494 lines
16 KiB
Python
494 lines
16 KiB
Python
|
from .functions import defun, defun_wrapped
|
||
|
|
||
|
def _hermite_param(ctx, n, z, parabolic_cylinder):
|
||
|
"""
|
||
|
Combined calculation of the Hermite polynomial H_n(z) (and its
|
||
|
generalization to complex n) and the parabolic cylinder
|
||
|
function D.
|
||
|
"""
|
||
|
n, ntyp = ctx._convert_param(n)
|
||
|
z = ctx.convert(z)
|
||
|
q = -ctx.mpq_1_2
|
||
|
# For re(z) > 0, 2F0 -- http://functions.wolfram.com/
|
||
|
# HypergeometricFunctions/HermiteHGeneral/06/02/0009/
|
||
|
# Otherwise, there is a reflection formula
|
||
|
# 2F0 + http://functions.wolfram.com/HypergeometricFunctions/
|
||
|
# HermiteHGeneral/16/01/01/0006/
|
||
|
#
|
||
|
# TODO:
|
||
|
# An alternative would be to use
|
||
|
# http://functions.wolfram.com/HypergeometricFunctions/
|
||
|
# HermiteHGeneral/06/02/0006/
|
||
|
#
|
||
|
# Also, the 1F1 expansion
|
||
|
# http://functions.wolfram.com/HypergeometricFunctions/
|
||
|
# HermiteHGeneral/26/01/02/0001/
|
||
|
# should probably be used for tiny z
|
||
|
if not z:
|
||
|
T1 = [2, ctx.pi], [n, 0.5], [], [q*(n-1)], [], [], 0
|
||
|
if parabolic_cylinder:
|
||
|
T1[1][0] += q*n
|
||
|
return T1,
|
||
|
can_use_2f0 = ctx.isnpint(-n) or ctx.re(z) > 0 or \
|
||
|
(ctx.re(z) == 0 and ctx.im(z) > 0)
|
||
|
expprec = ctx.prec*4 + 20
|
||
|
if parabolic_cylinder:
|
||
|
u = ctx.fmul(ctx.fmul(z,z,prec=expprec), -0.25, exact=True)
|
||
|
w = ctx.fmul(z, ctx.sqrt(0.5,prec=expprec), prec=expprec)
|
||
|
else:
|
||
|
w = z
|
||
|
w2 = ctx.fmul(w, w, prec=expprec)
|
||
|
rw2 = ctx.fdiv(1, w2, prec=expprec)
|
||
|
nrw2 = ctx.fneg(rw2, exact=True)
|
||
|
nw = ctx.fneg(w, exact=True)
|
||
|
if can_use_2f0:
|
||
|
T1 = [2, w], [n, n], [], [], [q*n, q*(n-1)], [], nrw2
|
||
|
terms = [T1]
|
||
|
else:
|
||
|
T1 = [2, nw], [n, n], [], [], [q*n, q*(n-1)], [], nrw2
|
||
|
T2 = [2, ctx.pi, nw], [n+2, 0.5, 1], [], [q*n], [q*(n-1)], [1-q], w2
|
||
|
terms = [T1,T2]
|
||
|
# Multiply by prefactor for D_n
|
||
|
if parabolic_cylinder:
|
||
|
expu = ctx.exp(u)
|
||
|
for i in range(len(terms)):
|
||
|
terms[i][1][0] += q*n
|
||
|
terms[i][0].append(expu)
|
||
|
terms[i][1].append(1)
|
||
|
return tuple(terms)
|
||
|
|
||
|
@defun
|
||
|
def hermite(ctx, n, z, **kwargs):
|
||
|
return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 0), [], **kwargs)
|
||
|
|
||
|
@defun
|
||
|
def pcfd(ctx, n, z, **kwargs):
|
||
|
r"""
|
||
|
Gives the parabolic cylinder function in Whittaker's notation
|
||
|
`D_n(z) = U(-n-1/2, z)` (see :func:`~mpmath.pcfu`).
|
||
|
It solves the differential equation
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0.
|
||
|
|
||
|
and can be represented in terms of Hermite polynomials
|
||
|
(see :func:`~mpmath.hermite`) as
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right).
|
||
|
|
||
|
**Plots**
|
||
|
|
||
|
.. literalinclude :: /plots/pcfd.py
|
||
|
.. image :: /plots/pcfd.png
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 25; mp.pretty = True
|
||
|
>>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0)
|
||
|
1.0
|
||
|
0.0
|
||
|
-1.0
|
||
|
0.0
|
||
|
>>> pcfd(4,0); pcfd(-3,0)
|
||
|
3.0
|
||
|
0.6266570686577501256039413
|
||
|
>>> pcfd('1/2', 2+3j)
|
||
|
(-5.363331161232920734849056 - 3.858877821790010714163487j)
|
||
|
>>> pcfd(2, -10)
|
||
|
1.374906442631438038871515e-9
|
||
|
|
||
|
Verifying the differential equation::
|
||
|
|
||
|
>>> n = mpf(2.5)
|
||
|
>>> y = lambda z: pcfd(n,z)
|
||
|
>>> z = 1.75
|
||
|
>>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z))
|
||
|
0.0
|
||
|
|
||
|
Rational Taylor series expansion when `n` is an integer::
|
||
|
|
||
|
>>> taylor(lambda z: pcfd(5,z), 0, 7)
|
||
|
[0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625]
|
||
|
|
||
|
"""
|
||
|
return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 1), [], **kwargs)
|
||
|
|
||
|
@defun
|
||
|
def pcfu(ctx, a, z, **kwargs):
|
||
|
r"""
|
||
|
Gives the parabolic cylinder function `U(a,z)`, which may be
|
||
|
defined for `\Re(z) > 0` in terms of the confluent
|
||
|
U-function (see :func:`~mpmath.hyperu`) by
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2}
|
||
|
U\left(\frac{a}{2}+\frac{1}{4},
|
||
|
\frac{1}{2}, \frac{1}{2}z^2\right)
|
||
|
|
||
|
or, for arbitrary `z`,
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
e^{-\frac{1}{4}z^2} U(a,z) =
|
||
|
U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4};
|
||
|
\tfrac{1}{2}; -\tfrac{1}{2}z^2\right) +
|
||
|
U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4};
|
||
|
\tfrac{3}{2}; -\tfrac{1}{2}z^2\right).
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
Connection to other functions::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 25; mp.pretty = True
|
||
|
>>> z = mpf(3)
|
||
|
>>> pcfu(0.5,z)
|
||
|
0.03210358129311151450551963
|
||
|
>>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2))
|
||
|
0.03210358129311151450551963
|
||
|
>>> pcfu(0.5,-z)
|
||
|
23.75012332835297233711255
|
||
|
>>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2))
|
||
|
23.75012332835297233711255
|
||
|
>>> pcfu(0.5,-z)
|
||
|
23.75012332835297233711255
|
||
|
>>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2))
|
||
|
23.75012332835297233711255
|
||
|
|
||
|
"""
|
||
|
n, _ = ctx._convert_param(a)
|
||
|
return ctx.pcfd(-n-ctx.mpq_1_2, z)
|
||
|
|
||
|
@defun
|
||
|
def pcfv(ctx, a, z, **kwargs):
|
||
|
r"""
|
||
|
Gives the parabolic cylinder function `V(a,z)`, which can be
|
||
|
represented in terms of :func:`~mpmath.pcfu` as
|
||
|
|
||
|
.. math ::
|
||
|
|
||
|
V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}.
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
Wronskian relation between `U` and `V`::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 25; mp.pretty = True
|
||
|
>>> a, z = 2, 3
|
||
|
>>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
|
||
|
0.7978845608028653558798921
|
||
|
>>> sqrt(2/pi)
|
||
|
0.7978845608028653558798921
|
||
|
>>> a, z = 2.5, 3
|
||
|
>>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
|
||
|
0.7978845608028653558798921
|
||
|
>>> a, z = 0.25, -1
|
||
|
>>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)
|
||
|
0.7978845608028653558798921
|
||
|
>>> a, z = 2+1j, 2+3j
|
||
|
>>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z))
|
||
|
0.7978845608028653558798921
|
||
|
|
||
|
"""
|
||
|
n, ntype = ctx._convert_param(a)
|
||
|
z = ctx.convert(z)
|
||
|
q = ctx.mpq_1_2
|
||
|
r = ctx.mpq_1_4
|
||
|
if ntype == 'Q' and ctx.isint(n*2):
|
||
|
# Faster for half-integers
|
||
|
def h():
|
||
|
jz = ctx.fmul(z, -1j, exact=True)
|
||
|
T1terms = _hermite_param(ctx, -n-q, z, 1)
|
||
|
T2terms = _hermite_param(ctx, n-q, jz, 1)
|
||
|
for T in T1terms:
|
||
|
T[0].append(1j)
|
||
|
T[1].append(1)
|
||
|
T[3].append(q-n)
|
||
|
u = ctx.expjpi((q*n-r)) * ctx.sqrt(2/ctx.pi)
|
||
|
for T in T2terms:
|
||
|
T[0].append(u)
|
||
|
T[1].append(1)
|
||
|
return T1terms + T2terms
|
||
|
v = ctx.hypercomb(h, [], **kwargs)
|
||
|
if ctx._is_real_type(n) and ctx._is_real_type(z):
|
||
|
v = ctx._re(v)
|
||
|
return v
|
||
|
else:
|
||
|
def h(n):
|
||
|
w = ctx.square_exp_arg(z, -0.25)
|
||
|
u = ctx.square_exp_arg(z, 0.5)
|
||
|
e = ctx.exp(w)
|
||
|
l = [ctx.pi, q, ctx.exp(w)]
|
||
|
Y1 = l, [-q, n*q+r, 1], [r-q*n], [], [q*n+r], [q], u
|
||
|
Y2 = l + [z], [-q, n*q-r, 1, 1], [1-r-q*n], [], [q*n+1-r], [1+q], u
|
||
|
c, s = ctx.cospi_sinpi(r+q*n)
|
||
|
Y1[0].append(s)
|
||
|
Y2[0].append(c)
|
||
|
for Y in (Y1, Y2):
|
||
|
Y[1].append(1)
|
||
|
Y[3].append(q-n)
|
||
|
return Y1, Y2
|
||
|
return ctx.hypercomb(h, [n], **kwargs)
|
||
|
|
||
|
|
||
|
@defun
|
||
|
def pcfw(ctx, a, z, **kwargs):
|
||
|
r"""
|
||
|
Gives the parabolic cylinder function `W(a,z)` defined in (DLMF 12.14).
|
||
|
|
||
|
**Examples**
|
||
|
|
||
|
Value at the origin::
|
||
|
|
||
|
>>> from mpmath import *
|
||
|
>>> mp.dps = 25; mp.pretty = True
|
||
|
>>> a = mpf(0.25)
|
||
|
>>> pcfw(a,0)
|
||
|
0.9722833245718180765617104
|
||
|
>>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a)))
|
||
|
0.9722833245718180765617104
|
||
|
>>> diff(pcfw,(a,0),(0,1))
|
||
|
-0.5142533944210078966003624
|
||
|
>>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a)))
|
||
|
-0.5142533944210078966003624
|
||
|
|
||
|
"""
|
||
|
n, _ = ctx._convert_param(a)
|
||
|
z = ctx.convert(z)
|
||
|
def terms():
|
||
|
phi2 = ctx.arg(ctx.gamma(0.5 + ctx.j*n))
|
||
|
phi2 = (ctx.loggamma(0.5+ctx.j*n) - ctx.loggamma(0.5-ctx.j*n))/2j
|
||
|
rho = ctx.pi/8 + 0.5*phi2
|
||
|
# XXX: cancellation computing k
|
||
|
k = ctx.sqrt(1 + ctx.exp(2*ctx.pi*n)) - ctx.exp(ctx.pi*n)
|
||
|
C = ctx.sqrt(k/2) * ctx.exp(0.25*ctx.pi*n)
|
||
|
yield C * ctx.expj(rho) * ctx.pcfu(ctx.j*n, z*ctx.expjpi(-0.25))
|
||
|
yield C * ctx.expj(-rho) * ctx.pcfu(-ctx.j*n, z*ctx.expjpi(0.25))
|
||
|
v = ctx.sum_accurately(terms)
|
||
|
if ctx._is_real_type(n) and ctx._is_real_type(z):
|
||
|
v = ctx._re(v)
|
||
|
return v
|
||
|
|
||
|
"""
|
||
|
Even/odd PCFs. Useful?
|
||
|
|
||
|
@defun
|
||
|
def pcfy1(ctx, a, z, **kwargs):
|
||
|
a, _ = ctx._convert_param(n)
|
||
|
z = ctx.convert(z)
|
||
|
def h():
|
||
|
w = ctx.square_exp_arg(z)
|
||
|
w1 = ctx.fmul(w, -0.25, exact=True)
|
||
|
w2 = ctx.fmul(w, 0.5, exact=True)
|
||
|
e = ctx.exp(w1)
|
||
|
return [e], [1], [], [], [ctx.mpq_1_2*a+ctx.mpq_1_4], [ctx.mpq_1_2], w2
|
||
|
return ctx.hypercomb(h, [], **kwargs)
|
||
|
|
||
|
@defun
|
||
|
def pcfy2(ctx, a, z, **kwargs):
|
||
|
a, _ = ctx._convert_param(n)
|
||
|
z = ctx.convert(z)
|
||
|
def h():
|
||
|
w = ctx.square_exp_arg(z)
|
||
|
w1 = ctx.fmul(w, -0.25, exact=True)
|
||
|
w2 = ctx.fmul(w, 0.5, exact=True)
|
||
|
e = ctx.exp(w1)
|
||
|
return [e, z], [1, 1], [], [], [ctx.mpq_1_2*a+ctx.mpq_3_4], \
|
||
|
[ctx.mpq_3_2], w2
|
||
|
return ctx.hypercomb(h, [], **kwargs)
|
||
|
"""
|
||
|
|
||
|
@defun_wrapped
|
||
|
def gegenbauer(ctx, n, a, z, **kwargs):
|
||
|
# Special cases: a+0.5, a*2 poles
|
||
|
if ctx.isnpint(a):
|
||
|
return 0*(z+n)
|
||
|
if ctx.isnpint(a+0.5):
|
||
|
# TODO: something else is required here
|
||
|
# E.g.: gegenbauer(-2, -0.5, 3) == -12
|
||
|
if ctx.isnpint(n+1):
|
||
|
raise NotImplementedError("Gegenbauer function with two limits")
|
||
|
def h(a):
|
||
|
a2 = 2*a
|
||
|
T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z)
|
||
|
return [T]
|
||
|
return ctx.hypercomb(h, [a], **kwargs)
|
||
|
def h(n):
|
||
|
a2 = 2*a
|
||
|
T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z)
|
||
|
return [T]
|
||
|
return ctx.hypercomb(h, [n], **kwargs)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def jacobi(ctx, n, a, b, x, **kwargs):
|
||
|
if not ctx.isnpint(a):
|
||
|
def h(n):
|
||
|
return (([], [], [a+n+1], [n+1, a+1], [-n, a+b+n+1], [a+1], (1-x)*0.5),)
|
||
|
return ctx.hypercomb(h, [n], **kwargs)
|
||
|
if not ctx.isint(b):
|
||
|
def h(n, a):
|
||
|
return (([], [], [-b], [n+1, -b-n], [-n, a+b+n+1], [b+1], (x+1)*0.5),)
|
||
|
return ctx.hypercomb(h, [n, a], **kwargs)
|
||
|
# XXX: determine appropriate limit
|
||
|
return ctx.binomial(n+a,n) * ctx.hyp2f1(-n,1+n+a+b,a+1,(1-x)/2, **kwargs)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def laguerre(ctx, n, a, z, **kwargs):
|
||
|
# XXX: limits, poles
|
||
|
#if ctx.isnpint(n):
|
||
|
# return 0*(a+z)
|
||
|
def h(a):
|
||
|
return (([], [], [a+n+1], [a+1, n+1], [-n], [a+1], z),)
|
||
|
return ctx.hypercomb(h, [a], **kwargs)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def legendre(ctx, n, x, **kwargs):
|
||
|
if ctx.isint(n):
|
||
|
n = int(n)
|
||
|
# Accuracy near zeros
|
||
|
if (n + (n < 0)) & 1:
|
||
|
if not x:
|
||
|
return x
|
||
|
mag = ctx.mag(x)
|
||
|
if mag < -2*ctx.prec-10:
|
||
|
return x
|
||
|
if mag < -5:
|
||
|
ctx.prec += -mag
|
||
|
return ctx.hyp2f1(-n,n+1,1,(1-x)/2, **kwargs)
|
||
|
|
||
|
@defun
|
||
|
def legenp(ctx, n, m, z, type=2, **kwargs):
|
||
|
# Legendre function, 1st kind
|
||
|
n = ctx.convert(n)
|
||
|
m = ctx.convert(m)
|
||
|
# Faster
|
||
|
if not m:
|
||
|
return ctx.legendre(n, z, **kwargs)
|
||
|
# TODO: correct evaluation at singularities
|
||
|
if type == 2:
|
||
|
def h(n,m):
|
||
|
g = m*0.5
|
||
|
T = [1+z, 1-z], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z)
|
||
|
return (T,)
|
||
|
return ctx.hypercomb(h, [n,m], **kwargs)
|
||
|
if type == 3:
|
||
|
def h(n,m):
|
||
|
g = m*0.5
|
||
|
T = [z+1, z-1], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z)
|
||
|
return (T,)
|
||
|
return ctx.hypercomb(h, [n,m], **kwargs)
|
||
|
raise ValueError("requires type=2 or type=3")
|
||
|
|
||
|
@defun
|
||
|
def legenq(ctx, n, m, z, type=2, **kwargs):
|
||
|
# Legendre function, 2nd kind
|
||
|
n = ctx.convert(n)
|
||
|
m = ctx.convert(m)
|
||
|
z = ctx.convert(z)
|
||
|
if z in (1, -1):
|
||
|
#if ctx.isint(m):
|
||
|
# return ctx.nan
|
||
|
#return ctx.inf # unsigned
|
||
|
return ctx.nan
|
||
|
if type == 2:
|
||
|
def h(n, m):
|
||
|
cos, sin = ctx.cospi_sinpi(m)
|
||
|
s = 2 * sin / ctx.pi
|
||
|
c = cos
|
||
|
a = 1+z
|
||
|
b = 1-z
|
||
|
u = m/2
|
||
|
w = (1-z)/2
|
||
|
T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \
|
||
|
[-n, n+1], [1-m], w
|
||
|
T2 = [-s, a, b], [-1, -u, u], [n+m+1], [n-m+1, m+1], \
|
||
|
[-n, n+1], [m+1], w
|
||
|
return T1, T2
|
||
|
return ctx.hypercomb(h, [n, m], **kwargs)
|
||
|
if type == 3:
|
||
|
# The following is faster when there only is a single series
|
||
|
# Note: not valid for -1 < z < 0 (?)
|
||
|
if abs(z) > 1:
|
||
|
def h(n, m):
|
||
|
T1 = [ctx.expjpi(m), 2, ctx.pi, z, z-1, z+1], \
|
||
|
[1, -n-1, 0.5, -n-m-1, 0.5*m, 0.5*m], \
|
||
|
[n+m+1], [n+1.5], \
|
||
|
[0.5*(2+n+m), 0.5*(1+n+m)], [n+1.5], z**(-2)
|
||
|
return [T1]
|
||
|
return ctx.hypercomb(h, [n, m], **kwargs)
|
||
|
else:
|
||
|
# not valid for 1 < z < inf ?
|
||
|
def h(n, m):
|
||
|
s = 2 * ctx.sinpi(m) / ctx.pi
|
||
|
c = ctx.expjpi(m)
|
||
|
a = 1+z
|
||
|
b = z-1
|
||
|
u = m/2
|
||
|
w = (1-z)/2
|
||
|
T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \
|
||
|
[-n, n+1], [1-m], w
|
||
|
T2 = [-s, c, a, b], [-1, 1, -u, u], [n+m+1], [n-m+1, m+1], \
|
||
|
[-n, n+1], [m+1], w
|
||
|
return T1, T2
|
||
|
return ctx.hypercomb(h, [n, m], **kwargs)
|
||
|
raise ValueError("requires type=2 or type=3")
|
||
|
|
||
|
@defun_wrapped
|
||
|
def chebyt(ctx, n, x, **kwargs):
|
||
|
if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1:
|
||
|
return x * 0
|
||
|
return ctx.hyp2f1(-n,n,(1,2),(1-x)/2, **kwargs)
|
||
|
|
||
|
@defun_wrapped
|
||
|
def chebyu(ctx, n, x, **kwargs):
|
||
|
if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1:
|
||
|
return x * 0
|
||
|
return (n+1) * ctx.hyp2f1(-n, n+2, (3,2), (1-x)/2, **kwargs)
|
||
|
|
||
|
@defun
|
||
|
def spherharm(ctx, l, m, theta, phi, **kwargs):
|
||
|
l = ctx.convert(l)
|
||
|
m = ctx.convert(m)
|
||
|
theta = ctx.convert(theta)
|
||
|
phi = ctx.convert(phi)
|
||
|
l_isint = ctx.isint(l)
|
||
|
l_natural = l_isint and l >= 0
|
||
|
m_isint = ctx.isint(m)
|
||
|
if l_isint and l < 0 and m_isint:
|
||
|
return ctx.spherharm(-(l+1), m, theta, phi, **kwargs)
|
||
|
if theta == 0 and m_isint and m < 0:
|
||
|
return ctx.zero * 1j
|
||
|
if l_natural and m_isint:
|
||
|
if abs(m) > l:
|
||
|
return ctx.zero * 1j
|
||
|
# http://functions.wolfram.com/Polynomials/
|
||
|
# SphericalHarmonicY/26/01/02/0004/
|
||
|
def h(l,m):
|
||
|
absm = abs(m)
|
||
|
C = [-1, ctx.expj(m*phi),
|
||
|
(2*l+1)*ctx.fac(l+absm)/ctx.pi/ctx.fac(l-absm),
|
||
|
ctx.sin(theta)**2,
|
||
|
ctx.fac(absm), 2]
|
||
|
P = [0.5*m*(ctx.sign(m)+1), 1, 0.5, 0.5*absm, -1, -absm-1]
|
||
|
return ((C, P, [], [], [absm-l, l+absm+1], [absm+1],
|
||
|
ctx.sin(0.5*theta)**2),)
|
||
|
else:
|
||
|
# http://functions.wolfram.com/HypergeometricFunctions/
|
||
|
# SphericalHarmonicYGeneral/26/01/02/0001/
|
||
|
def h(l,m):
|
||
|
if ctx.isnpint(l-m+1) or ctx.isnpint(l+m+1) or ctx.isnpint(1-m):
|
||
|
return (([0], [-1], [], [], [], [], 0),)
|
||
|
cos, sin = ctx.cos_sin(0.5*theta)
|
||
|
C = [0.5*ctx.expj(m*phi), (2*l+1)/ctx.pi,
|
||
|
ctx.gamma(l-m+1), ctx.gamma(l+m+1),
|
||
|
cos**2, sin**2]
|
||
|
P = [1, 0.5, 0.5, -0.5, 0.5*m, -0.5*m]
|
||
|
return ((C, P, [], [1-m], [-l,l+1], [1-m], sin**2),)
|
||
|
return ctx.hypercomb(h, [l,m], **kwargs)
|