426 lines
11 KiB
Python
426 lines
11 KiB
Python
|
from .functions import defun, defun_wrapped
|
||
|
|
||
|
@defun_wrapped
|
||
|
def _erf_complex(ctx, z):
|
||
|
z2 = ctx.square_exp_arg(z, -1)
|
||
|
#z2 = -z**2
|
||
|
v = (2/ctx.sqrt(ctx.pi))*z * ctx.hyp1f1((1,2),(3,2), z2)
|
||
|
if not ctx._re(z):
|
||
|
v = ctx._im(v)*ctx.j
|
||
|
return v
|
||
|
|
||
|
@defun_wrapped
|
||
|
def _erfc_complex(ctx, z):
|
||
|
if ctx.re(z) > 2:
|
||
|
z2 = ctx.square_exp_arg(z)
|
||
|
nz2 = ctx.fneg(z2, exact=True)
|
||
|
v = ctx.exp(nz2)/ctx.sqrt(ctx.pi) * ctx.hyperu((1,2),(1,2), z2)
|
||
|
else:
|
||
|
v = 1 - ctx._erf_complex(z)
|
||
|
if not ctx._re(z):
|
||
|
v = 1+ctx._im(v)*ctx.j
|
||
|
return v
|
||
|
|
||
|
@defun
|
||
|
def erf(ctx, z):
|
||
|
z = ctx.convert(z)
|
||
|
if ctx._is_real_type(z):
|
||
|
try:
|
||
|
return ctx._erf(z)
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
if ctx._is_complex_type(z) and not z.imag:
|
||
|
try:
|
||
|
return type(z)(ctx._erf(z.real))
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
return ctx._erf_complex(z)
|
||
|
|
||
|
@defun
|
||
|
def erfc(ctx, z):
|
||
|
z = ctx.convert(z)
|
||
|
if ctx._is_real_type(z):
|
||
|
try:
|
||
|
return ctx._erfc(z)
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
if ctx._is_complex_type(z) and not z.imag:
|
||
|
try:
|
||
|
return type(z)(ctx._erfc(z.real))
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
return ctx._erfc_complex(z)
|
||
|
|
||
|
@defun
|
||
|
def square_exp_arg(ctx, z, mult=1, reciprocal=False):
|
||
|
prec = ctx.prec*4+20
|
||
|
if reciprocal:
|
||
|
z2 = ctx.fmul(z, z, prec=prec)
|
||
|
z2 = ctx.fdiv(ctx.one, z2, prec=prec)
|
||
|
else:
|
||
|
z2 = ctx.fmul(z, z, prec=prec)
|
||
|
if mult != 1:
|
||
|
z2 = ctx.fmul(z2, mult, exact=True)
|
||
|
return z2
|
||
|
|
||
|
@defun_wrapped
|
||
|
def erfi(ctx, z):
|
||
|
if not z:
|
||
|
return z
|
||
|
z2 = ctx.square_exp_arg(z)
|
||
|
v = (2/ctx.sqrt(ctx.pi)*z) * ctx.hyp1f1((1,2), (3,2), z2)
|
||
|
if not ctx._re(z):
|
||
|
v = ctx._im(v)*ctx.j
|
||
|
return v
|
||
|
|
||
|
@defun_wrapped
|
||
|
def erfinv(ctx, x):
|
||
|
xre = ctx._re(x)
|
||
|
if (xre != x) or (xre < -1) or (xre > 1):
|
||
|
return ctx.bad_domain("erfinv(x) is defined only for -1 <= x <= 1")
|
||
|
x = xre
|
||
|
#if ctx.isnan(x): return x
|
||
|
if not x: return x
|
||
|
if x == 1: return ctx.inf
|
||
|
if x == -1: return ctx.ninf
|
||
|
if abs(x) < 0.9:
|
||
|
a = 0.53728*x**3 + 0.813198*x
|
||
|
else:
|
||
|
# An asymptotic formula
|
||
|
u = ctx.ln(2/ctx.pi/(abs(x)-1)**2)
|
||
|
a = ctx.sign(x) * ctx.sqrt(u - ctx.ln(u))/ctx.sqrt(2)
|
||
|
ctx.prec += 10
|
||
|
return ctx.findroot(lambda t: ctx.erf(t)-x, a)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def npdf(ctx, x, mu=0, sigma=1):
|
||
|
sigma = ctx.convert(sigma)
|
||
|
return ctx.exp(-(x-mu)**2/(2*sigma**2)) / (sigma*ctx.sqrt(2*ctx.pi))
|
||
|
|
||
|
@defun_wrapped
|
||
|
def ncdf(ctx, x, mu=0, sigma=1):
|
||
|
a = (x-mu)/(sigma*ctx.sqrt(2))
|
||
|
if a < 0:
|
||
|
return ctx.erfc(-a)/2
|
||
|
else:
|
||
|
return (1+ctx.erf(a))/2
|
||
|
|
||
|
@defun_wrapped
|
||
|
def betainc(ctx, a, b, x1=0, x2=1, regularized=False):
|
||
|
if x1 == x2:
|
||
|
v = 0
|
||
|
elif not x1:
|
||
|
if x1 == 0 and x2 == 1:
|
||
|
v = ctx.beta(a, b)
|
||
|
else:
|
||
|
v = x2**a * ctx.hyp2f1(a, 1-b, a+1, x2) / a
|
||
|
else:
|
||
|
m, d = ctx.nint_distance(a)
|
||
|
if m <= 0:
|
||
|
if d < -ctx.prec:
|
||
|
h = +ctx.eps
|
||
|
ctx.prec *= 2
|
||
|
a += h
|
||
|
elif d < -4:
|
||
|
ctx.prec -= d
|
||
|
s1 = x2**a * ctx.hyp2f1(a,1-b,a+1,x2)
|
||
|
s2 = x1**a * ctx.hyp2f1(a,1-b,a+1,x1)
|
||
|
v = (s1 - s2) / a
|
||
|
if regularized:
|
||
|
v /= ctx.beta(a,b)
|
||
|
return v
|
||
|
|
||
|
@defun
|
||
|
def gammainc(ctx, z, a=0, b=None, regularized=False):
|
||
|
regularized = bool(regularized)
|
||
|
z = ctx.convert(z)
|
||
|
if a is None:
|
||
|
a = ctx.zero
|
||
|
lower_modified = False
|
||
|
else:
|
||
|
a = ctx.convert(a)
|
||
|
lower_modified = a != ctx.zero
|
||
|
if b is None:
|
||
|
b = ctx.inf
|
||
|
upper_modified = False
|
||
|
else:
|
||
|
b = ctx.convert(b)
|
||
|
upper_modified = b != ctx.inf
|
||
|
# Complete gamma function
|
||
|
if not (upper_modified or lower_modified):
|
||
|
if regularized:
|
||
|
if ctx.re(z) < 0:
|
||
|
return ctx.inf
|
||
|
elif ctx.re(z) > 0:
|
||
|
return ctx.one
|
||
|
else:
|
||
|
return ctx.nan
|
||
|
return ctx.gamma(z)
|
||
|
if a == b:
|
||
|
return ctx.zero
|
||
|
# Standardize
|
||
|
if ctx.re(a) > ctx.re(b):
|
||
|
return -ctx.gammainc(z, b, a, regularized)
|
||
|
# Generalized gamma
|
||
|
if upper_modified and lower_modified:
|
||
|
return +ctx._gamma3(z, a, b, regularized)
|
||
|
# Upper gamma
|
||
|
elif lower_modified:
|
||
|
return ctx._upper_gamma(z, a, regularized)
|
||
|
# Lower gamma
|
||
|
elif upper_modified:
|
||
|
return ctx._lower_gamma(z, b, regularized)
|
||
|
|
||
|
@defun
|
||
|
def _lower_gamma(ctx, z, b, regularized=False):
|
||
|
# Pole
|
||
|
if ctx.isnpint(z):
|
||
|
return type(z)(ctx.inf)
|
||
|
G = [z] * regularized
|
||
|
negb = ctx.fneg(b, exact=True)
|
||
|
def h(z):
|
||
|
T1 = [ctx.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b
|
||
|
return (T1,)
|
||
|
return ctx.hypercomb(h, [z])
|
||
|
|
||
|
@defun
|
||
|
def _upper_gamma(ctx, z, a, regularized=False):
|
||
|
# Fast integer case, when available
|
||
|
if ctx.isint(z):
|
||
|
try:
|
||
|
if regularized:
|
||
|
# Gamma pole
|
||
|
if ctx.isnpint(z):
|
||
|
return type(z)(ctx.zero)
|
||
|
orig = ctx.prec
|
||
|
try:
|
||
|
ctx.prec += 10
|
||
|
return ctx._gamma_upper_int(z, a) / ctx.gamma(z)
|
||
|
finally:
|
||
|
ctx.prec = orig
|
||
|
else:
|
||
|
return ctx._gamma_upper_int(z, a)
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
# hypercomb is unable to detect the exact zeros, so handle them here
|
||
|
if z == 2 and a == -1:
|
||
|
return (z+a)*0
|
||
|
if z == 3 and (a == -1-1j or a == -1+1j):
|
||
|
return (z+a)*0
|
||
|
nega = ctx.fneg(a, exact=True)
|
||
|
G = [z] * regularized
|
||
|
# Use 2F0 series when possible; fall back to lower gamma representation
|
||
|
try:
|
||
|
def h(z):
|
||
|
r = z-1
|
||
|
return [([ctx.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)]
|
||
|
return ctx.hypercomb(h, [z], force_series=True)
|
||
|
except ctx.NoConvergence:
|
||
|
def h(z):
|
||
|
T1 = [], [1, z-1], [z], G, [], [], 0
|
||
|
T2 = [-ctx.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a
|
||
|
return T1, T2
|
||
|
return ctx.hypercomb(h, [z])
|
||
|
|
||
|
@defun
|
||
|
def _gamma3(ctx, z, a, b, regularized=False):
|
||
|
pole = ctx.isnpint(z)
|
||
|
if regularized and pole:
|
||
|
return ctx.zero
|
||
|
try:
|
||
|
ctx.prec += 15
|
||
|
# We don't know in advance whether it's better to write as a difference
|
||
|
# of lower or upper gamma functions, so try both
|
||
|
T1 = ctx.gammainc(z, a, regularized=regularized)
|
||
|
T2 = ctx.gammainc(z, b, regularized=regularized)
|
||
|
R = T1 - T2
|
||
|
if ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10:
|
||
|
return R
|
||
|
if not pole:
|
||
|
T1 = ctx.gammainc(z, 0, b, regularized=regularized)
|
||
|
T2 = ctx.gammainc(z, 0, a, regularized=regularized)
|
||
|
R = T1 - T2
|
||
|
# May be ok, but should probably at least print a warning
|
||
|
# about possible cancellation
|
||
|
if 1: #ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10:
|
||
|
return R
|
||
|
finally:
|
||
|
ctx.prec -= 15
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@defun_wrapped
|
||
|
def expint(ctx, n, z):
|
||
|
if ctx.isint(n) and ctx._is_real_type(z):
|
||
|
try:
|
||
|
return ctx._expint_int(n, z)
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
if ctx.isnan(n) or ctx.isnan(z):
|
||
|
return z*n
|
||
|
if z == ctx.inf:
|
||
|
return 1/z
|
||
|
if z == 0:
|
||
|
# integral from 1 to infinity of t^n
|
||
|
if ctx.re(n) <= 1:
|
||
|
# TODO: reasonable sign of infinity
|
||
|
return type(z)(ctx.inf)
|
||
|
else:
|
||
|
return ctx.one/(n-1)
|
||
|
if n == 0:
|
||
|
return ctx.exp(-z)/z
|
||
|
if n == -1:
|
||
|
return ctx.exp(-z)*(z+1)/z**2
|
||
|
return z**(n-1) * ctx.gammainc(1-n, z)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def li(ctx, z, offset=False):
|
||
|
if offset:
|
||
|
if z == 2:
|
||
|
return ctx.zero
|
||
|
return ctx.ei(ctx.ln(z)) - ctx.ei(ctx.ln2)
|
||
|
if not z:
|
||
|
return z
|
||
|
if z == 1:
|
||
|
return ctx.ninf
|
||
|
return ctx.ei(ctx.ln(z))
|
||
|
|
||
|
@defun
|
||
|
def ei(ctx, z):
|
||
|
try:
|
||
|
return ctx._ei(z)
|
||
|
except NotImplementedError:
|
||
|
return ctx._ei_generic(z)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def _ei_generic(ctx, z):
|
||
|
# Note: the following is currently untested because mp and fp
|
||
|
# both use special-case ei code
|
||
|
if z == ctx.inf:
|
||
|
return z
|
||
|
if z == ctx.ninf:
|
||
|
return ctx.zero
|
||
|
if ctx.mag(z) > 1:
|
||
|
try:
|
||
|
r = ctx.one/z
|
||
|
v = ctx.exp(z)*ctx.hyper([1,1],[],r,
|
||
|
maxterms=ctx.prec, force_series=True)/z
|
||
|
im = ctx._im(z)
|
||
|
if im > 0:
|
||
|
v += ctx.pi*ctx.j
|
||
|
if im < 0:
|
||
|
v -= ctx.pi*ctx.j
|
||
|
return v
|
||
|
except ctx.NoConvergence:
|
||
|
pass
|
||
|
v = z*ctx.hyp2f2(1,1,2,2,z) + ctx.euler
|
||
|
if ctx._im(z):
|
||
|
v += 0.5*(ctx.log(z) - ctx.log(ctx.one/z))
|
||
|
else:
|
||
|
v += ctx.log(abs(z))
|
||
|
return v
|
||
|
|
||
|
@defun
|
||
|
def e1(ctx, z):
|
||
|
try:
|
||
|
return ctx._e1(z)
|
||
|
except NotImplementedError:
|
||
|
return ctx.expint(1, z)
|
||
|
|
||
|
@defun
|
||
|
def ci(ctx, z):
|
||
|
try:
|
||
|
return ctx._ci(z)
|
||
|
except NotImplementedError:
|
||
|
return ctx._ci_generic(z)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def _ci_generic(ctx, z):
|
||
|
if ctx.isinf(z):
|
||
|
if z == ctx.inf: return ctx.zero
|
||
|
if z == ctx.ninf: return ctx.pi*1j
|
||
|
jz = ctx.fmul(ctx.j,z,exact=True)
|
||
|
njz = ctx.fneg(jz,exact=True)
|
||
|
v = 0.5*(ctx.ei(jz) + ctx.ei(njz))
|
||
|
zreal = ctx._re(z)
|
||
|
zimag = ctx._im(z)
|
||
|
if zreal == 0:
|
||
|
if zimag > 0: v += ctx.pi*0.5j
|
||
|
if zimag < 0: v -= ctx.pi*0.5j
|
||
|
if zreal < 0:
|
||
|
if zimag >= 0: v += ctx.pi*1j
|
||
|
if zimag < 0: v -= ctx.pi*1j
|
||
|
if ctx._is_real_type(z) and zreal > 0:
|
||
|
v = ctx._re(v)
|
||
|
return v
|
||
|
|
||
|
@defun
|
||
|
def si(ctx, z):
|
||
|
try:
|
||
|
return ctx._si(z)
|
||
|
except NotImplementedError:
|
||
|
return ctx._si_generic(z)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def _si_generic(ctx, z):
|
||
|
if ctx.isinf(z):
|
||
|
if z == ctx.inf: return 0.5*ctx.pi
|
||
|
if z == ctx.ninf: return -0.5*ctx.pi
|
||
|
# Suffers from cancellation near 0
|
||
|
if ctx.mag(z) >= -1:
|
||
|
jz = ctx.fmul(ctx.j,z,exact=True)
|
||
|
njz = ctx.fneg(jz,exact=True)
|
||
|
v = (-0.5j)*(ctx.ei(jz) - ctx.ei(njz))
|
||
|
zreal = ctx._re(z)
|
||
|
if zreal > 0:
|
||
|
v -= 0.5*ctx.pi
|
||
|
if zreal < 0:
|
||
|
v += 0.5*ctx.pi
|
||
|
if ctx._is_real_type(z):
|
||
|
v = ctx._re(v)
|
||
|
return v
|
||
|
else:
|
||
|
return z*ctx.hyp1f2((1,2),(3,2),(3,2),-0.25*z*z)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def chi(ctx, z):
|
||
|
nz = ctx.fneg(z, exact=True)
|
||
|
v = 0.5*(ctx.ei(z) + ctx.ei(nz))
|
||
|
zreal = ctx._re(z)
|
||
|
zimag = ctx._im(z)
|
||
|
if zimag > 0:
|
||
|
v += ctx.pi*0.5j
|
||
|
elif zimag < 0:
|
||
|
v -= ctx.pi*0.5j
|
||
|
elif zreal < 0:
|
||
|
v += ctx.pi*1j
|
||
|
return v
|
||
|
|
||
|
@defun_wrapped
|
||
|
def shi(ctx, z):
|
||
|
# Suffers from cancellation near 0
|
||
|
if ctx.mag(z) >= -1:
|
||
|
nz = ctx.fneg(z, exact=True)
|
||
|
v = 0.5*(ctx.ei(z) - ctx.ei(nz))
|
||
|
zimag = ctx._im(z)
|
||
|
if zimag > 0: v -= 0.5j*ctx.pi
|
||
|
if zimag < 0: v += 0.5j*ctx.pi
|
||
|
return v
|
||
|
else:
|
||
|
return z * ctx.hyp1f2((1,2),(3,2),(3,2),0.25*z*z)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def fresnels(ctx, z):
|
||
|
if z == ctx.inf:
|
||
|
return ctx.mpf(0.5)
|
||
|
if z == ctx.ninf:
|
||
|
return ctx.mpf(-0.5)
|
||
|
return ctx.pi*z**3/6*ctx.hyp1f2((3,4),(3,2),(7,4),-ctx.pi**2*z**4/16)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def fresnelc(ctx, z):
|
||
|
if z == ctx.inf:
|
||
|
return ctx.mpf(0.5)
|
||
|
if z == ctx.ninf:
|
||
|
return ctx.mpf(-0.5)
|
||
|
return z*ctx.hyp1f2((1,4),(1,2),(5,4),-ctx.pi**2*z**4/16)
|