214 lines
7.7 KiB
Python
214 lines
7.7 KiB
Python
|
from ..libmp.backend import xrange
|
||
|
from .calculus import defun
|
||
|
|
||
|
#----------------------------------------------------------------------------#
|
||
|
# Polynomials #
|
||
|
#----------------------------------------------------------------------------#
|
||
|
|
||
|
# XXX: extra precision
|
||
|
@defun
|
||
|
def polyval(ctx, coeffs, x, derivative=False):
|
||
|
r"""
|
||
|
Given coefficients `[c_n, \ldots, c_2, c_1, c_0]` and a number `x`,
|
||
|
:func:`~mpmath.polyval` evaluates the polynomial
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
P(x) = c_n x^n + \ldots + c_2 x^2 + c_1 x + c_0.
|
||
|
|
||
|
If *derivative=True* is set, :func:`~mpmath.polyval` simultaneously
|
||
|
evaluates `P(x)` with the derivative, `P'(x)`, and returns the
|
||
|
tuple `(P(x), P'(x))`.
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.pretty = True
|
||
|
>>> polyval([3, 0, 2], 0.5)
|
||
|
2.75
|
||
|
>>> polyval([3, 0, 2], 0.5, derivative=True)
|
||
|
(2.75, 3.0)
|
||
|
|
||
|
The coefficients and the evaluation point may be any combination
|
||
|
of real or complex numbers.
|
||
|
"""
|
||
|
if not coeffs:
|
||
|
return ctx.zero
|
||
|
p = ctx.convert(coeffs[0])
|
||
|
q = ctx.zero
|
||
|
for c in coeffs[1:]:
|
||
|
if derivative:
|
||
|
q = p + x*q
|
||
|
p = c + x*p
|
||
|
if derivative:
|
||
|
return p, q
|
||
|
else:
|
||
|
return p
|
||
|
|
||
|
@defun
|
||
|
def polyroots(ctx, coeffs, maxsteps=50, cleanup=True, extraprec=10,
|
||
|
error=False, roots_init=None):
|
||
|
"""
|
||
|
Computes all roots (real or complex) of a given polynomial.
|
||
|
|
||
|
The roots are returned as a sorted list, where real roots appear first
|
||
|
followed by complex conjugate roots as adjacent elements. The polynomial
|
||
|
should be given as a list of coefficients, in the format used by
|
||
|
:func:`~mpmath.polyval`. The leading coefficient must be nonzero.
|
||
|
|
||
|
With *error=True*, :func:`~mpmath.polyroots` returns a tuple *(roots, err)*
|
||
|
where *err* is an estimate of the maximum error among the computed roots.
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
Finding the three real roots of `x^3 - x^2 - 14x + 24`::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 15; mp.pretty = True
|
||
|
>>> nprint(polyroots([1,-1,-14,24]), 4)
|
||
|
[-4.0, 2.0, 3.0]
|
||
|
|
||
|
Finding the two complex conjugate roots of `4x^2 + 3x + 2`, with an
|
||
|
error estimate::
|
||
|
|
||
|
>>> roots, err = polyroots([4,3,2], error=True)
|
||
|
>>> for r in roots:
|
||
|
... print(r)
|
||
|
...
|
||
|
(-0.375 + 0.59947894041409j)
|
||
|
(-0.375 - 0.59947894041409j)
|
||
|
>>>
|
||
|
>>> err
|
||
|
2.22044604925031e-16
|
||
|
>>>
|
||
|
>>> polyval([4,3,2], roots[0])
|
||
|
(2.22044604925031e-16 + 0.0j)
|
||
|
>>> polyval([4,3,2], roots[1])
|
||
|
(2.22044604925031e-16 + 0.0j)
|
||
|
|
||
|
The following example computes all the 5th roots of unity; that is,
|
||
|
the roots of `x^5 - 1`::
|
||
|
|
||
|
>>> mp.dps = 20
|
||
|
>>> for r in polyroots([1, 0, 0, 0, 0, -1]):
|
||
|
... print(r)
|
||
|
...
|
||
|
1.0
|
||
|
(-0.8090169943749474241 + 0.58778525229247312917j)
|
||
|
(-0.8090169943749474241 - 0.58778525229247312917j)
|
||
|
(0.3090169943749474241 + 0.95105651629515357212j)
|
||
|
(0.3090169943749474241 - 0.95105651629515357212j)
|
||
|
|
||
|
**Precision and conditioning**
|
||
|
|
||
|
The roots are computed to the current working precision accuracy. If this
|
||
|
accuracy cannot be achieved in ``maxsteps`` steps, then a
|
||
|
``NoConvergence`` exception is raised. The algorithm internally is using
|
||
|
the current working precision extended by ``extraprec``. If
|
||
|
``NoConvergence`` was raised, that is caused either by not having enough
|
||
|
extra precision to achieve convergence (in which case increasing
|
||
|
``extraprec`` should fix the problem) or too low ``maxsteps`` (in which
|
||
|
case increasing ``maxsteps`` should fix the problem), or a combination of
|
||
|
both.
|
||
|
|
||
|
The user should always do a convergence study with regards to
|
||
|
``extraprec`` to ensure accurate results. It is possible to get
|
||
|
convergence to a wrong answer with too low ``extraprec``.
|
||
|
|
||
|
Provided there are no repeated roots, :func:`~mpmath.polyroots` can
|
||
|
typically compute all roots of an arbitrary polynomial to high precision::
|
||
|
|
||
|
>>> mp.dps = 60
|
||
|
>>> for r in polyroots([1, 0, -10, 0, 1]):
|
||
|
... print(r)
|
||
|
...
|
||
|
-3.14626436994197234232913506571557044551247712918732870123249
|
||
|
-0.317837245195782244725757617296174288373133378433432554879127
|
||
|
0.317837245195782244725757617296174288373133378433432554879127
|
||
|
3.14626436994197234232913506571557044551247712918732870123249
|
||
|
>>>
|
||
|
>>> sqrt(3) + sqrt(2)
|
||
|
3.14626436994197234232913506571557044551247712918732870123249
|
||
|
>>> sqrt(3) - sqrt(2)
|
||
|
0.317837245195782244725757617296174288373133378433432554879127
|
||
|
|
||
|
**Algorithm**
|
||
|
|
||
|
:func:`~mpmath.polyroots` implements the Durand-Kerner method [1], which
|
||
|
uses complex arithmetic to locate all roots simultaneously.
|
||
|
The Durand-Kerner method can be viewed as approximately performing
|
||
|
simultaneous Newton iteration for all the roots. In particular,
|
||
|
the convergence to simple roots is quadratic, just like Newton's
|
||
|
method.
|
||
|
|
||
|
Although all roots are internally calculated using complex arithmetic, any
|
||
|
root found to have an imaginary part smaller than the estimated numerical
|
||
|
error is truncated to a real number (small real parts are also chopped).
|
||
|
Real roots are placed first in the returned list, sorted by value. The
|
||
|
remaining complex roots are sorted by their real parts so that conjugate
|
||
|
roots end up next to each other.
|
||
|
|
||
|
**References**
|
||
|
|
||
|
1. http://en.wikipedia.org/wiki/Durand-Kerner_method
|
||
|
|
||
|
"""
|
||
|
if len(coeffs) <= 1:
|
||
|
if not coeffs or not coeffs[0]:
|
||
|
raise ValueError("Input to polyroots must not be the zero polynomial")
|
||
|
# Constant polynomial with no roots
|
||
|
return []
|
||
|
|
||
|
orig = ctx.prec
|
||
|
tol = +ctx.eps
|
||
|
with ctx.extraprec(extraprec):
|
||
|
deg = len(coeffs) - 1
|
||
|
# Must be monic
|
||
|
lead = ctx.convert(coeffs[0])
|
||
|
if lead == 1:
|
||
|
coeffs = [ctx.convert(c) for c in coeffs]
|
||
|
else:
|
||
|
coeffs = [c/lead for c in coeffs]
|
||
|
f = lambda x: ctx.polyval(coeffs, x)
|
||
|
if roots_init is None:
|
||
|
roots = [ctx.mpc((0.4+0.9j)**n) for n in xrange(deg)]
|
||
|
else:
|
||
|
roots = [None]*deg;
|
||
|
deg_init = min(deg, len(roots_init))
|
||
|
roots[:deg_init] = list(roots_init[:deg_init])
|
||
|
roots[deg_init:] = [ctx.mpc((0.4+0.9j)**n) for n
|
||
|
in xrange(deg_init,deg)]
|
||
|
err = [ctx.one for n in xrange(deg)]
|
||
|
# Durand-Kerner iteration until convergence
|
||
|
for step in xrange(maxsteps):
|
||
|
if abs(max(err)) < tol:
|
||
|
break
|
||
|
for i in xrange(deg):
|
||
|
p = roots[i]
|
||
|
x = f(p)
|
||
|
for j in range(deg):
|
||
|
if i != j:
|
||
|
try:
|
||
|
x /= (p-roots[j])
|
||
|
except ZeroDivisionError:
|
||
|
continue
|
||
|
roots[i] = p - x
|
||
|
err[i] = abs(x)
|
||
|
if abs(max(err)) >= tol:
|
||
|
raise ctx.NoConvergence("Didn't converge in maxsteps=%d steps." \
|
||
|
% maxsteps)
|
||
|
# Remove small real or imaginary parts
|
||
|
if cleanup:
|
||
|
for i in xrange(deg):
|
||
|
if abs(roots[i]) < tol:
|
||
|
roots[i] = ctx.zero
|
||
|
elif abs(ctx._im(roots[i])) < tol:
|
||
|
roots[i] = roots[i].real
|
||
|
elif abs(ctx._re(roots[i])) < tol:
|
||
|
roots[i] = roots[i].imag * 1j
|
||
|
roots.sort(key=lambda x: (abs(ctx._im(x)), ctx._re(x)))
|
||
|
if error:
|
||
|
err = max(err)
|
||
|
err = max(err, ctx.ldexp(1, -orig+1))
|
||
|
return [+r for r in roots], +err
|
||
|
else:
|
||
|
return [+r for r in roots]
|