 0:
|
||
|
return m
|
||
|
else:
|
||
|
return 0.5
|
||
|
else:
|
||
|
raise ValueError("method '%s' not recognized" % method)
|
||
|
return getm
|
||
|
|
||
|
class Illinois:
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Uses Illinois method or similar to find a root of f in [a, b].
|
||
|
Might fail for multiple roots (needs sign change).
|
||
|
Combines bisect with secant (improved regula falsi).
|
||
|
|
||
|
The only difference between the methods is the scaling factor m, which is
|
||
|
used to ensure convergence (you can choose one using the 'method' keyword):
|
||
|
|
||
|
Illinois method ('illinois'):
|
||
|
m = 0.5
|
||
|
|
||
|
Pegasus method ('pegasus'):
|
||
|
m = fb/(fb + fz)
|
||
|
|
||
|
Anderson-Bjoerk method ('anderson'):
|
||
|
m = 1 - fz/fb if positive else 0.5
|
||
|
|
||
|
Pro:
|
||
|
|
||
|
* converges very fast
|
||
|
|
||
|
Contra:
|
||
|
|
||
|
* has problems with multiple roots
|
||
|
* needs sign change
|
||
|
"""
|
||
|
maxsteps = 30
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
if len(x0) != 2:
|
||
|
raise ValueError('expected interval of 2 points, got %i' % len(x0))
|
||
|
self.a = x0[0]
|
||
|
self.b = x0[1]
|
||
|
self.f = f
|
||
|
self.tol = kwargs['tol']
|
||
|
self.verbose = kwargs['verbose']
|
||
|
self.method = kwargs.get('method', 'illinois')
|
||
|
self.getm = _getm(self.method)
|
||
|
if self.verbose:
|
||
|
print('using %s method' % self.method)
|
||
|
|
||
|
def __iter__(self):
|
||
|
method = self.method
|
||
|
f = self.f
|
||
|
a = self.a
|
||
|
b = self.b
|
||
|
fa = f(a)
|
||
|
fb = f(b)
|
||
|
m = None
|
||
|
while True:
|
||
|
l = b - a
|
||
|
if l == 0:
|
||
|
break
|
||
|
s = (fb - fa) / l
|
||
|
z = a - fa/s
|
||
|
fz = f(z)
|
||
|
if abs(fz) < self.tol:
|
||
|
# TODO: better condition (when f is very flat)
|
||
|
if self.verbose:
|
||
|
print('canceled with z =', z)
|
||
|
yield z, l
|
||
|
break
|
||
|
if fz * fb < 0: # root in [z, b]
|
||
|
a = b
|
||
|
fa = fb
|
||
|
b = z
|
||
|
fb = fz
|
||
|
else: # root in [a, z]
|
||
|
m = self.getm(fz, fb)
|
||
|
b = z
|
||
|
fb = fz
|
||
|
fa = m*fa # scale down to ensure convergence
|
||
|
if self.verbose and m and not method == 'illinois':
|
||
|
print('m:', m)
|
||
|
yield (a + b)/2, abs(l)
|
||
|
|
||
|
def Pegasus(*args, **kwargs):
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Uses Pegasus method to find a root of f in [a, b].
|
||
|
Wrapper for illinois to use method='pegasus'.
|
||
|
"""
|
||
|
kwargs['method'] = 'pegasus'
|
||
|
return Illinois(*args, **kwargs)
|
||
|
|
||
|
def Anderson(*args, **kwargs):
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Uses Anderson-Bjoerk method to find a root of f in [a, b].
|
||
|
Wrapper for illinois to use method='pegasus'.
|
||
|
"""
|
||
|
kwargs['method'] = 'anderson'
|
||
|
return Illinois(*args, **kwargs)
|
||
|
|
||
|
# TODO: check whether it's possible to combine it with Illinois stuff
|
||
|
class Ridder:
|
||
|
"""
|
||
|
1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Ridders' method to find a root of f in [a, b].
|
||
|
Is told to perform as well as Brent's method while being simpler.
|
||
|
|
||
|
Pro:
|
||
|
|
||
|
* very fast
|
||
|
* simpler than Brent's method
|
||
|
|
||
|
Contra:
|
||
|
|
||
|
* two function evaluations per step
|
||
|
* has problems with multiple roots
|
||
|
* needs sign change
|
||
|
|
||
|
http://en.wikipedia.org/wiki/Ridders'_method
|
||
|
"""
|
||
|
maxsteps = 30
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
self.f = f
|
||
|
if len(x0) != 2:
|
||
|
raise ValueError('expected interval of 2 points, got %i' % len(x0))
|
||
|
self.x1 = x0[0]
|
||
|
self.x2 = x0[1]
|
||
|
self.verbose = kwargs['verbose']
|
||
|
self.tol = kwargs['tol']
|
||
|
|
||
|
def __iter__(self):
|
||
|
ctx = self.ctx
|
||
|
f = self.f
|
||
|
x1 = self.x1
|
||
|
fx1 = f(x1)
|
||
|
x2 = self.x2
|
||
|
fx2 = f(x2)
|
||
|
while True:
|
||
|
x3 = 0.5*(x1 + x2)
|
||
|
fx3 = f(x3)
|
||
|
x4 = x3 + (x3 - x1) * ctx.sign(fx1 - fx2) * fx3 / ctx.sqrt(fx3**2 - fx1*fx2)
|
||
|
fx4 = f(x4)
|
||
|
if abs(fx4) < self.tol:
|
||
|
# TODO: better condition (when f is very flat)
|
||
|
if self.verbose:
|
||
|
print('canceled with f(x4) =', fx4)
|
||
|
yield x4, abs(x1 - x2)
|
||
|
break
|
||
|
if fx4 * fx2 < 0: # root in [x4, x2]
|
||
|
x1 = x4
|
||
|
fx1 = fx4
|
||
|
else: # root in [x1, x4]
|
||
|
x2 = x4
|
||
|
fx2 = fx4
|
||
|
error = abs(x1 - x2)
|
||
|
yield (x1 + x2)/2, error
|
||
|
|
||
|
class ANewton:
|
||
|
"""
|
||
|
EXPERIMENTAL 1d-solver generating pairs of approximative root and error.
|
||
|
|
||
|
Uses Newton's method modified to use Steffensens method when convergence is
|
||
|
slow. (I.e. for multiple roots.)
|
||
|
"""
|
||
|
maxsteps = 20
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
if not len(x0) == 1:
|
||
|
raise ValueError('expected 1 starting point, got %i' % len(x0))
|
||
|
self.x0 = x0[0]
|
||
|
self.f = f
|
||
|
if not 'df' in kwargs:
|
||
|
def df(x):
|
||
|
return self.ctx.diff(f, x)
|
||
|
else:
|
||
|
df = kwargs['df']
|
||
|
self.df = df
|
||
|
def phi(x):
|
||
|
return x - f(x) / df(x)
|
||
|
self.phi = phi
|
||
|
self.verbose = kwargs['verbose']
|
||
|
|
||
|
def __iter__(self):
|
||
|
x0 = self.x0
|
||
|
f = self.f
|
||
|
df = self.df
|
||
|
phi = self.phi
|
||
|
error = 0
|
||
|
counter = 0
|
||
|
while True:
|
||
|
prevx = x0
|
||
|
try:
|
||
|
x0 = phi(x0)
|
||
|
except ZeroDivisionError:
|
||
|
if self.verbose:
|
||
|
print('ZeroDivisionError: canceled with x =', x0)
|
||
|
break
|
||
|
preverror = error
|
||
|
error = abs(prevx - x0)
|
||
|
# TODO: decide not to use convergence acceleration
|
||
|
if error and abs(error - preverror) / error < 1:
|
||
|
if self.verbose:
|
||
|
print('converging slowly')
|
||
|
counter += 1
|
||
|
if counter >= 3:
|
||
|
# accelerate convergence
|
||
|
phi = steffensen(phi)
|
||
|
counter = 0
|
||
|
if self.verbose:
|
||
|
print('accelerating convergence')
|
||
|
yield x0, error
|
||
|
|
||
|
# TODO: add Brent
|
||
|
|
||
|
############################
|
||
|
# MULTIDIMENSIONAL SOLVERS #
|
||
|
############################
|
||
|
|
||
|
def jacobian(ctx, f, x):
|
||
|
"""
|
||
|
Calculate the Jacobian matrix of a function at the point x0.
|
||
|
|
||
|
This is the first derivative of a vectorial function:
|
||
|
|
||
|
f : R^m -> R^n with m >= n
|
||
|
"""
|
||
|
x = ctx.matrix(x)
|
||
|
h = ctx.sqrt(ctx.eps)
|
||
|
fx = ctx.matrix(f(*x))
|
||
|
m = len(fx)
|
||
|
n = len(x)
|
||
|
J = ctx.matrix(m, n)
|
||
|
for j in xrange(n):
|
||
|
xj = x.copy()
|
||
|
xj[j] += h
|
||
|
Jj = (ctx.matrix(f(*xj)) - fx) / h
|
||
|
for i in xrange(m):
|
||
|
J[i,j] = Jj[i]
|
||
|
return J
|
||
|
|
||
|
# TODO: test with user-specified jacobian matrix
|
||
|
class MDNewton:
|
||
|
"""
|
||
|
Find the root of a vector function numerically using Newton's method.
|
||
|
|
||
|
f is a vector function representing a nonlinear equation system.
|
||
|
|
||
|
x0 is the starting point close to the root.
|
||
|
|
||
|
J is a function returning the Jacobian matrix for a point.
|
||
|
|
||
|
Supports overdetermined systems.
|
||
|
|
||
|
Use the 'norm' keyword to specify which norm to use. Defaults to max-norm.
|
||
|
The function to calculate the Jacobian matrix can be given using the
|
||
|
keyword 'J'. Otherwise it will be calculated numerically.
|
||
|
|
||
|
Please note that this method converges only locally. Especially for high-
|
||
|
dimensional systems it is not trivial to find a good starting point being
|
||
|
close enough to the root.
|
||
|
|
||
|
It is recommended to use a faster, low-precision solver from SciPy [1] or
|
||
|
OpenOpt [2] to get an initial guess. Afterwards you can use this method for
|
||
|
root-polishing to any precision.
|
||
|
|
||
|
[1] http://scipy.org
|
||
|
|
||
|
[2] http://openopt.org/Welcome
|
||
|
"""
|
||
|
maxsteps = 10
|
||
|
|
||
|
def __init__(self, ctx, f, x0, **kwargs):
|
||
|
self.ctx = ctx
|
||
|
self.f = f
|
||
|
if isinstance(x0, (tuple, list)):
|
||
|
x0 = ctx.matrix(x0)
|
||
|
assert x0.cols == 1, 'need a vector'
|
||
|
self.x0 = x0
|
||
|
if 'J' in kwargs:
|
||
|
self.J = kwargs['J']
|
||
|
else:
|
||
|
def J(*x):
|
||
|
return ctx.jacobian(f, x)
|
||
|
self.J = J
|
||
|
self.norm = kwargs['norm']
|
||
|
self.verbose = kwargs['verbose']
|
||
|
|
||
|
def __iter__(self):
|
||
|
f = self.f
|
||
|
x0 = self.x0
|
||
|
norm = self.norm
|
||
|
J = self.J
|
||
|
fx = self.ctx.matrix(f(*x0))
|
||
|
fxnorm = norm(fx)
|
||
|
cancel = False
|
||
|
while not cancel:
|
||
|
# get direction of descent
|
||
|
fxn = -fx
|
||
|
Jx = J(*x0)
|
||
|
s = self.ctx.lu_solve(Jx, fxn)
|
||
|
if self.verbose:
|
||
|
print('Jx:')
|
||
|
print(Jx)
|
||
|
print('s:', s)
|
||
|
# damping step size TODO: better strategy (hard task)
|
||
|
l = self.ctx.one
|
||
|
x1 = x0 + s
|
||
|
while True:
|
||
|
if x1 == x0:
|
||
|
if self.verbose:
|
||
|
print("canceled, won't get more excact")
|
||
|
cancel = True
|
||
|
break
|
||
|
fx = self.ctx.matrix(f(*x1))
|
||
|
newnorm = norm(fx)
|
||
|
if newnorm < fxnorm:
|
||
|
# new x accepted
|
||
|
fxnorm = newnorm
|
||
|
x0 = x1
|
||
|
break
|
||
|
l /= 2
|
||
|
x1 = x0 + l*s
|
||
|
yield (x0, fxnorm)
|
||
|
|
||
|
#############
|
||
|
# UTILITIES #
|
||
|
#############
|
||
|
|
||
|
str2solver = {'newton':Newton, 'secant':Secant, 'mnewton':MNewton,
|
||
|
'halley':Halley, 'muller':Muller, 'bisect':Bisection,
|
||
|
'illinois':Illinois, 'pegasus':Pegasus, 'anderson':Anderson,
|
||
|
'ridder':Ridder, 'anewton':ANewton, 'mdnewton':MDNewton}
|
||
|
|
||
|
def findroot(ctx, f, x0, solver='secant', tol=None, verbose=False, verify=True, **kwargs):
|
||
|
r"""
|
||
|
Find an approximate solution to `f(x) = 0`, using *x0* as starting point or
|
||
|
interval for *x*.
|
||
|
|
||
|
Multidimensional overdetermined systems are supported.
|
||
|
You can specify them using a function or a list of functions.
|
||
|
|
||
|
Mathematically speaking, this function returns `x` such that
|
||
|
`|f(x)|^2 \leq \mathrm{tol}` is true within the current working precision.
|
||
|
If the computed value does not meet this criterion, an exception is raised.
|
||
|
This exception can be disabled with *verify=False*.
|
||
|
|
||
|
For interval arithmetic (``iv.findroot()``), please note that
|
||
|
the returned interval ``x`` is not guaranteed to contain `f(x)=0`!
|
||
|
It is only some `x` for which `|f(x)|^2 \leq \mathrm{tol}` certainly holds
|
||
|
regardless of numerical error. This may be improved in the future.
|
||
|
|
||
|
**Arguments**
|
||
|
|
||
|
*f*
|
||
|
one dimensional function
|
||
|
*x0*
|
||
|
starting point, several starting points or interval (depends on solver)
|
||
|
*tol*
|
||
|
the returned solution has an error smaller than this
|
||
|
*verbose*
|
||
|
print additional information for each iteration if true
|
||
|
*verify*
|
||
|
verify the solution and raise a ValueError if `|f(x)|^2 > \mathrm{tol}`
|
||
|
*solver*
|
||
|
a generator for *f* and *x0* returning approximative solution and error
|
||
|
*maxsteps*
|
||
|
after how many steps the solver will cancel
|
||
|
*df*
|
||
|
first derivative of *f* (used by some solvers)
|
||
|
*d2f*
|
||
|
second derivative of *f* (used by some solvers)
|
||
|
*multidimensional*
|
||
|
force multidimensional solving
|
||
|
*J*
|
||
|
Jacobian matrix of *f* (used by multidimensional solvers)
|
||
|
*norm*
|
||
|
used vector norm (used by multidimensional solvers)
|
||
|
|
||
|
solver has to be callable with ``(f, x0, **kwargs)`` and return an generator
|
||
|
yielding pairs of approximative solution and estimated error (which is
|
||
|
expected to be positive).
|
||
|
You can use the following string aliases:
|
||
|
'secant', 'mnewton', 'halley', 'muller', 'illinois', 'pegasus', 'anderson',
|
||
|
'ridder', 'anewton', 'bisect'
|
||
|
|
||
|
See mpmath.calculus.optimization for their documentation.
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
The function :func:`~mpmath.findroot` locates a root of a given function using the
|
||
|
secant method by default. A simple example use of the secant method is to
|
||
|
compute `\pi` as the root of `\sin x` closest to `x_0 = 3`::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 30; mp.pretty = True
|
||
|
>>> findroot(sin, 3)
|
||
|
3.14159265358979323846264338328
|
||
|
|
||
|
The secant method can be used to find complex roots of analytic functions,
|
||
|
although it must in that case generally be given a nonreal starting value
|
||
|
(or else it will never leave the real line)::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> findroot(lambda x: x**3 + 2*x + 1, j)
|
||
|
(0.226698825758202 + 1.46771150871022j)
|
||
|
|
||
|
A nice application is to compute nontrivial roots of the Riemann zeta
|
||
|
function with many digits (good initial values are needed for convergence)::
|
||
|
|
||
|
>>> mp.dps = 30
|
||
|
>>> findroot(zeta, 0.5+14j)
|
||
|
(0.5 + 14.1347251417346937904572519836j)
|
||
|
|
||
|
The secant method can also be used as an optimization algorithm, by passing
|
||
|
it a derivative of a function. The following example locates the positive
|
||
|
minimum of the gamma function::
|
||
|
|
||
|
>>> mp.dps = 20
|
||
|
>>> findroot(lambda x: diff(gamma, x), 1)
|
||
|
1.4616321449683623413
|
||
|
|
||
|
Finally, a useful application is to compute inverse functions, such as the
|
||
|
Lambert W function which is the inverse of `w e^w`, given the first
|
||
|
term of the solution's asymptotic expansion as the initial value. In basic
|
||
|
cases, this gives identical results to mpmath's built-in ``lambertw``
|
||
|
function::
|
||
|
|
||
|
>>> def lambert(x):
|
||
|
... return findroot(lambda w: w*exp(w) - x, log(1+x))
|
||
|
...
|
||
|
>>> mp.dps = 15
|
||
|
>>> lambert(1); lambertw(1)
|
||
|
0.567143290409784
|
||
|
0.567143290409784
|
||
|
>>> lambert(1000); lambert(1000)
|
||
|
5.2496028524016
|
||
|
5.2496028524016
|
||
|
|
||
|
Multidimensional functions are also supported::
|
||
|
|
||
|
>>> f = [lambda x1, x2: x1**2 + x2,
|
||
|
... lambda x1, x2: 5*x1**2 - 3*x1 + 2*x2 - 3]
|
||
|
>>> findroot(f, (0, 0))
|
||
|
[-0.618033988749895]
|
||
|
[-0.381966011250105]
|
||
|
>>> findroot(f, (10, 10))
|
||
|
[ 1.61803398874989]
|
||
|
[-2.61803398874989]
|
||
|
|
||
|
You can verify this by solving the system manually.
|
||
|
|
||
|
Please note that the following (more general) syntax also works::
|
||
|
|
||
|
>>> def f(x1, x2):
|
||
|
... return x1**2 + x2, 5*x1**2 - 3*x1 + 2*x2 - 3
|
||
|
...
|
||
|
>>> findroot(f, (0, 0))
|
||
|
[-0.618033988749895]
|
||
|
[-0.381966011250105]
|
||
|
|
||
|
|
||
|
**Multiple roots**
|
||
|
|
||
|
For multiple roots all methods of the Newtonian family (including secant)
|
||
|
converge slowly. Consider this example::
|
||
|
|
||
|
>>> f = lambda x: (x - 1)**99
|
||
|
>>> findroot(f, 0.9, verify=False)
|
||
|
0.918073542444929
|
||
|
|
||
|
Even for a very close starting point the secant method converges very
|
||
|
slowly. Use ``verbose=True`` to illustrate this.
|
||
|
|
||
|
It is possible to modify Newton's method to make it converge regardless of
|
||
|
the root's multiplicity::
|
||
|
|
||
|
>>> findroot(f, -10, solver='mnewton')
|
||
|
1.0
|
||
|
|
||
|
This variant uses the first and second derivative of the function, which is
|
||
|
not very efficient.
|
||
|
|
||
|
Alternatively you can use an experimental Newtonian solver that keeps track
|
||
|
of the speed of convergence and accelerates it using Steffensen's method if
|
||
|
necessary::
|
||
|
|
||
|
>>> findroot(f, -10, solver='anewton', verbose=True)
|
||
|
x: -9.88888888888888888889
|
||
|
error: 0.111111111111111111111
|
||
|
converging slowly
|
||
|
x: -9.77890011223344556678
|
||
|
error: 0.10998877665544332211
|
||
|
converging slowly
|
||
|
x: -9.67002233332199662166
|
||
|
error: 0.108877778911448945119
|
||
|
converging slowly
|
||
|
accelerating convergence
|
||
|
x: -9.5622443299551077669
|
||
|
error: 0.107778003366888854764
|
||
|
converging slowly
|
||
|
x: 0.99999999999999999214
|
||
|
error: 10.562244329955107759
|
||
|
x: 1.0
|
||
|
error: 7.8598304758094664213e-18
|
||
|
ZeroDivisionError: canceled with x = 1.0
|
||
|
1.0
|
||
|
|
||
|
**Complex roots**
|
||
|
|
||
|
For complex roots it's recommended to use Muller's method as it converges
|
||
|
even for real starting points very fast::
|
||
|
|
||
|
>>> findroot(lambda x: x**4 + x + 1, (0, 1, 2), solver='muller')
|
||
|
(0.727136084491197 + 0.934099289460529j)
|
||
|
|
||
|
|
||
|
**Intersection methods**
|
||
|
|
||
|
When you need to find a root in a known interval, it's highly recommended to
|
||
|
use an intersection-based solver like ``'anderson'`` or ``'ridder'``.
|
||
|
Usually they converge faster and more reliable. They have however problems
|
||
|
with multiple roots and usually need a sign change to find a root::
|
||
|
|
||
|
>>> findroot(lambda x: x**3, (-1, 1), solver='anderson')
|
||
|
0.0
|
||
|
|
||
|
Be careful with symmetric functions::
|
||
|
|
||
|
>>> findroot(lambda x: x**2, (-1, 1), solver='anderson') #doctest:+ELLIPSIS
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ZeroDivisionError
|
||
|
|
||
|
It fails even for better starting points, because there is no sign change::
|
||
|
|
||
|
>>> findroot(lambda x: x**2, (-1, .5), solver='anderson')
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: Could not find root within given tolerance. (1.0 > 2.16840434497100886801e-19)
|
||
|
Try another starting point or tweak arguments.
|
||
|
|
||
|
"""
|
||
|
prec = ctx.prec
|
||
|
try:
|
||
|
ctx.prec += 20
|
||
|
|
||
|
# initialize arguments
|
||
|
if tol is None:
|
||
|
tol = ctx.eps * 2**10
|
||
|
|
||
|
kwargs['verbose'] = kwargs.get('verbose', verbose)
|
||
|
|
||
|
if 'd1f' in kwargs:
|
||
|
kwargs['df'] = kwargs['d1f']
|
||
|
|
||
|
kwargs['tol'] = tol
|
||
|
if isinstance(x0, (list, tuple)):
|
||
|
x0 = [ctx.convert(x) for x in x0]
|
||
|
else:
|
||
|
x0 = [ctx.convert(x0)]
|
||
|
|
||
|
if isinstance(solver, str):
|
||
|
try:
|
||
|
solver = str2solver[solver]
|
||
|
except KeyError:
|
||
|
raise ValueError('could not recognize solver')
|
||
|
|
||
|
# accept list of functions
|
||
|
if isinstance(f, (list, tuple)):
|
||
|
f2 = copy(f)
|
||
|
def tmp(*args):
|
||
|
return [fn(*args) for fn in f2]
|
||
|
f = tmp
|
||
|
|
||
|
# detect multidimensional functions
|
||
|
try:
|
||
|
fx = f(*x0)
|
||
|
multidimensional = isinstance(fx, (list, tuple, ctx.matrix))
|
||
|
except TypeError:
|
||
|
fx = f(x0[0])
|
||
|
multidimensional = False
|
||
|
if 'multidimensional' in kwargs:
|
||
|
multidimensional = kwargs['multidimensional']
|
||
|
if multidimensional:
|
||
|
# only one multidimensional solver available at the moment
|
||
|
solver = MDNewton
|
||
|
if not 'norm' in kwargs:
|
||
|
norm = lambda x: ctx.norm(x, 'inf')
|
||
|
kwargs['norm'] = norm
|
||
|
else:
|
||
|
norm = kwargs['norm']
|
||
|
else:
|
||
|
norm = abs
|
||
|
|
||
|
# happily return starting point if it's a root
|
||
|
if norm(fx) == 0:
|
||
|
if multidimensional:
|
||
|
return ctx.matrix(x0)
|
||
|
else:
|
||
|
return x0[0]
|
||
|
|
||
|
# use solver
|
||
|
iterations = solver(ctx, f, x0, **kwargs)
|
||
|
if 'maxsteps' in kwargs:
|
||
|
maxsteps = kwargs['maxsteps']
|
||
|
else:
|
||
|
maxsteps = iterations.maxsteps
|
||
|
i = 0
|
||
|
for x, error in iterations:
|
||
|
if verbose:
|
||
|
print('x: ', x)
|
||
|
print('error:', error)
|
||
|
i += 1
|
||
|
if error < tol * max(1, norm(x)) or i >= maxsteps:
|
||
|
break
|
||
|
else:
|
||
|
if not i:
|
||
|
raise ValueError('Could not find root using the given solver.\n'
|
||
|
'Try another starting point or tweak arguments.')
|
||
|
if not isinstance(x, (list, tuple, ctx.matrix)):
|
||
|
xl = [x]
|
||
|
else:
|
||
|
xl = x
|
||
|
if verify and norm(f(*xl))**2 > tol: # TODO: better condition?
|
||
|
raise ValueError('Could not find root within given tolerance. '
|
||
|
'(%s > %s)\n'
|
||
|
'Try another starting point or tweak arguments.'
|
||
|
% (norm(f(*xl))**2, tol))
|
||
|
return x
|
||
|
finally:
|
||
|
ctx.prec = prec
|
||
|
|
||
|
|
||
|
def multiplicity(ctx, f, root, tol=None, maxsteps=10, **kwargs):
|
||
|
"""
|
||
|
Return the multiplicity of a given root of f.
|
||
|
|
||
|
Internally, numerical derivatives are used. This might be inefficient for
|
||
|
higher order derviatives. Due to this, ``multiplicity`` cancels after
|
||
|
evaluating 10 derivatives by default. You can be specify the n-th derivative
|
||
|
using the dnf keyword.
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> multiplicity(lambda x: sin(x) - 1, pi/2)
|
||
|
2
|
||
|
|
||
|
"""
|
||
|
if tol is None:
|
||
|
tol = ctx.eps ** 0.8
|
||
|
kwargs['d0f'] = f
|
||
|
for i in xrange(maxsteps):
|
||
|
dfstr = 'd' + str(i) + 'f'
|
||
|
if dfstr in kwargs:
|
||
|
df = kwargs[dfstr]
|
||
|
else:
|
||
|
df = lambda x: ctx.diff(f, x, i)
|
||
|
if not abs(df(root)) < tol:
|
||
|
break
|
||
|
return i
|
||
|
|
||
|
def steffensen(f):
|
||
|
"""
|
||
|
linear convergent function -> quadratic convergent function
|
||
|
|
||
|
Steffensen's method for quadratic convergence of a linear converging
|
||
|
sequence.
|
||
|
Don not use it for higher rates of convergence.
|
||
|
It may even work for divergent sequences.
|
||
|
|
||
|
Definition:
|
||
|
F(x) = (x*f(f(x)) - f(x)**2) / (f(f(x)) - 2*f(x) + x)
|
||
|
|
||
|
Example
|
||
|
.......
|
||
|
|
||
|
You can use Steffensen's method to accelerate a fixpoint iteration of linear
|
||
|
(or less) convergence.
|
||
|
|
||
|
x* is a fixpoint of the iteration x_{k+1} = phi(x_k) if x* = phi(x*). For
|
||
|
phi(x) = x**2 there are two fixpoints: 0 and 1.
|
||
|
|
||
|
Let's try Steffensen's method:
|
||
|
|
||
|
>>> f = lambda x: x**2
|
||
|
>>> from mpmath.calculus.optimization import steffensen
|
||
|
>>> F = steffensen(f)
|
||
|
>>> for x in [0.5, 0.9, 2.0]:
|
||
|
... fx = Fx = x
|
||
|
... for i in xrange(9):
|
||
|
... try:
|
||
|
... fx = f(fx)
|
||
|
... except OverflowError:
|
||
|
... pass
|
||
|
... try:
|
||
|
... Fx = F(Fx)
|
||
|
... except ZeroDivisionError:
|
||
|
... pass
|
||
|
... print('%20g %20g' % (fx, Fx))
|
||
|
0.25 -0.5
|
||
|
0.0625 0.1
|
||
|
0.00390625 -0.0011236
|
||
|
1.52588e-05 1.41691e-09
|
||
|
2.32831e-10 -2.84465e-27
|
||
|
5.42101e-20 2.30189e-80
|
||
|
2.93874e-39 -1.2197e-239
|
||
|
8.63617e-78 0
|
||
|
7.45834e-155 0
|
||
|
0.81 1.02676
|
||
|
0.6561 1.00134
|
||
|
0.430467 1
|
||
|
0.185302 1
|
||
|
0.0343368 1
|
||
|
0.00117902 1
|
||
|
1.39008e-06 1
|
||
|
1.93233e-12 1
|
||
|
3.73392e-24 1
|
||
|
4 1.6
|
||
|
16 1.2962
|
||
|
256 1.10194
|
||
|
65536 1.01659
|
||
|
4.29497e+09 1.00053
|
||
|
1.84467e+19 1
|
||
|
3.40282e+38 1
|
||
|
1.15792e+77 1
|
||
|
1.34078e+154 1
|
||
|
|
||
|
Unmodified, the iteration converges only towards 0. Modified it converges
|
||
|
not only much faster, it converges even to the repelling fixpoint 1.
|
||
|
"""
|
||
|
def F(x):
|
||
|
fx = f(x)
|
||
|
ffx = f(fx)
|
||
|
return (x*ffx - fx**2) / (ffx - 2*fx + x)
|
||
|
return F
|
||
|
|
||
|
OptimizationMethods.jacobian = jacobian
|
||
|
OptimizationMethods.findroot = findroot
|
||
|
OptimizationMethods.multiplicity = multiplicity
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
import doctest
|
||
|
doctest.testmod()
|