1116 lines
41 KiB
Python
1116 lines
41 KiB
Python
|
import math
|
||
|
|
||
|
from ..libmp.backend import xrange
|
||
|
|
||
|
class QuadratureRule(object):
|
||
|
"""
|
||
|
Quadrature rules are implemented using this class, in order to
|
||
|
simplify the code and provide a common infrastructure
|
||
|
for tasks such as error estimation and node caching.
|
||
|
|
||
|
You can implement a custom quadrature rule by subclassing
|
||
|
:class:`QuadratureRule` and implementing the appropriate
|
||
|
methods. The subclass can then be used by :func:`~mpmath.quad` by
|
||
|
passing it as the *method* argument.
|
||
|
|
||
|
:class:`QuadratureRule` instances are supposed to be singletons.
|
||
|
:class:`QuadratureRule` therefore implements instance caching
|
||
|
in :func:`~mpmath.__new__`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, ctx):
|
||
|
self.ctx = ctx
|
||
|
self.standard_cache = {}
|
||
|
self.transformed_cache = {}
|
||
|
self.interval_count = {}
|
||
|
|
||
|
def clear(self):
|
||
|
"""
|
||
|
Delete cached node data.
|
||
|
"""
|
||
|
self.standard_cache = {}
|
||
|
self.transformed_cache = {}
|
||
|
self.interval_count = {}
|
||
|
|
||
|
def calc_nodes(self, degree, prec, verbose=False):
|
||
|
r"""
|
||
|
Compute nodes for the standard interval `[-1, 1]`. Subclasses
|
||
|
should probably implement only this method, and use
|
||
|
:func:`~mpmath.get_nodes` method to retrieve the nodes.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def get_nodes(self, a, b, degree, prec, verbose=False):
|
||
|
"""
|
||
|
Return nodes for given interval, degree and precision. The
|
||
|
nodes are retrieved from a cache if already computed;
|
||
|
otherwise they are computed by calling :func:`~mpmath.calc_nodes`
|
||
|
and are then cached.
|
||
|
|
||
|
Subclasses should probably not implement this method,
|
||
|
but just implement :func:`~mpmath.calc_nodes` for the actual
|
||
|
node computation.
|
||
|
"""
|
||
|
key = (a, b, degree, prec)
|
||
|
if key in self.transformed_cache:
|
||
|
return self.transformed_cache[key]
|
||
|
orig = self.ctx.prec
|
||
|
try:
|
||
|
self.ctx.prec = prec+20
|
||
|
# Get nodes on standard interval
|
||
|
if (degree, prec) in self.standard_cache:
|
||
|
nodes = self.standard_cache[degree, prec]
|
||
|
else:
|
||
|
nodes = self.calc_nodes(degree, prec, verbose)
|
||
|
self.standard_cache[degree, prec] = nodes
|
||
|
# Transform to general interval
|
||
|
nodes = self.transform_nodes(nodes, a, b, verbose)
|
||
|
if key in self.interval_count:
|
||
|
self.transformed_cache[key] = nodes
|
||
|
else:
|
||
|
self.interval_count[key] = True
|
||
|
finally:
|
||
|
self.ctx.prec = orig
|
||
|
return nodes
|
||
|
|
||
|
def transform_nodes(self, nodes, a, b, verbose=False):
|
||
|
r"""
|
||
|
Rescale standardized nodes (for `[-1, 1]`) to a general
|
||
|
interval `[a, b]`. For a finite interval, a simple linear
|
||
|
change of variables is used. Otherwise, the following
|
||
|
transformations are used:
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
\lbrack a, \infty \rbrack : t = \frac{1}{x} + (a-1)
|
||
|
|
||
|
\lbrack -\infty, b \rbrack : t = (b+1) - \frac{1}{x}
|
||
|
|
||
|
\lbrack -\infty, \infty \rbrack : t = \frac{x}{\sqrt{1-x^2}}
|
||
|
|
||
|
"""
|
||
|
ctx = self.ctx
|
||
|
a = ctx.convert(a)
|
||
|
b = ctx.convert(b)
|
||
|
one = ctx.one
|
||
|
if (a, b) == (-one, one):
|
||
|
return nodes
|
||
|
half = ctx.mpf(0.5)
|
||
|
new_nodes = []
|
||
|
if ctx.isinf(a) or ctx.isinf(b):
|
||
|
if (a, b) == (ctx.ninf, ctx.inf):
|
||
|
p05 = -half
|
||
|
for x, w in nodes:
|
||
|
x2 = x*x
|
||
|
px1 = one-x2
|
||
|
spx1 = px1**p05
|
||
|
x = x*spx1
|
||
|
w *= spx1/px1
|
||
|
new_nodes.append((x, w))
|
||
|
elif a == ctx.ninf:
|
||
|
b1 = b+1
|
||
|
for x, w in nodes:
|
||
|
u = 2/(x+one)
|
||
|
x = b1-u
|
||
|
w *= half*u**2
|
||
|
new_nodes.append((x, w))
|
||
|
elif b == ctx.inf:
|
||
|
a1 = a-1
|
||
|
for x, w in nodes:
|
||
|
u = 2/(x+one)
|
||
|
x = a1+u
|
||
|
w *= half*u**2
|
||
|
new_nodes.append((x, w))
|
||
|
elif a == ctx.inf or b == ctx.ninf:
|
||
|
return [(x,-w) for (x,w) in self.transform_nodes(nodes, b, a, verbose)]
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
else:
|
||
|
# Simple linear change of variables
|
||
|
C = (b-a)/2
|
||
|
D = (b+a)/2
|
||
|
for x, w in nodes:
|
||
|
new_nodes.append((D+C*x, C*w))
|
||
|
return new_nodes
|
||
|
|
||
|
def guess_degree(self, prec):
|
||
|
"""
|
||
|
Given a desired precision `p` in bits, estimate the degree `m`
|
||
|
of the quadrature required to accomplish full accuracy for
|
||
|
typical integrals. By default, :func:`~mpmath.quad` will perform up
|
||
|
to `m` iterations. The value of `m` should be a slight
|
||
|
overestimate, so that "slightly bad" integrals can be dealt
|
||
|
with automatically using a few extra iterations. On the
|
||
|
other hand, it should not be too big, so :func:`~mpmath.quad` can
|
||
|
quit within a reasonable amount of time when it is given
|
||
|
an "unsolvable" integral.
|
||
|
|
||
|
The default formula used by :func:`~mpmath.guess_degree` is tuned
|
||
|
for both :class:`TanhSinh` and :class:`GaussLegendre`.
|
||
|
The output is roughly as follows:
|
||
|
|
||
|
+---------+---------+
|
||
|
| `p` | `m` |
|
||
|
+=========+=========+
|
||
|
| 50 | 6 |
|
||
|
+---------+---------+
|
||
|
| 100 | 7 |
|
||
|
+---------+---------+
|
||
|
| 500 | 10 |
|
||
|
+---------+---------+
|
||
|
| 3000 | 12 |
|
||
|
+---------+---------+
|
||
|
|
||
|
This formula is based purely on a limited amount of
|
||
|
experimentation and will sometimes be wrong.
|
||
|
"""
|
||
|
# Expected degree
|
||
|
# XXX: use mag
|
||
|
g = int(4 + max(0, self.ctx.log(prec/30.0, 2)))
|
||
|
# Reasonable "worst case"
|
||
|
g += 2
|
||
|
return g
|
||
|
|
||
|
def estimate_error(self, results, prec, epsilon):
|
||
|
r"""
|
||
|
Given results from integrations `[I_1, I_2, \ldots, I_k]` done
|
||
|
with a quadrature of rule of degree `1, 2, \ldots, k`, estimate
|
||
|
the error of `I_k`.
|
||
|
|
||
|
For `k = 2`, we estimate `|I_{\infty}-I_2|` as `|I_2-I_1|`.
|
||
|
|
||
|
For `k > 2`, we extrapolate `|I_{\infty}-I_k| \approx |I_{k+1}-I_k|`
|
||
|
from `|I_k-I_{k-1}|` and `|I_k-I_{k-2}|` under the assumption
|
||
|
that each degree increment roughly doubles the accuracy of
|
||
|
the quadrature rule (this is true for both :class:`TanhSinh`
|
||
|
and :class:`GaussLegendre`). The extrapolation formula is given
|
||
|
by Borwein, Bailey & Girgensohn. Although not very conservative,
|
||
|
this method seems to be very robust in practice.
|
||
|
"""
|
||
|
if len(results) == 2:
|
||
|
return abs(results[0]-results[1])
|
||
|
try:
|
||
|
if results[-1] == results[-2] == results[-3]:
|
||
|
return self.ctx.zero
|
||
|
D1 = self.ctx.log(abs(results[-1]-results[-2]), 10)
|
||
|
D2 = self.ctx.log(abs(results[-1]-results[-3]), 10)
|
||
|
except ValueError:
|
||
|
return epsilon
|
||
|
D3 = -prec
|
||
|
D4 = min(0, max(D1**2/D2, 2*D1, D3))
|
||
|
return self.ctx.mpf(10) ** int(D4)
|
||
|
|
||
|
def summation(self, f, points, prec, epsilon, max_degree, verbose=False):
|
||
|
"""
|
||
|
Main integration function. Computes the 1D integral over
|
||
|
the interval specified by *points*. For each subinterval,
|
||
|
performs quadrature of degree from 1 up to *max_degree*
|
||
|
until :func:`~mpmath.estimate_error` signals convergence.
|
||
|
|
||
|
:func:`~mpmath.summation` transforms each subintegration to
|
||
|
the standard interval and then calls :func:`~mpmath.sum_next`.
|
||
|
"""
|
||
|
ctx = self.ctx
|
||
|
I = total_err = ctx.zero
|
||
|
for i in xrange(len(points)-1):
|
||
|
a, b = points[i], points[i+1]
|
||
|
if a == b:
|
||
|
continue
|
||
|
# XXX: we could use a single variable transformation,
|
||
|
# but this is not good in practice. We get better accuracy
|
||
|
# by having 0 as an endpoint.
|
||
|
if (a, b) == (ctx.ninf, ctx.inf):
|
||
|
_f = f
|
||
|
f = lambda x: _f(-x) + _f(x)
|
||
|
a, b = (ctx.zero, ctx.inf)
|
||
|
results = []
|
||
|
err = ctx.zero
|
||
|
for degree in xrange(1, max_degree+1):
|
||
|
nodes = self.get_nodes(a, b, degree, prec, verbose)
|
||
|
if verbose:
|
||
|
print("Integrating from %s to %s (degree %s of %s)" % \
|
||
|
(ctx.nstr(a), ctx.nstr(b), degree, max_degree))
|
||
|
result = self.sum_next(f, nodes, degree, prec, results, verbose)
|
||
|
results.append(result)
|
||
|
if degree > 1:
|
||
|
err = self.estimate_error(results, prec, epsilon)
|
||
|
if verbose:
|
||
|
print("Estimated error:", ctx.nstr(err), " epsilon:", ctx.nstr(epsilon), " result: ", ctx.nstr(result))
|
||
|
if err <= epsilon:
|
||
|
break
|
||
|
I += results[-1]
|
||
|
total_err += err
|
||
|
if total_err > epsilon:
|
||
|
if verbose:
|
||
|
print("Failed to reach full accuracy. Estimated error:", ctx.nstr(total_err))
|
||
|
return I, total_err
|
||
|
|
||
|
def sum_next(self, f, nodes, degree, prec, previous, verbose=False):
|
||
|
r"""
|
||
|
Evaluates the step sum `\sum w_k f(x_k)` where the *nodes* list
|
||
|
contains the `(w_k, x_k)` pairs.
|
||
|
|
||
|
:func:`~mpmath.summation` will supply the list *results* of
|
||
|
values computed by :func:`~mpmath.sum_next` at previous degrees, in
|
||
|
case the quadrature rule is able to reuse them.
|
||
|
"""
|
||
|
return self.ctx.fdot((w, f(x)) for (x,w) in nodes)
|
||
|
|
||
|
|
||
|
class TanhSinh(QuadratureRule):
|
||
|
r"""
|
||
|
This class implements "tanh-sinh" or "doubly exponential"
|
||
|
quadrature. This quadrature rule is based on the Euler-Maclaurin
|
||
|
integral formula. By performing a change of variables involving
|
||
|
nested exponentials / hyperbolic functions (hence the name), the
|
||
|
derivatives at the endpoints vanish rapidly. Since the error term
|
||
|
in the Euler-Maclaurin formula depends on the derivatives at the
|
||
|
endpoints, a simple step sum becomes extremely accurate. In
|
||
|
practice, this means that doubling the number of evaluation
|
||
|
points roughly doubles the number of accurate digits.
|
||
|
|
||
|
Comparison to Gauss-Legendre:
|
||
|
* Initial computation of nodes is usually faster
|
||
|
* Handles endpoint singularities better
|
||
|
* Handles infinite integration intervals better
|
||
|
* Is slower for smooth integrands once nodes have been computed
|
||
|
|
||
|
The implementation of the tanh-sinh algorithm is based on the
|
||
|
description given in Borwein, Bailey & Girgensohn, "Experimentation
|
||
|
in Mathematics - Computational Paths to Discovery", A K Peters,
|
||
|
2003, pages 312-313. In the present implementation, a few
|
||
|
improvements have been made:
|
||
|
|
||
|
* A more efficient scheme is used to compute nodes (exploiting
|
||
|
recurrence for the exponential function)
|
||
|
* The nodes are computed successively instead of all at once
|
||
|
|
||
|
**References**
|
||
|
|
||
|
* [Bailey]_
|
||
|
* http://users.cs.dal.ca/~jborwein/tanh-sinh.pdf
|
||
|
|
||
|
"""
|
||
|
|
||
|
def sum_next(self, f, nodes, degree, prec, previous, verbose=False):
|
||
|
"""
|
||
|
Step sum for tanh-sinh quadrature of degree `m`. We exploit the
|
||
|
fact that half of the abscissas at degree `m` are precisely the
|
||
|
abscissas from degree `m-1`. Thus reusing the result from
|
||
|
the previous level allows a 2x speedup.
|
||
|
"""
|
||
|
h = self.ctx.mpf(2)**(-degree)
|
||
|
# Abscissas overlap, so reusing saves half of the time
|
||
|
if previous:
|
||
|
S = previous[-1]/(h*2)
|
||
|
else:
|
||
|
S = self.ctx.zero
|
||
|
S += self.ctx.fdot((w,f(x)) for (x,w) in nodes)
|
||
|
return h*S
|
||
|
|
||
|
def calc_nodes(self, degree, prec, verbose=False):
|
||
|
r"""
|
||
|
The abscissas and weights for tanh-sinh quadrature of degree
|
||
|
`m` are given by
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
x_k = \tanh(\pi/2 \sinh(t_k))
|
||
|
|
||
|
w_k = \pi/2 \cosh(t_k) / \cosh(\pi/2 \sinh(t_k))^2
|
||
|
|
||
|
where `t_k = t_0 + hk` for a step length `h \sim 2^{-m}`. The
|
||
|
list of nodes is actually infinite, but the weights die off so
|
||
|
rapidly that only a few are needed.
|
||
|
"""
|
||
|
ctx = self.ctx
|
||
|
nodes = []
|
||
|
|
||
|
extra = 20
|
||
|
ctx.prec += extra
|
||
|
tol = ctx.ldexp(1, -prec-10)
|
||
|
pi4 = ctx.pi/4
|
||
|
|
||
|
# For simplicity, we work in steps h = 1/2^n, with the first point
|
||
|
# offset so that we can reuse the sum from the previous degree
|
||
|
|
||
|
# We define degree 1 to include the "degree 0" steps, including
|
||
|
# the point x = 0. (It doesn't work well otherwise; not sure why.)
|
||
|
t0 = ctx.ldexp(1, -degree)
|
||
|
if degree == 1:
|
||
|
#nodes.append((mpf(0), pi4))
|
||
|
#nodes.append((-mpf(0), pi4))
|
||
|
nodes.append((ctx.zero, ctx.pi/2))
|
||
|
h = t0
|
||
|
else:
|
||
|
h = t0*2
|
||
|
|
||
|
# Since h is fixed, we can compute the next exponential
|
||
|
# by simply multiplying by exp(h)
|
||
|
expt0 = ctx.exp(t0)
|
||
|
a = pi4 * expt0
|
||
|
b = pi4 / expt0
|
||
|
udelta = ctx.exp(h)
|
||
|
urdelta = 1/udelta
|
||
|
|
||
|
for k in xrange(0, 20*2**degree+1):
|
||
|
# Reference implementation:
|
||
|
# t = t0 + k*h
|
||
|
# x = tanh(pi/2 * sinh(t))
|
||
|
# w = pi/2 * cosh(t) / cosh(pi/2 * sinh(t))**2
|
||
|
|
||
|
# Fast implementation. Note that c = exp(pi/2 * sinh(t))
|
||
|
c = ctx.exp(a-b)
|
||
|
d = 1/c
|
||
|
co = (c+d)/2
|
||
|
si = (c-d)/2
|
||
|
x = si / co
|
||
|
w = (a+b) / co**2
|
||
|
diff = abs(x-1)
|
||
|
if diff <= tol:
|
||
|
break
|
||
|
|
||
|
nodes.append((x, w))
|
||
|
nodes.append((-x, w))
|
||
|
|
||
|
a *= udelta
|
||
|
b *= urdelta
|
||
|
|
||
|
if verbose and k % 300 == 150:
|
||
|
# Note: the number displayed is rather arbitrary. Should
|
||
|
# figure out how to print something that looks more like a
|
||
|
# percentage
|
||
|
print("Calculating nodes:", ctx.nstr(-ctx.log(diff, 10) / prec))
|
||
|
|
||
|
ctx.prec -= extra
|
||
|
return nodes
|
||
|
|
||
|
|
||
|
class GaussLegendre(QuadratureRule):
|
||
|
r"""
|
||
|
This class implements Gauss-Legendre quadrature, which is
|
||
|
exceptionally efficient for polynomials and polynomial-like (i.e.
|
||
|
very smooth) integrands.
|
||
|
|
||
|
The abscissas and weights are given by roots and values of
|
||
|
Legendre polynomials, which are the orthogonal polynomials
|
||
|
on `[-1, 1]` with respect to the unit weight
|
||
|
(see :func:`~mpmath.legendre`).
|
||
|
|
||
|
In this implementation, we take the "degree" `m` of the quadrature
|
||
|
to denote a Gauss-Legendre rule of degree `3 \cdot 2^m` (following
|
||
|
Borwein, Bailey & Girgensohn). This way we get quadratic, rather
|
||
|
than linear, convergence as the degree is incremented.
|
||
|
|
||
|
Comparison to tanh-sinh quadrature:
|
||
|
* Is faster for smooth integrands once nodes have been computed
|
||
|
* Initial computation of nodes is usually slower
|
||
|
* Handles endpoint singularities worse
|
||
|
* Handles infinite integration intervals worse
|
||
|
|
||
|
"""
|
||
|
|
||
|
def calc_nodes(self, degree, prec, verbose=False):
|
||
|
r"""
|
||
|
Calculates the abscissas and weights for Gauss-Legendre
|
||
|
quadrature of degree of given degree (actually `3 \cdot 2^m`).
|
||
|
"""
|
||
|
ctx = self.ctx
|
||
|
# It is important that the epsilon is set lower than the
|
||
|
# "real" epsilon
|
||
|
epsilon = ctx.ldexp(1, -prec-8)
|
||
|
# Fairly high precision might be required for accurate
|
||
|
# evaluation of the roots
|
||
|
orig = ctx.prec
|
||
|
ctx.prec = int(prec*1.5)
|
||
|
if degree == 1:
|
||
|
x = ctx.sqrt(ctx.mpf(3)/5)
|
||
|
w = ctx.mpf(5)/9
|
||
|
nodes = [(-x,w),(ctx.zero,ctx.mpf(8)/9),(x,w)]
|
||
|
ctx.prec = orig
|
||
|
return nodes
|
||
|
nodes = []
|
||
|
n = 3*2**(degree-1)
|
||
|
upto = n//2 + 1
|
||
|
for j in xrange(1, upto):
|
||
|
# Asymptotic formula for the roots
|
||
|
r = ctx.mpf(math.cos(math.pi*(j-0.25)/(n+0.5)))
|
||
|
# Newton iteration
|
||
|
while 1:
|
||
|
t1, t2 = 1, 0
|
||
|
# Evaluates the Legendre polynomial using its defining
|
||
|
# recurrence relation
|
||
|
for j1 in xrange(1,n+1):
|
||
|
t3, t2, t1 = t2, t1, ((2*j1-1)*r*t1 - (j1-1)*t2)/j1
|
||
|
t4 = n*(r*t1-t2)/(r**2-1)
|
||
|
a = t1/t4
|
||
|
r = r - a
|
||
|
if abs(a) < epsilon:
|
||
|
break
|
||
|
x = r
|
||
|
w = 2/((1-r**2)*t4**2)
|
||
|
if verbose and j % 30 == 15:
|
||
|
print("Computing nodes (%i of %i)" % (j, upto))
|
||
|
nodes.append((x, w))
|
||
|
nodes.append((-x, w))
|
||
|
ctx.prec = orig
|
||
|
return nodes
|
||
|
|
||
|
class QuadratureMethods(object):
|
||
|
|
||
|
def __init__(ctx, *args, **kwargs):
|
||
|
ctx._gauss_legendre = GaussLegendre(ctx)
|
||
|
ctx._tanh_sinh = TanhSinh(ctx)
|
||
|
|
||
|
def quad(ctx, f, *points, **kwargs):
|
||
|
r"""
|
||
|
Computes a single, double or triple integral over a given
|
||
|
1D interval, 2D rectangle, or 3D cuboid. A basic example::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 15; mp.pretty = True
|
||
|
>>> quad(sin, [0, pi])
|
||
|
2.0
|
||
|
|
||
|
A basic 2D integral::
|
||
|
|
||
|
>>> f = lambda x, y: cos(x+y/2)
|
||
|
>>> quad(f, [-pi/2, pi/2], [0, pi])
|
||
|
4.0
|
||
|
|
||
|
**Interval format**
|
||
|
|
||
|
The integration range for each dimension may be specified
|
||
|
using a list or tuple. Arguments are interpreted as follows:
|
||
|
|
||
|
``quad(f, [x1, x2])`` -- calculates
|
||
|
`\int_{x_1}^{x_2} f(x) \, dx`
|
||
|
|
||
|
``quad(f, [x1, x2], [y1, y2])`` -- calculates
|
||
|
`\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x,y) \, dy \, dx`
|
||
|
|
||
|
``quad(f, [x1, x2], [y1, y2], [z1, z2])`` -- calculates
|
||
|
`\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} f(x,y,z)
|
||
|
\, dz \, dy \, dx`
|
||
|
|
||
|
Endpoints may be finite or infinite. An interval descriptor
|
||
|
may also contain more than two points. In this
|
||
|
case, the integration is split into subintervals, between
|
||
|
each pair of consecutive points. This is useful for
|
||
|
dealing with mid-interval discontinuities, or integrating
|
||
|
over large intervals where the function is irregular or
|
||
|
oscillates.
|
||
|
|
||
|
**Options**
|
||
|
|
||
|
:func:`~mpmath.quad` recognizes the following keyword arguments:
|
||
|
|
||
|
*method*
|
||
|
Chooses integration algorithm (described below).
|
||
|
*error*
|
||
|
If set to true, :func:`~mpmath.quad` returns `(v, e)` where `v` is the
|
||
|
integral and `e` is the estimated error.
|
||
|
*maxdegree*
|
||
|
Maximum degree of the quadrature rule to try before
|
||
|
quitting.
|
||
|
*verbose*
|
||
|
Print details about progress.
|
||
|
|
||
|
**Algorithms**
|
||
|
|
||
|
Mpmath presently implements two integration algorithms: tanh-sinh
|
||
|
quadrature and Gauss-Legendre quadrature. These can be selected
|
||
|
using *method='tanh-sinh'* or *method='gauss-legendre'* or by
|
||
|
passing the classes *method=TanhSinh*, *method=GaussLegendre*.
|
||
|
The functions :func:`~mpmath.quadts` and :func:`~mpmath.quadgl` are also available
|
||
|
as shortcuts.
|
||
|
|
||
|
Both algorithms have the property that doubling the number of
|
||
|
evaluation points roughly doubles the accuracy, so both are ideal
|
||
|
for high precision quadrature (hundreds or thousands of digits).
|
||
|
|
||
|
At high precision, computing the nodes and weights for the
|
||
|
integration can be expensive (more expensive than computing the
|
||
|
function values). To make repeated integrations fast, nodes
|
||
|
are automatically cached.
|
||
|
|
||
|
The advantages of the tanh-sinh algorithm are that it tends to
|
||
|
handle endpoint singularities well, and that the nodes are cheap
|
||
|
to compute on the first run. For these reasons, it is used by
|
||
|
:func:`~mpmath.quad` as the default algorithm.
|
||
|
|
||
|
Gauss-Legendre quadrature often requires fewer function
|
||
|
evaluations, and is therefore often faster for repeated use, but
|
||
|
the algorithm does not handle endpoint singularities as well and
|
||
|
the nodes are more expensive to compute. Gauss-Legendre quadrature
|
||
|
can be a better choice if the integrand is smooth and repeated
|
||
|
integrations are required (e.g. for multiple integrals).
|
||
|
|
||
|
See the documentation for :class:`TanhSinh` and
|
||
|
:class:`GaussLegendre` for additional details.
|
||
|
|
||
|
**Examples of 1D integrals**
|
||
|
|
||
|
Intervals may be infinite or half-infinite. The following two
|
||
|
examples evaluate the limits of the inverse tangent function
|
||
|
(`\int 1/(1+x^2) = \tan^{-1} x`), and the Gaussian integral
|
||
|
`\int_{\infty}^{\infty} \exp(-x^2)\,dx = \sqrt{\pi}`::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> quad(lambda x: 2/(x**2+1), [0, inf])
|
||
|
3.14159265358979
|
||
|
>>> quad(lambda x: exp(-x**2), [-inf, inf])**2
|
||
|
3.14159265358979
|
||
|
|
||
|
Integrals can typically be resolved to high precision.
|
||
|
The following computes 50 digits of `\pi` by integrating the
|
||
|
area of the half-circle defined by `x^2 + y^2 \le 1`,
|
||
|
`-1 \le x \le 1`, `y \ge 0`::
|
||
|
|
||
|
>>> mp.dps = 50
|
||
|
>>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1])
|
||
|
3.1415926535897932384626433832795028841971693993751
|
||
|
|
||
|
One can just as well compute 1000 digits (output truncated)::
|
||
|
|
||
|
>>> mp.dps = 1000
|
||
|
>>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1]) #doctest:+ELLIPSIS
|
||
|
3.141592653589793238462643383279502884...216420199
|
||
|
|
||
|
Complex integrals are supported. The following computes
|
||
|
a residue at `z = 0` by integrating counterclockwise along the
|
||
|
diamond-shaped path from `1` to `+i` to `-1` to `-i` to `1`::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> chop(quad(lambda z: 1/z, [1,j,-1,-j,1]))
|
||
|
(0.0 + 6.28318530717959j)
|
||
|
|
||
|
**Examples of 2D and 3D integrals**
|
||
|
|
||
|
Here are several nice examples of analytically solvable
|
||
|
2D integrals (taken from MathWorld [1]) that can be evaluated
|
||
|
to high precision fairly rapidly by :func:`~mpmath.quad`::
|
||
|
|
||
|
>>> mp.dps = 30
|
||
|
>>> f = lambda x, y: (x-1)/((1-x*y)*log(x*y))
|
||
|
>>> quad(f, [0, 1], [0, 1])
|
||
|
0.577215664901532860606512090082
|
||
|
>>> +euler
|
||
|
0.577215664901532860606512090082
|
||
|
|
||
|
>>> f = lambda x, y: 1/sqrt(1+x**2+y**2)
|
||
|
>>> quad(f, [-1, 1], [-1, 1])
|
||
|
3.17343648530607134219175646705
|
||
|
>>> 4*log(2+sqrt(3))-2*pi/3
|
||
|
3.17343648530607134219175646705
|
||
|
|
||
|
>>> f = lambda x, y: 1/(1-x**2 * y**2)
|
||
|
>>> quad(f, [0, 1], [0, 1])
|
||
|
1.23370055013616982735431137498
|
||
|
>>> pi**2 / 8
|
||
|
1.23370055013616982735431137498
|
||
|
|
||
|
>>> quad(lambda x, y: 1/(1-x*y), [0, 1], [0, 1])
|
||
|
1.64493406684822643647241516665
|
||
|
>>> pi**2 / 6
|
||
|
1.64493406684822643647241516665
|
||
|
|
||
|
Multiple integrals may be done over infinite ranges::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> print(quad(lambda x,y: exp(-x-y), [0, inf], [1, inf]))
|
||
|
0.367879441171442
|
||
|
>>> print(1/e)
|
||
|
0.367879441171442
|
||
|
|
||
|
For nonrectangular areas, one can call :func:`~mpmath.quad` recursively.
|
||
|
For example, we can replicate the earlier example of calculating
|
||
|
`\pi` by integrating over the unit-circle, and actually use double
|
||
|
quadrature to actually measure the area circle::
|
||
|
|
||
|
>>> f = lambda x: quad(lambda y: 1, [-sqrt(1-x**2), sqrt(1-x**2)])
|
||
|
>>> quad(f, [-1, 1])
|
||
|
3.14159265358979
|
||
|
|
||
|
Here is a simple triple integral::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> f = lambda x,y,z: x*y/(1+z)
|
||
|
>>> quad(f, [0,1], [0,1], [1,2], method='gauss-legendre')
|
||
|
0.101366277027041
|
||
|
>>> (log(3)-log(2))/4
|
||
|
0.101366277027041
|
||
|
|
||
|
**Singularities**
|
||
|
|
||
|
Both tanh-sinh and Gauss-Legendre quadrature are designed to
|
||
|
integrate smooth (infinitely differentiable) functions. Neither
|
||
|
algorithm copes well with mid-interval singularities (such as
|
||
|
mid-interval discontinuities in `f(x)` or `f'(x)`).
|
||
|
The best solution is to split the integral into parts::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> quad(lambda x: abs(sin(x)), [0, 2*pi]) # Bad
|
||
|
3.99900894176779
|
||
|
>>> quad(lambda x: abs(sin(x)), [0, pi, 2*pi]) # Good
|
||
|
4.0
|
||
|
|
||
|
The tanh-sinh rule often works well for integrands having a
|
||
|
singularity at one or both endpoints::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> quad(log, [0, 1], method='tanh-sinh') # Good
|
||
|
-1.0
|
||
|
>>> quad(log, [0, 1], method='gauss-legendre') # Bad
|
||
|
-0.999932197413801
|
||
|
|
||
|
However, the result may still be inaccurate for some functions::
|
||
|
|
||
|
>>> quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh')
|
||
|
1.99999999946942
|
||
|
|
||
|
This problem is not due to the quadrature rule per se, but to
|
||
|
numerical amplification of errors in the nodes. The problem can be
|
||
|
circumvented by temporarily increasing the precision::
|
||
|
|
||
|
>>> mp.dps = 30
|
||
|
>>> a = quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh')
|
||
|
>>> mp.dps = 15
|
||
|
>>> +a
|
||
|
2.0
|
||
|
|
||
|
**Highly variable functions**
|
||
|
|
||
|
For functions that are smooth (in the sense of being infinitely
|
||
|
differentiable) but contain sharp mid-interval peaks or many
|
||
|
"bumps", :func:`~mpmath.quad` may fail to provide full accuracy. For
|
||
|
example, with default settings, :func:`~mpmath.quad` is able to integrate
|
||
|
`\sin(x)` accurately over an interval of length 100 but not over
|
||
|
length 1000::
|
||
|
|
||
|
>>> quad(sin, [0, 100]); 1-cos(100) # Good
|
||
|
0.137681127712316
|
||
|
0.137681127712316
|
||
|
>>> quad(sin, [0, 1000]); 1-cos(1000) # Bad
|
||
|
-37.8587612408485
|
||
|
0.437620923709297
|
||
|
|
||
|
One solution is to break the integration into 10 intervals of
|
||
|
length 100::
|
||
|
|
||
|
>>> quad(sin, linspace(0, 1000, 10)) # Good
|
||
|
0.437620923709297
|
||
|
|
||
|
Another is to increase the degree of the quadrature::
|
||
|
|
||
|
>>> quad(sin, [0, 1000], maxdegree=10) # Also good
|
||
|
0.437620923709297
|
||
|
|
||
|
Whether splitting the interval or increasing the degree is
|
||
|
more efficient differs from case to case. Another example is the
|
||
|
function `1/(1+x^2)`, which has a sharp peak centered around
|
||
|
`x = 0`::
|
||
|
|
||
|
>>> f = lambda x: 1/(1+x**2)
|
||
|
>>> quad(f, [-100, 100]) # Bad
|
||
|
3.64804647105268
|
||
|
>>> quad(f, [-100, 100], maxdegree=10) # Good
|
||
|
3.12159332021646
|
||
|
>>> quad(f, [-100, 0, 100]) # Also good
|
||
|
3.12159332021646
|
||
|
|
||
|
**References**
|
||
|
|
||
|
1. http://mathworld.wolfram.com/DoubleIntegral.html
|
||
|
|
||
|
"""
|
||
|
rule = kwargs.get('method', 'tanh-sinh')
|
||
|
if type(rule) is str:
|
||
|
if rule == 'tanh-sinh':
|
||
|
rule = ctx._tanh_sinh
|
||
|
elif rule == 'gauss-legendre':
|
||
|
rule = ctx._gauss_legendre
|
||
|
else:
|
||
|
raise ValueError("unknown quadrature rule: %s" % rule)
|
||
|
else:
|
||
|
rule = rule(ctx)
|
||
|
verbose = kwargs.get('verbose')
|
||
|
dim = len(points)
|
||
|
orig = prec = ctx.prec
|
||
|
epsilon = ctx.eps/8
|
||
|
m = kwargs.get('maxdegree') or rule.guess_degree(prec)
|
||
|
points = [ctx._as_points(p) for p in points]
|
||
|
try:
|
||
|
ctx.prec += 20
|
||
|
if dim == 1:
|
||
|
v, err = rule.summation(f, points[0], prec, epsilon, m, verbose)
|
||
|
elif dim == 2:
|
||
|
v, err = rule.summation(lambda x: \
|
||
|
rule.summation(lambda y: f(x,y), \
|
||
|
points[1], prec, epsilon, m)[0],
|
||
|
points[0], prec, epsilon, m, verbose)
|
||
|
elif dim == 3:
|
||
|
v, err = rule.summation(lambda x: \
|
||
|
rule.summation(lambda y: \
|
||
|
rule.summation(lambda z: f(x,y,z), \
|
||
|
points[2], prec, epsilon, m)[0],
|
||
|
points[1], prec, epsilon, m)[0],
|
||
|
points[0], prec, epsilon, m, verbose)
|
||
|
else:
|
||
|
raise NotImplementedError("quadrature must have dim 1, 2 or 3")
|
||
|
finally:
|
||
|
ctx.prec = orig
|
||
|
if kwargs.get("error"):
|
||
|
return +v, err
|
||
|
return +v
|
||
|
|
||
|
def quadts(ctx, *args, **kwargs):
|
||
|
"""
|
||
|
Performs tanh-sinh quadrature. The call
|
||
|
|
||
|
quadts(func, *points, ...)
|
||
|
|
||
|
is simply a shortcut for:
|
||
|
|
||
|
quad(func, *points, ..., method=TanhSinh)
|
||
|
|
||
|
For example, a single integral and a double integral:
|
||
|
|
||
|
quadts(lambda x: exp(cos(x)), [0, 1])
|
||
|
quadts(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1])
|
||
|
|
||
|
See the documentation for quad for information about how points
|
||
|
arguments and keyword arguments are parsed.
|
||
|
|
||
|
See documentation for TanhSinh for algorithmic information about
|
||
|
tanh-sinh quadrature.
|
||
|
"""
|
||
|
kwargs['method'] = 'tanh-sinh'
|
||
|
return ctx.quad(*args, **kwargs)
|
||
|
|
||
|
def quadgl(ctx, *args, **kwargs):
|
||
|
"""
|
||
|
Performs Gauss-Legendre quadrature. The call
|
||
|
|
||
|
quadgl(func, *points, ...)
|
||
|
|
||
|
is simply a shortcut for:
|
||
|
|
||
|
quad(func, *points, ..., method=GaussLegendre)
|
||
|
|
||
|
For example, a single integral and a double integral:
|
||
|
|
||
|
quadgl(lambda x: exp(cos(x)), [0, 1])
|
||
|
quadgl(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1])
|
||
|
|
||
|
See the documentation for quad for information about how points
|
||
|
arguments and keyword arguments are parsed.
|
||
|
|
||
|
See documentation for TanhSinh for algorithmic information about
|
||
|
tanh-sinh quadrature.
|
||
|
"""
|
||
|
kwargs['method'] = 'gauss-legendre'
|
||
|
return ctx.quad(*args, **kwargs)
|
||
|
|
||
|
def quadosc(ctx, f, interval, omega=None, period=None, zeros=None):
|
||
|
r"""
|
||
|
Calculates
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
I = \int_a^b f(x) dx
|
||
|
|
||
|
where at least one of `a` and `b` is infinite and where
|
||
|
`f(x) = g(x) \cos(\omega x + \phi)` for some slowly
|
||
|
decreasing function `g(x)`. With proper input, :func:`~mpmath.quadosc`
|
||
|
can also handle oscillatory integrals where the oscillation
|
||
|
rate is different from a pure sine or cosine wave.
|
||
|
|
||
|
In the standard case when `|a| < \infty, b = \infty`,
|
||
|
:func:`~mpmath.quadosc` works by evaluating the infinite series
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
I = \int_a^{x_1} f(x) dx +
|
||
|
\sum_{k=1}^{\infty} \int_{x_k}^{x_{k+1}} f(x) dx
|
||
|
|
||
|
where `x_k` are consecutive zeros (alternatively
|
||
|
some other periodic reference point) of `f(x)`.
|
||
|
Accordingly, :func:`~mpmath.quadosc` requires information about the
|
||
|
zeros of `f(x)`. For a periodic function, you can specify
|
||
|
the zeros by either providing the angular frequency `\omega`
|
||
|
(*omega*) or the *period* `2 \pi/\omega`. In general, you can
|
||
|
specify the `n`-th zero by providing the *zeros* arguments.
|
||
|
Below is an example of each::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 15; mp.pretty = True
|
||
|
>>> f = lambda x: sin(3*x)/(x**2+1)
|
||
|
>>> quadosc(f, [0,inf], omega=3)
|
||
|
0.37833007080198
|
||
|
>>> quadosc(f, [0,inf], period=2*pi/3)
|
||
|
0.37833007080198
|
||
|
>>> quadosc(f, [0,inf], zeros=lambda n: pi*n/3)
|
||
|
0.37833007080198
|
||
|
>>> (ei(3)*exp(-3)-exp(3)*ei(-3))/2 # Computed by Mathematica
|
||
|
0.37833007080198
|
||
|
|
||
|
Note that *zeros* was specified to multiply `n` by the
|
||
|
*half-period*, not the full period. In theory, it does not matter
|
||
|
whether each partial integral is done over a half period or a full
|
||
|
period. However, if done over half-periods, the infinite series
|
||
|
passed to :func:`~mpmath.nsum` becomes an *alternating series* and this
|
||
|
typically makes the extrapolation much more efficient.
|
||
|
|
||
|
Here is an example of an integration over the entire real line,
|
||
|
and a half-infinite integration starting at `-\infty`::
|
||
|
|
||
|
>>> quadosc(lambda x: cos(x)/(1+x**2), [-inf, inf], omega=1)
|
||
|
1.15572734979092
|
||
|
>>> pi/e
|
||
|
1.15572734979092
|
||
|
>>> quadosc(lambda x: cos(x)/x**2, [-inf, -1], period=2*pi)
|
||
|
-0.0844109505595739
|
||
|
>>> cos(1)+si(1)-pi/2
|
||
|
-0.0844109505595738
|
||
|
|
||
|
Of course, the integrand may contain a complex exponential just as
|
||
|
well as a real sine or cosine::
|
||
|
|
||
|
>>> quadosc(lambda x: exp(3*j*x)/(1+x**2), [-inf,inf], omega=3)
|
||
|
(0.156410688228254 + 0.0j)
|
||
|
>>> pi/e**3
|
||
|
0.156410688228254
|
||
|
>>> quadosc(lambda x: exp(3*j*x)/(2+x+x**2), [-inf,inf], omega=3)
|
||
|
(0.00317486988463794 - 0.0447701735209082j)
|
||
|
>>> 2*pi/sqrt(7)/exp(3*(j+sqrt(7))/2)
|
||
|
(0.00317486988463794 - 0.0447701735209082j)
|
||
|
|
||
|
**Non-periodic functions**
|
||
|
|
||
|
If `f(x) = g(x) h(x)` for some function `h(x)` that is not
|
||
|
strictly periodic, *omega* or *period* might not work, and it might
|
||
|
be necessary to use *zeros*.
|
||
|
|
||
|
A notable exception can be made for Bessel functions which, though not
|
||
|
periodic, are "asymptotically periodic" in a sufficiently strong sense
|
||
|
that the sum extrapolation will work out::
|
||
|
|
||
|
>>> quadosc(j0, [0, inf], period=2*pi)
|
||
|
1.0
|
||
|
>>> quadosc(j1, [0, inf], period=2*pi)
|
||
|
1.0
|
||
|
|
||
|
More properly, one should provide the exact Bessel function zeros::
|
||
|
|
||
|
>>> j0zero = lambda n: findroot(j0, pi*(n-0.25))
|
||
|
>>> quadosc(j0, [0, inf], zeros=j0zero)
|
||
|
1.0
|
||
|
|
||
|
For an example where *zeros* becomes necessary, consider the
|
||
|
complete Fresnel integrals
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
\int_0^{\infty} \cos x^2\,dx = \int_0^{\infty} \sin x^2\,dx
|
||
|
= \sqrt{\frac{\pi}{8}}.
|
||
|
|
||
|
Although the integrands do not decrease in magnitude as
|
||
|
`x \to \infty`, the integrals are convergent since the oscillation
|
||
|
rate increases (causing consecutive periods to asymptotically
|
||
|
cancel out). These integrals are virtually impossible to calculate
|
||
|
to any kind of accuracy using standard quadrature rules. However,
|
||
|
if one provides the correct asymptotic distribution of zeros
|
||
|
(`x_n \sim \sqrt{n}`), :func:`~mpmath.quadosc` works::
|
||
|
|
||
|
>>> mp.dps = 30
|
||
|
>>> f = lambda x: cos(x**2)
|
||
|
>>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n))
|
||
|
0.626657068657750125603941321203
|
||
|
>>> f = lambda x: sin(x**2)
|
||
|
>>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n))
|
||
|
0.626657068657750125603941321203
|
||
|
>>> sqrt(pi/8)
|
||
|
0.626657068657750125603941321203
|
||
|
|
||
|
(Interestingly, these integrals can still be evaluated if one
|
||
|
places some other constant than `\pi` in the square root sign.)
|
||
|
|
||
|
In general, if `f(x) \sim g(x) \cos(h(x))`, the zeros follow
|
||
|
the inverse-function distribution `h^{-1}(x)`::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> f = lambda x: sin(exp(x))
|
||
|
>>> quadosc(f, [1,inf], zeros=lambda n: log(n))
|
||
|
-0.25024394235267
|
||
|
>>> pi/2-si(e)
|
||
|
-0.250243942352671
|
||
|
|
||
|
**Non-alternating functions**
|
||
|
|
||
|
If the integrand oscillates around a positive value, without
|
||
|
alternating signs, the extrapolation might fail. A simple trick
|
||
|
that sometimes works is to multiply or divide the frequency by 2::
|
||
|
|
||
|
>>> f = lambda x: 1/x**2+sin(x)/x**4
|
||
|
>>> quadosc(f, [1,inf], omega=1) # Bad
|
||
|
1.28642190869861
|
||
|
>>> quadosc(f, [1,inf], omega=0.5) # Perfect
|
||
|
1.28652953559617
|
||
|
>>> 1+(cos(1)+ci(1)+sin(1))/6
|
||
|
1.28652953559617
|
||
|
|
||
|
**Fast decay**
|
||
|
|
||
|
:func:`~mpmath.quadosc` is primarily useful for slowly decaying
|
||
|
integrands. If the integrand decreases exponentially or faster,
|
||
|
:func:`~mpmath.quad` will likely handle it without trouble (and generally be
|
||
|
much faster than :func:`~mpmath.quadosc`)::
|
||
|
|
||
|
>>> quadosc(lambda x: cos(x)/exp(x), [0, inf], omega=1)
|
||
|
0.5
|
||
|
>>> quad(lambda x: cos(x)/exp(x), [0, inf])
|
||
|
0.5
|
||
|
|
||
|
"""
|
||
|
a, b = ctx._as_points(interval)
|
||
|
a = ctx.convert(a)
|
||
|
b = ctx.convert(b)
|
||
|
if [omega, period, zeros].count(None) != 2:
|
||
|
raise ValueError( \
|
||
|
"must specify exactly one of omega, period, zeros")
|
||
|
if a == ctx.ninf and b == ctx.inf:
|
||
|
s1 = ctx.quadosc(f, [a, 0], omega=omega, zeros=zeros, period=period)
|
||
|
s2 = ctx.quadosc(f, [0, b], omega=omega, zeros=zeros, period=period)
|
||
|
return s1 + s2
|
||
|
if a == ctx.ninf:
|
||
|
if zeros:
|
||
|
return ctx.quadosc(lambda x:f(-x), [-b,-a], lambda n: zeros(-n))
|
||
|
else:
|
||
|
return ctx.quadosc(lambda x:f(-x), [-b,-a], omega=omega, period=period)
|
||
|
if b != ctx.inf:
|
||
|
raise ValueError("quadosc requires an infinite integration interval")
|
||
|
if not zeros:
|
||
|
if omega:
|
||
|
period = 2*ctx.pi/omega
|
||
|
zeros = lambda n: n*period/2
|
||
|
#for n in range(1,10):
|
||
|
# p = zeros(n)
|
||
|
# if p > a:
|
||
|
# break
|
||
|
#if n >= 9:
|
||
|
# raise ValueError("zeros do not appear to be correctly indexed")
|
||
|
n = 1
|
||
|
s = ctx.quadgl(f, [a, zeros(n)])
|
||
|
def term(k):
|
||
|
return ctx.quadgl(f, [zeros(k), zeros(k+1)])
|
||
|
s += ctx.nsum(term, [n, ctx.inf])
|
||
|
return s
|
||
|
|
||
|
def quadsubdiv(ctx, f, interval, tol=None, maxintervals=None, **kwargs):
|
||
|
"""
|
||
|
Computes the integral of *f* over the interval or path specified
|
||
|
by *interval*, using :func:`~mpmath.quad` together with adaptive
|
||
|
subdivision of the interval.
|
||
|
|
||
|
This function gives an accurate answer for some integrals where
|
||
|
:func:`~mpmath.quad` fails::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 15; mp.pretty = True
|
||
|
>>> quad(lambda x: abs(sin(x)), [0, 2*pi])
|
||
|
3.99900894176779
|
||
|
>>> quadsubdiv(lambda x: abs(sin(x)), [0, 2*pi])
|
||
|
4.0
|
||
|
>>> quadsubdiv(sin, [0, 1000])
|
||
|
0.437620923709297
|
||
|
>>> quadsubdiv(lambda x: 1/(1+x**2), [-100, 100])
|
||
|
3.12159332021646
|
||
|
>>> quadsubdiv(lambda x: ceil(x), [0, 100])
|
||
|
5050.0
|
||
|
>>> quadsubdiv(lambda x: sin(x+exp(x)), [0,8])
|
||
|
0.347400172657248
|
||
|
|
||
|
The argument *maxintervals* can be set to limit the permissible
|
||
|
subdivision::
|
||
|
|
||
|
>>> quadsubdiv(lambda x: sin(x**2), [0,100], maxintervals=5, error=True)
|
||
|
(-5.40487904307774, 5.011)
|
||
|
>>> quadsubdiv(lambda x: sin(x**2), [0,100], maxintervals=100, error=True)
|
||
|
(0.631417921866934, 1.10101120134116e-17)
|
||
|
|
||
|
Subdivision does not guarantee a correct answer since, the error
|
||
|
estimate on subintervals may be inaccurate::
|
||
|
|
||
|
>>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, [0,1], error=True)
|
||
|
(0.210802735500549, 1.0001111101e-17)
|
||
|
>>> mp.dps = 20
|
||
|
>>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, [0,1], error=True)
|
||
|
(0.21080273550054927738, 2.200000001e-24)
|
||
|
|
||
|
The second answer is correct. We can get an accurate result at lower
|
||
|
precision by forcing a finer initial subdivision::
|
||
|
|
||
|
>>> mp.dps = 15
|
||
|
>>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, linspace(0,1,5))
|
||
|
0.210802735500549
|
||
|
|
||
|
The following integral is too oscillatory for convergence, but we can get a
|
||
|
reasonable estimate::
|
||
|
|
||
|
>>> v, err = fp.quadsubdiv(lambda x: fp.sin(1/x), [0,1], error=True)
|
||
|
>>> round(v, 6), round(err, 6)
|
||
|
(0.504067, 1e-06)
|
||
|
>>> sin(1) - ci(1)
|
||
|
0.504067061906928
|
||
|
|
||
|
"""
|
||
|
queue = []
|
||
|
for i in range(len(interval)-1):
|
||
|
queue.append((interval[i], interval[i+1]))
|
||
|
total = ctx.zero
|
||
|
total_error = ctx.zero
|
||
|
if maxintervals is None:
|
||
|
maxintervals = 10 * ctx.prec
|
||
|
count = 0
|
||
|
quad_args = kwargs.copy()
|
||
|
quad_args["verbose"] = False
|
||
|
quad_args["error"] = True
|
||
|
if tol is None:
|
||
|
tol = +ctx.eps
|
||
|
orig = ctx.prec
|
||
|
try:
|
||
|
ctx.prec += 5
|
||
|
while queue:
|
||
|
a, b = queue.pop()
|
||
|
s, err = ctx.quad(f, [a, b], **quad_args)
|
||
|
if kwargs.get("verbose"):
|
||
|
print("subinterval", count, a, b, err)
|
||
|
if err < tol or count > maxintervals:
|
||
|
total += s
|
||
|
total_error += err
|
||
|
else:
|
||
|
count += 1
|
||
|
if count == maxintervals and kwargs.get("verbose"):
|
||
|
print("warning: number of intervals exceeded maxintervals")
|
||
|
if a == -ctx.inf and b == ctx.inf:
|
||
|
m = 0
|
||
|
elif a == -ctx.inf:
|
||
|
m = min(b-1, 2*b)
|
||
|
elif b == ctx.inf:
|
||
|
m = max(a+1, 2*a)
|
||
|
else:
|
||
|
m = a + (b - a) / 2
|
||
|
queue.append((a, m))
|
||
|
queue.append((m, b))
|
||
|
finally:
|
||
|
ctx.prec = orig
|
||
|
if kwargs.get("error"):
|
||
|
return +total, +total_error
|
||
|
else:
|
||
|
return +total
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
import doctest
|
||
|
doctest.testmod()
|