2363 lines
87 KiB
Python
2363 lines
87 KiB
Python
|
"""
|
||
|
fitpack --- curve and surface fitting with splines
|
||
|
|
||
|
fitpack is based on a collection of Fortran routines DIERCKX
|
||
|
by P. Dierckx (see http://www.netlib.org/dierckx/) transformed
|
||
|
to double routines by Pearu Peterson.
|
||
|
"""
|
||
|
# Created by Pearu Peterson, June,August 2003
|
||
|
__all__ = [
|
||
|
'UnivariateSpline',
|
||
|
'InterpolatedUnivariateSpline',
|
||
|
'LSQUnivariateSpline',
|
||
|
'BivariateSpline',
|
||
|
'LSQBivariateSpline',
|
||
|
'SmoothBivariateSpline',
|
||
|
'LSQSphereBivariateSpline',
|
||
|
'SmoothSphereBivariateSpline',
|
||
|
'RectBivariateSpline',
|
||
|
'RectSphereBivariateSpline']
|
||
|
|
||
|
|
||
|
import warnings
|
||
|
|
||
|
from numpy import zeros, concatenate, ravel, diff, array, ones # noqa:F401
|
||
|
import numpy as np
|
||
|
|
||
|
from . import _fitpack_impl
|
||
|
from . import dfitpack
|
||
|
|
||
|
|
||
|
dfitpack_int = dfitpack.types.intvar.dtype
|
||
|
|
||
|
|
||
|
# ############### Univariate spline ####################
|
||
|
|
||
|
_curfit_messages = {1: """
|
||
|
The required storage space exceeds the available storage space, as
|
||
|
specified by the parameter nest: nest too small. If nest is already
|
||
|
large (say nest > m/2), it may also indicate that s is too small.
|
||
|
The approximation returned is the weighted least-squares spline
|
||
|
according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp
|
||
|
gives the corresponding weighted sum of squared residuals (fp>s).
|
||
|
""",
|
||
|
2: """
|
||
|
A theoretically impossible result was found during the iteration
|
||
|
process for finding a smoothing spline with fp = s: s too small.
|
||
|
There is an approximation returned but the corresponding weighted sum
|
||
|
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
|
||
|
3: """
|
||
|
The maximal number of iterations maxit (set to 20 by the program)
|
||
|
allowed for finding a smoothing spline with fp=s has been reached: s
|
||
|
too small.
|
||
|
There is an approximation returned but the corresponding weighted sum
|
||
|
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
|
||
|
10: """
|
||
|
Error on entry, no approximation returned. The following conditions
|
||
|
must hold:
|
||
|
xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1
|
||
|
if iopt=-1:
|
||
|
xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe"""
|
||
|
}
|
||
|
|
||
|
|
||
|
# UnivariateSpline, ext parameter can be an int or a string
|
||
|
_extrap_modes = {0: 0, 'extrapolate': 0,
|
||
|
1: 1, 'zeros': 1,
|
||
|
2: 2, 'raise': 2,
|
||
|
3: 3, 'const': 3}
|
||
|
|
||
|
|
||
|
class UnivariateSpline:
|
||
|
"""
|
||
|
1-D smoothing spline fit to a given set of data points.
|
||
|
|
||
|
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s`
|
||
|
specifies the number of knots by specifying a smoothing condition.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : (N,) array_like
|
||
|
1-D array of independent input data. Must be increasing;
|
||
|
must be strictly increasing if `s` is 0.
|
||
|
y : (N,) array_like
|
||
|
1-D array of dependent input data, of the same length as `x`.
|
||
|
w : (N,) array_like, optional
|
||
|
Weights for spline fitting. Must be positive. If `w` is None,
|
||
|
weights are all 1. Default is None.
|
||
|
bbox : (2,) array_like, optional
|
||
|
2-sequence specifying the boundary of the approximation interval. If
|
||
|
`bbox` is None, ``bbox=[x[0], x[-1]]``. Default is None.
|
||
|
k : int, optional
|
||
|
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
|
||
|
``k = 3`` is a cubic spline. Default is 3.
|
||
|
s : float or None, optional
|
||
|
Positive smoothing factor used to choose the number of knots. Number
|
||
|
of knots will be increased until the smoothing condition is satisfied::
|
||
|
|
||
|
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s
|
||
|
|
||
|
However, because of numerical issues, the actual condition is::
|
||
|
|
||
|
abs(sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) - s) < 0.001 * s
|
||
|
|
||
|
If `s` is None, `s` will be set as `len(w)` for a smoothing spline
|
||
|
that uses all data points.
|
||
|
If 0, spline will interpolate through all data points. This is
|
||
|
equivalent to `InterpolatedUnivariateSpline`.
|
||
|
Default is None.
|
||
|
The user can use the `s` to control the tradeoff between closeness
|
||
|
and smoothness of fit. Larger `s` means more smoothing while smaller
|
||
|
values of `s` indicate less smoothing.
|
||
|
Recommended values of `s` depend on the weights, `w`. If the weights
|
||
|
represent the inverse of the standard-deviation of `y`, then a good
|
||
|
`s` value should be found in the range (m-sqrt(2*m),m+sqrt(2*m))
|
||
|
where m is the number of datapoints in `x`, `y`, and `w`. This means
|
||
|
``s = len(w)`` should be a good value if ``1/w[i]`` is an
|
||
|
estimate of the standard deviation of ``y[i]``.
|
||
|
ext : int or str, optional
|
||
|
Controls the extrapolation mode for elements
|
||
|
not in the interval defined by the knot sequence.
|
||
|
|
||
|
* if ext=0 or 'extrapolate', return the extrapolated value.
|
||
|
* if ext=1 or 'zeros', return 0
|
||
|
* if ext=2 or 'raise', raise a ValueError
|
||
|
* if ext=3 or 'const', return the boundary value.
|
||
|
|
||
|
Default is 0.
|
||
|
|
||
|
check_finite : bool, optional
|
||
|
Whether to check that the input arrays contain only finite numbers.
|
||
|
Disabling may give a performance gain, but may result in problems
|
||
|
(crashes, non-termination or non-sensical results) if the inputs
|
||
|
do contain infinities or NaNs.
|
||
|
Default is False.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
BivariateSpline :
|
||
|
a base class for bivariate splines.
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
LSQBivariateSpline :
|
||
|
a bivariate spline using weighted least-squares fitting
|
||
|
RectSphereBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh on a sphere
|
||
|
SmoothSphereBivariateSpline :
|
||
|
a smoothing bivariate spline in spherical coordinates
|
||
|
LSQSphereBivariateSpline :
|
||
|
a bivariate spline in spherical coordinates using weighted
|
||
|
least-squares fitting
|
||
|
RectBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh
|
||
|
InterpolatedUnivariateSpline :
|
||
|
a interpolating univariate spline for a given set of data points.
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
splrep :
|
||
|
a function to find the B-spline representation of a 1-D curve
|
||
|
splev :
|
||
|
a function to evaluate a B-spline or its derivatives
|
||
|
sproot :
|
||
|
a function to find the roots of a cubic B-spline
|
||
|
splint :
|
||
|
a function to evaluate the definite integral of a B-spline between two
|
||
|
given points
|
||
|
spalde :
|
||
|
a function to evaluate all derivatives of a B-spline
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The number of data points must be larger than the spline degree `k`.
|
||
|
|
||
|
**NaN handling**: If the input arrays contain ``nan`` values, the result
|
||
|
is not useful, since the underlying spline fitting routines cannot deal
|
||
|
with ``nan``. A workaround is to use zero weights for not-a-number
|
||
|
data points:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import UnivariateSpline
|
||
|
>>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
|
||
|
>>> w = np.isnan(y)
|
||
|
>>> y[w] = 0.
|
||
|
>>> spl = UnivariateSpline(x, y, w=~w)
|
||
|
|
||
|
Notice the need to replace a ``nan`` by a numerical value (precise value
|
||
|
does not matter as long as the corresponding weight is zero.)
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
Based on algorithms described in [1]_, [2]_, [3]_, and [4]_:
|
||
|
|
||
|
.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
|
||
|
integration of experimental data using spline functions",
|
||
|
J.Comp.Appl.Maths 1 (1975) 165-184.
|
||
|
.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
|
||
|
grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
|
||
|
1286-1304.
|
||
|
.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
|
||
|
functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
|
||
|
.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
|
||
|
Numerical Analysis, Oxford University Press, 1993.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.interpolate import UnivariateSpline
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> x = np.linspace(-3, 3, 50)
|
||
|
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
|
||
|
>>> plt.plot(x, y, 'ro', ms=5)
|
||
|
|
||
|
Use the default value for the smoothing parameter:
|
||
|
|
||
|
>>> spl = UnivariateSpline(x, y)
|
||
|
>>> xs = np.linspace(-3, 3, 1000)
|
||
|
>>> plt.plot(xs, spl(xs), 'g', lw=3)
|
||
|
|
||
|
Manually change the amount of smoothing:
|
||
|
|
||
|
>>> spl.set_smoothing_factor(0.5)
|
||
|
>>> plt.plot(xs, spl(xs), 'b', lw=3)
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None,
|
||
|
ext=0, check_finite=False):
|
||
|
|
||
|
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, s, ext,
|
||
|
check_finite)
|
||
|
|
||
|
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
|
||
|
data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
|
||
|
xe=bbox[1], s=s)
|
||
|
if data[-1] == 1:
|
||
|
# nest too small, setting to maximum bound
|
||
|
data = self._reset_nest(data)
|
||
|
self._data = data
|
||
|
self._reset_class()
|
||
|
|
||
|
@staticmethod
|
||
|
def validate_input(x, y, w, bbox, k, s, ext, check_finite):
|
||
|
x, y, bbox = np.asarray(x), np.asarray(y), np.asarray(bbox)
|
||
|
if w is not None:
|
||
|
w = np.asarray(w)
|
||
|
if check_finite:
|
||
|
w_finite = np.isfinite(w).all() if w is not None else True
|
||
|
if (not np.isfinite(x).all() or not np.isfinite(y).all() or
|
||
|
not w_finite):
|
||
|
raise ValueError("x and y array must not contain "
|
||
|
"NaNs or infs.")
|
||
|
if s is None or s > 0:
|
||
|
if not np.all(diff(x) >= 0.0):
|
||
|
raise ValueError("x must be increasing if s > 0")
|
||
|
else:
|
||
|
if not np.all(diff(x) > 0.0):
|
||
|
raise ValueError("x must be strictly increasing if s = 0")
|
||
|
if x.size != y.size:
|
||
|
raise ValueError("x and y should have a same length")
|
||
|
elif w is not None and not x.size == y.size == w.size:
|
||
|
raise ValueError("x, y, and w should have a same length")
|
||
|
elif bbox.shape != (2,):
|
||
|
raise ValueError("bbox shape should be (2,)")
|
||
|
elif not (1 <= k <= 5):
|
||
|
raise ValueError("k should be 1 <= k <= 5")
|
||
|
elif s is not None and not s >= 0.0:
|
||
|
raise ValueError("s should be s >= 0.0")
|
||
|
|
||
|
try:
|
||
|
ext = _extrap_modes[ext]
|
||
|
except KeyError as e:
|
||
|
raise ValueError("Unknown extrapolation mode %s." % ext) from e
|
||
|
|
||
|
return x, y, w, bbox, ext
|
||
|
|
||
|
@classmethod
|
||
|
def _from_tck(cls, tck, ext=0):
|
||
|
"""Construct a spline object from given tck"""
|
||
|
self = cls.__new__(cls)
|
||
|
t, c, k = tck
|
||
|
self._eval_args = tck
|
||
|
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
|
||
|
self._data = (None, None, None, None, None, k, None, len(t), t,
|
||
|
c, None, None, None, None)
|
||
|
self.ext = ext
|
||
|
return self
|
||
|
|
||
|
def _reset_class(self):
|
||
|
data = self._data
|
||
|
n, t, c, k, ier = data[7], data[8], data[9], data[5], data[-1]
|
||
|
self._eval_args = t[:n], c[:n], k
|
||
|
if ier == 0:
|
||
|
# the spline returned has a residual sum of squares fp
|
||
|
# such that abs(fp-s)/s <= tol with tol a relative
|
||
|
# tolerance set to 0.001 by the program
|
||
|
pass
|
||
|
elif ier == -1:
|
||
|
# the spline returned is an interpolating spline
|
||
|
self._set_class(InterpolatedUnivariateSpline)
|
||
|
elif ier == -2:
|
||
|
# the spline returned is the weighted least-squares
|
||
|
# polynomial of degree k. In this extreme case fp gives
|
||
|
# the upper bound fp0 for the smoothing factor s.
|
||
|
self._set_class(LSQUnivariateSpline)
|
||
|
else:
|
||
|
# error
|
||
|
if ier == 1:
|
||
|
self._set_class(LSQUnivariateSpline)
|
||
|
message = _curfit_messages.get(ier, 'ier=%s' % (ier))
|
||
|
warnings.warn(message, stacklevel=3)
|
||
|
|
||
|
def _set_class(self, cls):
|
||
|
self._spline_class = cls
|
||
|
if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline,
|
||
|
LSQUnivariateSpline):
|
||
|
self.__class__ = cls
|
||
|
else:
|
||
|
# It's an unknown subclass -- don't change class. cf. #731
|
||
|
pass
|
||
|
|
||
|
def _reset_nest(self, data, nest=None):
|
||
|
n = data[10]
|
||
|
if nest is None:
|
||
|
k, m = data[5], len(data[0])
|
||
|
nest = m+k+1 # this is the maximum bound for nest
|
||
|
else:
|
||
|
if not n <= nest:
|
||
|
raise ValueError("`nest` can only be increased")
|
||
|
t, c, fpint, nrdata = (np.resize(data[j], nest) for j in
|
||
|
[8, 9, 11, 12])
|
||
|
|
||
|
args = data[:8] + (t, c, n, fpint, nrdata, data[13])
|
||
|
data = dfitpack.fpcurf1(*args)
|
||
|
return data
|
||
|
|
||
|
def set_smoothing_factor(self, s):
|
||
|
""" Continue spline computation with the given smoothing
|
||
|
factor s and with the knots found at the last call.
|
||
|
|
||
|
This routine modifies the spline in place.
|
||
|
|
||
|
"""
|
||
|
data = self._data
|
||
|
if data[6] == -1:
|
||
|
warnings.warn('smoothing factor unchanged for'
|
||
|
'LSQ spline with fixed knots',
|
||
|
stacklevel=2)
|
||
|
return
|
||
|
args = data[:6] + (s,) + data[7:]
|
||
|
data = dfitpack.fpcurf1(*args)
|
||
|
if data[-1] == 1:
|
||
|
# nest too small, setting to maximum bound
|
||
|
data = self._reset_nest(data)
|
||
|
self._data = data
|
||
|
self._reset_class()
|
||
|
|
||
|
def __call__(self, x, nu=0, ext=None):
|
||
|
"""
|
||
|
Evaluate spline (or its nu-th derivative) at positions x.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array_like
|
||
|
A 1-D array of points at which to return the value of the smoothed
|
||
|
spline or its derivatives. Note: `x` can be unordered but the
|
||
|
evaluation is more efficient if `x` is (partially) ordered.
|
||
|
nu : int
|
||
|
The order of derivative of the spline to compute.
|
||
|
ext : int
|
||
|
Controls the value returned for elements of `x` not in the
|
||
|
interval defined by the knot sequence.
|
||
|
|
||
|
* if ext=0 or 'extrapolate', return the extrapolated value.
|
||
|
* if ext=1 or 'zeros', return 0
|
||
|
* if ext=2 or 'raise', raise a ValueError
|
||
|
* if ext=3 or 'const', return the boundary value.
|
||
|
|
||
|
The default value is 0, passed from the initialization of
|
||
|
UnivariateSpline.
|
||
|
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
# empty input yields empty output
|
||
|
if x.size == 0:
|
||
|
return array([])
|
||
|
if ext is None:
|
||
|
ext = self.ext
|
||
|
else:
|
||
|
try:
|
||
|
ext = _extrap_modes[ext]
|
||
|
except KeyError as e:
|
||
|
raise ValueError("Unknown extrapolation mode %s." % ext) from e
|
||
|
return _fitpack_impl.splev(x, self._eval_args, der=nu, ext=ext)
|
||
|
|
||
|
def get_knots(self):
|
||
|
""" Return positions of interior knots of the spline.
|
||
|
|
||
|
Internally, the knot vector contains ``2*k`` additional boundary knots.
|
||
|
"""
|
||
|
data = self._data
|
||
|
k, n = data[5], data[7]
|
||
|
return data[8][k:n-k]
|
||
|
|
||
|
def get_coeffs(self):
|
||
|
"""Return spline coefficients."""
|
||
|
data = self._data
|
||
|
k, n = data[5], data[7]
|
||
|
return data[9][:n-k-1]
|
||
|
|
||
|
def get_residual(self):
|
||
|
"""Return weighted sum of squared residuals of the spline approximation.
|
||
|
|
||
|
This is equivalent to::
|
||
|
|
||
|
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)
|
||
|
|
||
|
"""
|
||
|
return self._data[10]
|
||
|
|
||
|
def integral(self, a, b):
|
||
|
""" Return definite integral of the spline between two given points.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
a : float
|
||
|
Lower limit of integration.
|
||
|
b : float
|
||
|
Upper limit of integration.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
integral : float
|
||
|
The value of the definite integral of the spline between limits.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import UnivariateSpline
|
||
|
>>> x = np.linspace(0, 3, 11)
|
||
|
>>> y = x**2
|
||
|
>>> spl = UnivariateSpline(x, y)
|
||
|
>>> spl.integral(0, 3)
|
||
|
9.0
|
||
|
|
||
|
which agrees with :math:`\\int x^2 dx = x^3 / 3` between the limits
|
||
|
of 0 and 3.
|
||
|
|
||
|
A caveat is that this routine assumes the spline to be zero outside of
|
||
|
the data limits:
|
||
|
|
||
|
>>> spl.integral(-1, 4)
|
||
|
9.0
|
||
|
>>> spl.integral(-1, 0)
|
||
|
0.0
|
||
|
|
||
|
"""
|
||
|
return _fitpack_impl.splint(a, b, self._eval_args)
|
||
|
|
||
|
def derivatives(self, x):
|
||
|
""" Return all derivatives of the spline at the point x.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : float
|
||
|
The point to evaluate the derivatives at.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
der : ndarray, shape(k+1,)
|
||
|
Derivatives of the orders 0 to k.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import UnivariateSpline
|
||
|
>>> x = np.linspace(0, 3, 11)
|
||
|
>>> y = x**2
|
||
|
>>> spl = UnivariateSpline(x, y)
|
||
|
>>> spl.derivatives(1.5)
|
||
|
array([2.25, 3.0, 2.0, 0])
|
||
|
|
||
|
"""
|
||
|
return _fitpack_impl.spalde(x, self._eval_args)
|
||
|
|
||
|
def roots(self):
|
||
|
""" Return the zeros of the spline.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Restriction: only cubic splines are supported by FITPACK. For non-cubic
|
||
|
splines, use `PPoly.root` (see below for an example).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
For some data, this method may miss a root. This happens when one of
|
||
|
the spline knots (which FITPACK places automatically) happens to
|
||
|
coincide with the true root. A workaround is to convert to `PPoly`,
|
||
|
which uses a different root-finding algorithm.
|
||
|
|
||
|
For example,
|
||
|
|
||
|
>>> x = [1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05]
|
||
|
>>> y = [-6.365470e-03, -4.790580e-03, -3.204320e-03, -1.607270e-03,
|
||
|
... 4.440892e-16, 1.616930e-03, 3.243000e-03, 4.877670e-03,
|
||
|
... 6.520430e-03, 8.170770e-03]
|
||
|
>>> from scipy.interpolate import UnivariateSpline
|
||
|
>>> spl = UnivariateSpline(x, y, s=0)
|
||
|
>>> spl.roots()
|
||
|
array([], dtype=float64)
|
||
|
|
||
|
Converting to a PPoly object does find the roots at `x=2`:
|
||
|
|
||
|
>>> from scipy.interpolate import splrep, PPoly
|
||
|
>>> tck = splrep(x, y, s=0)
|
||
|
>>> ppoly = PPoly.from_spline(tck)
|
||
|
>>> ppoly.roots(extrapolate=False)
|
||
|
array([2.])
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
sproot
|
||
|
PPoly.roots
|
||
|
|
||
|
"""
|
||
|
k = self._data[5]
|
||
|
if k == 3:
|
||
|
t = self._eval_args[0]
|
||
|
mest = 3 * (len(t) - 7)
|
||
|
return _fitpack_impl.sproot(self._eval_args, mest=mest)
|
||
|
raise NotImplementedError('finding roots unsupported for '
|
||
|
'non-cubic splines')
|
||
|
|
||
|
def derivative(self, n=1):
|
||
|
"""
|
||
|
Construct a new spline representing the derivative of this spline.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int, optional
|
||
|
Order of derivative to evaluate. Default: 1
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spline : UnivariateSpline
|
||
|
Spline of order k2=k-n representing the derivative of this
|
||
|
spline.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
splder, antiderivative
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.13.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
This can be used for finding maxima of a curve:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import UnivariateSpline
|
||
|
>>> x = np.linspace(0, 10, 70)
|
||
|
>>> y = np.sin(x)
|
||
|
>>> spl = UnivariateSpline(x, y, k=4, s=0)
|
||
|
|
||
|
Now, differentiate the spline and find the zeros of the
|
||
|
derivative. (NB: `sproot` only works for order 3 splines, so we
|
||
|
fit an order 4 spline):
|
||
|
|
||
|
>>> spl.derivative().roots() / np.pi
|
||
|
array([ 0.50000001, 1.5 , 2.49999998])
|
||
|
|
||
|
This agrees well with roots :math:`\\pi/2 + n\\pi` of
|
||
|
:math:`\\cos(x) = \\sin'(x)`.
|
||
|
|
||
|
"""
|
||
|
tck = _fitpack_impl.splder(self._eval_args, n)
|
||
|
# if self.ext is 'const', derivative.ext will be 'zeros'
|
||
|
ext = 1 if self.ext == 3 else self.ext
|
||
|
return UnivariateSpline._from_tck(tck, ext=ext)
|
||
|
|
||
|
def antiderivative(self, n=1):
|
||
|
"""
|
||
|
Construct a new spline representing the antiderivative of this spline.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int, optional
|
||
|
Order of antiderivative to evaluate. Default: 1
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spline : UnivariateSpline
|
||
|
Spline of order k2=k+n representing the antiderivative of this
|
||
|
spline.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.13.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
splantider, derivative
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import UnivariateSpline
|
||
|
>>> x = np.linspace(0, np.pi/2, 70)
|
||
|
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
|
||
|
>>> spl = UnivariateSpline(x, y, s=0)
|
||
|
|
||
|
The derivative is the inverse operation of the antiderivative,
|
||
|
although some floating point error accumulates:
|
||
|
|
||
|
>>> spl(1.7), spl.antiderivative().derivative()(1.7)
|
||
|
(array(2.1565429877197317), array(2.1565429877201865))
|
||
|
|
||
|
Antiderivative can be used to evaluate definite integrals:
|
||
|
|
||
|
>>> ispl = spl.antiderivative()
|
||
|
>>> ispl(np.pi/2) - ispl(0)
|
||
|
2.2572053588768486
|
||
|
|
||
|
This is indeed an approximation to the complete elliptic integral
|
||
|
:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
|
||
|
|
||
|
>>> from scipy.special import ellipk
|
||
|
>>> ellipk(0.8)
|
||
|
2.2572053268208538
|
||
|
|
||
|
"""
|
||
|
tck = _fitpack_impl.splantider(self._eval_args, n)
|
||
|
return UnivariateSpline._from_tck(tck, self.ext)
|
||
|
|
||
|
|
||
|
class InterpolatedUnivariateSpline(UnivariateSpline):
|
||
|
"""
|
||
|
1-D interpolating spline for a given set of data points.
|
||
|
|
||
|
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.
|
||
|
Spline function passes through all provided points. Equivalent to
|
||
|
`UnivariateSpline` with `s` = 0.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : (N,) array_like
|
||
|
Input dimension of data points -- must be strictly increasing
|
||
|
y : (N,) array_like
|
||
|
input dimension of data points
|
||
|
w : (N,) array_like, optional
|
||
|
Weights for spline fitting. Must be positive. If None (default),
|
||
|
weights are all 1.
|
||
|
bbox : (2,) array_like, optional
|
||
|
2-sequence specifying the boundary of the approximation interval. If
|
||
|
None (default), ``bbox=[x[0], x[-1]]``.
|
||
|
k : int, optional
|
||
|
Degree of the smoothing spline. Must be ``1 <= k <= 5``. Default is
|
||
|
``k = 3``, a cubic spline.
|
||
|
ext : int or str, optional
|
||
|
Controls the extrapolation mode for elements
|
||
|
not in the interval defined by the knot sequence.
|
||
|
|
||
|
* if ext=0 or 'extrapolate', return the extrapolated value.
|
||
|
* if ext=1 or 'zeros', return 0
|
||
|
* if ext=2 or 'raise', raise a ValueError
|
||
|
* if ext=3 of 'const', return the boundary value.
|
||
|
|
||
|
The default value is 0.
|
||
|
|
||
|
check_finite : bool, optional
|
||
|
Whether to check that the input arrays contain only finite numbers.
|
||
|
Disabling may give a performance gain, but may result in problems
|
||
|
(crashes, non-termination or non-sensical results) if the inputs
|
||
|
do contain infinities or NaNs.
|
||
|
Default is False.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
LSQUnivariateSpline :
|
||
|
a spline for which knots are user-selected
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
LSQBivariateSpline :
|
||
|
a bivariate spline using weighted least-squares fitting
|
||
|
splrep :
|
||
|
a function to find the B-spline representation of a 1-D curve
|
||
|
splev :
|
||
|
a function to evaluate a B-spline or its derivatives
|
||
|
sproot :
|
||
|
a function to find the roots of a cubic B-spline
|
||
|
splint :
|
||
|
a function to evaluate the definite integral of a B-spline between two
|
||
|
given points
|
||
|
spalde :
|
||
|
a function to evaluate all derivatives of a B-spline
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The number of data points must be larger than the spline degree `k`.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> from scipy.interpolate import InterpolatedUnivariateSpline
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> x = np.linspace(-3, 3, 50)
|
||
|
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
|
||
|
>>> spl = InterpolatedUnivariateSpline(x, y)
|
||
|
>>> plt.plot(x, y, 'ro', ms=5)
|
||
|
>>> xs = np.linspace(-3, 3, 1000)
|
||
|
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
|
||
|
>>> plt.show()
|
||
|
|
||
|
Notice that the ``spl(x)`` interpolates `y`:
|
||
|
|
||
|
>>> spl.get_residual()
|
||
|
0.0
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, x, y, w=None, bbox=[None]*2, k=3,
|
||
|
ext=0, check_finite=False):
|
||
|
|
||
|
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
|
||
|
ext, check_finite)
|
||
|
if not np.all(diff(x) > 0.0):
|
||
|
raise ValueError('x must be strictly increasing')
|
||
|
|
||
|
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
|
||
|
self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
|
||
|
xe=bbox[1], s=0)
|
||
|
self._reset_class()
|
||
|
|
||
|
|
||
|
_fpchec_error_string = """The input parameters have been rejected by fpchec. \
|
||
|
This means that at least one of the following conditions is violated:
|
||
|
|
||
|
1) k+1 <= n-k-1 <= m
|
||
|
2) t(1) <= t(2) <= ... <= t(k+1)
|
||
|
t(n-k) <= t(n-k+1) <= ... <= t(n)
|
||
|
3) t(k+1) < t(k+2) < ... < t(n-k)
|
||
|
4) t(k+1) <= x(i) <= t(n-k)
|
||
|
5) The conditions specified by Schoenberg and Whitney must hold
|
||
|
for at least one subset of data points, i.e., there must be a
|
||
|
subset of data points y(j) such that
|
||
|
t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
|
||
|
"""
|
||
|
|
||
|
|
||
|
class LSQUnivariateSpline(UnivariateSpline):
|
||
|
"""
|
||
|
1-D spline with explicit internal knots.
|
||
|
|
||
|
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t`
|
||
|
specifies the internal knots of the spline
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : (N,) array_like
|
||
|
Input dimension of data points -- must be increasing
|
||
|
y : (N,) array_like
|
||
|
Input dimension of data points
|
||
|
t : (M,) array_like
|
||
|
interior knots of the spline. Must be in ascending order and::
|
||
|
|
||
|
bbox[0] < t[0] < ... < t[-1] < bbox[-1]
|
||
|
|
||
|
w : (N,) array_like, optional
|
||
|
weights for spline fitting. Must be positive. If None (default),
|
||
|
weights are all 1.
|
||
|
bbox : (2,) array_like, optional
|
||
|
2-sequence specifying the boundary of the approximation interval. If
|
||
|
None (default), ``bbox = [x[0], x[-1]]``.
|
||
|
k : int, optional
|
||
|
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
|
||
|
Default is `k` = 3, a cubic spline.
|
||
|
ext : int or str, optional
|
||
|
Controls the extrapolation mode for elements
|
||
|
not in the interval defined by the knot sequence.
|
||
|
|
||
|
* if ext=0 or 'extrapolate', return the extrapolated value.
|
||
|
* if ext=1 or 'zeros', return 0
|
||
|
* if ext=2 or 'raise', raise a ValueError
|
||
|
* if ext=3 of 'const', return the boundary value.
|
||
|
|
||
|
The default value is 0.
|
||
|
|
||
|
check_finite : bool, optional
|
||
|
Whether to check that the input arrays contain only finite numbers.
|
||
|
Disabling may give a performance gain, but may result in problems
|
||
|
(crashes, non-termination or non-sensical results) if the inputs
|
||
|
do contain infinities or NaNs.
|
||
|
Default is False.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If the interior knots do not satisfy the Schoenberg-Whitney conditions
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
InterpolatedUnivariateSpline :
|
||
|
a interpolating univariate spline for a given set of data points.
|
||
|
splrep :
|
||
|
a function to find the B-spline representation of a 1-D curve
|
||
|
splev :
|
||
|
a function to evaluate a B-spline or its derivatives
|
||
|
sproot :
|
||
|
a function to find the roots of a cubic B-spline
|
||
|
splint :
|
||
|
a function to evaluate the definite integral of a B-spline between two
|
||
|
given points
|
||
|
spalde :
|
||
|
a function to evaluate all derivatives of a B-spline
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The number of data points must be larger than the spline degree `k`.
|
||
|
|
||
|
Knots `t` must satisfy the Schoenberg-Whitney conditions,
|
||
|
i.e., there must be a subset of data points ``x[j]`` such that
|
||
|
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> x = np.linspace(-3, 3, 50)
|
||
|
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
|
||
|
|
||
|
Fit a smoothing spline with a pre-defined internal knots:
|
||
|
|
||
|
>>> t = [-1, 0, 1]
|
||
|
>>> spl = LSQUnivariateSpline(x, y, t)
|
||
|
|
||
|
>>> xs = np.linspace(-3, 3, 1000)
|
||
|
>>> plt.plot(x, y, 'ro', ms=5)
|
||
|
>>> plt.plot(xs, spl(xs), 'g-', lw=3)
|
||
|
>>> plt.show()
|
||
|
|
||
|
Check the knot vector:
|
||
|
|
||
|
>>> spl.get_knots()
|
||
|
array([-3., -1., 0., 1., 3.])
|
||
|
|
||
|
Constructing lsq spline using the knots from another spline:
|
||
|
|
||
|
>>> x = np.arange(10)
|
||
|
>>> s = UnivariateSpline(x, x, s=0)
|
||
|
>>> s.get_knots()
|
||
|
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
|
||
|
>>> knt = s.get_knots()
|
||
|
>>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
|
||
|
>>> s1.get_knots()
|
||
|
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3,
|
||
|
ext=0, check_finite=False):
|
||
|
|
||
|
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
|
||
|
ext, check_finite)
|
||
|
if not np.all(diff(x) >= 0.0):
|
||
|
raise ValueError('x must be increasing')
|
||
|
|
||
|
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
|
||
|
xb = bbox[0]
|
||
|
xe = bbox[1]
|
||
|
if xb is None:
|
||
|
xb = x[0]
|
||
|
if xe is None:
|
||
|
xe = x[-1]
|
||
|
t = concatenate(([xb]*(k+1), t, [xe]*(k+1)))
|
||
|
n = len(t)
|
||
|
if not np.all(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0):
|
||
|
raise ValueError('Interior knots t must satisfy '
|
||
|
'Schoenberg-Whitney conditions')
|
||
|
if not dfitpack.fpchec(x, t, k) == 0:
|
||
|
raise ValueError(_fpchec_error_string)
|
||
|
data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe)
|
||
|
self._data = data[:-3] + (None, None, data[-1])
|
||
|
self._reset_class()
|
||
|
|
||
|
|
||
|
# ############### Bivariate spline ####################
|
||
|
|
||
|
class _BivariateSplineBase:
|
||
|
""" Base class for Bivariate spline s(x,y) interpolation on the rectangle
|
||
|
[xb,xe] x [yb, ye] calculated from a given set of data points
|
||
|
(x,y,z).
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
BivariateSpline :
|
||
|
a base class for bivariate splines.
|
||
|
SphereBivariateSpline :
|
||
|
a bivariate spline on a spherical grid
|
||
|
"""
|
||
|
|
||
|
@classmethod
|
||
|
def _from_tck(cls, tck):
|
||
|
"""Construct a spline object from given tck and degree"""
|
||
|
self = cls.__new__(cls)
|
||
|
if len(tck) != 5:
|
||
|
raise ValueError("tck should be a 5 element tuple of tx,"
|
||
|
" ty, c, kx, ky")
|
||
|
self.tck = tck[:3]
|
||
|
self.degrees = tck[3:]
|
||
|
return self
|
||
|
|
||
|
def get_residual(self):
|
||
|
""" Return weighted sum of squared residuals of the spline
|
||
|
approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
|
||
|
"""
|
||
|
return self.fp
|
||
|
|
||
|
def get_knots(self):
|
||
|
""" Return a tuple (tx,ty) where tx,ty contain knots positions
|
||
|
of the spline with respect to x-, y-variable, respectively.
|
||
|
The position of interior and additional knots are given as
|
||
|
t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.
|
||
|
"""
|
||
|
return self.tck[:2]
|
||
|
|
||
|
def get_coeffs(self):
|
||
|
""" Return spline coefficients."""
|
||
|
return self.tck[2]
|
||
|
|
||
|
def __call__(self, x, y, dx=0, dy=0, grid=True):
|
||
|
"""
|
||
|
Evaluate the spline or its derivatives at given positions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y : array_like
|
||
|
Input coordinates.
|
||
|
|
||
|
If `grid` is False, evaluate the spline at points ``(x[i],
|
||
|
y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting
|
||
|
is obeyed.
|
||
|
|
||
|
If `grid` is True: evaluate spline at the grid points
|
||
|
defined by the coordinate arrays x, y. The arrays must be
|
||
|
sorted to increasing order.
|
||
|
|
||
|
The ordering of axes is consistent with
|
||
|
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
|
||
|
default ordering ``np.meshgrid(..., indexing="xy")``.
|
||
|
dx : int
|
||
|
Order of x-derivative
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
dy : int
|
||
|
Order of y-derivative
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
grid : bool
|
||
|
Whether to evaluate the results on a grid spanned by the
|
||
|
input arrays, or at points specified by the input arrays.
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Suppose that we want to bilinearly interpolate an exponentially decaying
|
||
|
function in 2 dimensions.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import RectBivariateSpline
|
||
|
|
||
|
We sample the function on a coarse grid. Note that the default indexing="xy"
|
||
|
of meshgrid would result in an unexpected (transposed) result after
|
||
|
interpolation.
|
||
|
|
||
|
>>> xarr = np.linspace(-3, 3, 100)
|
||
|
>>> yarr = np.linspace(-3, 3, 100)
|
||
|
>>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij")
|
||
|
|
||
|
The function to interpolate decays faster along one axis than the other.
|
||
|
|
||
|
>>> zdata = np.exp(-np.sqrt((xgrid / 2) ** 2 + ygrid**2))
|
||
|
|
||
|
Next we sample on a finer grid using interpolation (kx=ky=1 for bilinear).
|
||
|
|
||
|
>>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1)
|
||
|
>>> xarr_fine = np.linspace(-3, 3, 200)
|
||
|
>>> yarr_fine = np.linspace(-3, 3, 200)
|
||
|
>>> xgrid_fine, ygrid_fine = np.meshgrid(xarr_fine, yarr_fine, indexing="ij")
|
||
|
>>> zdata_interp = rbs(xgrid_fine, ygrid_fine, grid=False)
|
||
|
|
||
|
And check that the result agrees with the input by plotting both.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(1, 2, 1, aspect="equal")
|
||
|
>>> ax2 = fig.add_subplot(1, 2, 2, aspect="equal")
|
||
|
>>> ax1.imshow(zdata)
|
||
|
>>> ax2.imshow(zdata_interp)
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
x = np.asarray(x)
|
||
|
y = np.asarray(y)
|
||
|
|
||
|
tx, ty, c = self.tck[:3]
|
||
|
kx, ky = self.degrees
|
||
|
if grid:
|
||
|
if x.size == 0 or y.size == 0:
|
||
|
return np.zeros((x.size, y.size), dtype=self.tck[2].dtype)
|
||
|
|
||
|
if (x.size >= 2) and (not np.all(np.diff(x) >= 0.0)):
|
||
|
raise ValueError("x must be strictly increasing when `grid` is True")
|
||
|
if (y.size >= 2) and (not np.all(np.diff(y) >= 0.0)):
|
||
|
raise ValueError("y must be strictly increasing when `grid` is True")
|
||
|
|
||
|
if dx or dy:
|
||
|
z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
|
||
|
if not ier == 0:
|
||
|
raise ValueError("Error code returned by parder: %s" % ier)
|
||
|
else:
|
||
|
z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)
|
||
|
if not ier == 0:
|
||
|
raise ValueError("Error code returned by bispev: %s" % ier)
|
||
|
else:
|
||
|
# standard Numpy broadcasting
|
||
|
if x.shape != y.shape:
|
||
|
x, y = np.broadcast_arrays(x, y)
|
||
|
|
||
|
shape = x.shape
|
||
|
x = x.ravel()
|
||
|
y = y.ravel()
|
||
|
|
||
|
if x.size == 0 or y.size == 0:
|
||
|
return np.zeros(shape, dtype=self.tck[2].dtype)
|
||
|
|
||
|
if dx or dy:
|
||
|
z, ier = dfitpack.pardeu(tx, ty, c, kx, ky, dx, dy, x, y)
|
||
|
if not ier == 0:
|
||
|
raise ValueError("Error code returned by pardeu: %s" % ier)
|
||
|
else:
|
||
|
z, ier = dfitpack.bispeu(tx, ty, c, kx, ky, x, y)
|
||
|
if not ier == 0:
|
||
|
raise ValueError("Error code returned by bispeu: %s" % ier)
|
||
|
|
||
|
z = z.reshape(shape)
|
||
|
return z
|
||
|
|
||
|
def partial_derivative(self, dx, dy):
|
||
|
"""Construct a new spline representing a partial derivative of this
|
||
|
spline.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dx, dy : int
|
||
|
Orders of the derivative in x and y respectively. They must be
|
||
|
non-negative integers and less than the respective degree of the
|
||
|
original spline (self) in that direction (``kx``, ``ky``).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
spline :
|
||
|
A new spline of degrees (``kx - dx``, ``ky - dy``) representing the
|
||
|
derivative of this spline.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 1.9.0
|
||
|
|
||
|
"""
|
||
|
if dx == 0 and dy == 0:
|
||
|
return self
|
||
|
else:
|
||
|
kx, ky = self.degrees
|
||
|
if not (dx >= 0 and dy >= 0):
|
||
|
raise ValueError("order of derivative must be positive or"
|
||
|
" zero")
|
||
|
if not (dx < kx and dy < ky):
|
||
|
raise ValueError("order of derivative must be less than"
|
||
|
" degree of spline")
|
||
|
tx, ty, c = self.tck[:3]
|
||
|
newc, ier = dfitpack.pardtc(tx, ty, c, kx, ky, dx, dy)
|
||
|
if ier != 0:
|
||
|
# This should not happen under normal conditions.
|
||
|
raise ValueError("Unexpected error code returned by"
|
||
|
" pardtc: %d" % ier)
|
||
|
nx = len(tx)
|
||
|
ny = len(ty)
|
||
|
newtx = tx[dx:nx - dx]
|
||
|
newty = ty[dy:ny - dy]
|
||
|
newkx, newky = kx - dx, ky - dy
|
||
|
newclen = (nx - dx - kx - 1) * (ny - dy - ky - 1)
|
||
|
return _DerivedBivariateSpline._from_tck((newtx, newty,
|
||
|
newc[:newclen],
|
||
|
newkx, newky))
|
||
|
|
||
|
|
||
|
_surfit_messages = {1: """
|
||
|
The required storage space exceeds the available storage space: nxest
|
||
|
or nyest too small, or s too small.
|
||
|
The weighted least-squares spline corresponds to the current set of
|
||
|
knots.""",
|
||
|
2: """
|
||
|
A theoretically impossible result was found during the iteration
|
||
|
process for finding a smoothing spline with fp = s: s too small or
|
||
|
badly chosen eps.
|
||
|
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
|
||
|
3: """
|
||
|
the maximal number of iterations maxit (set to 20 by the program)
|
||
|
allowed for finding a smoothing spline with fp=s has been reached:
|
||
|
s too small.
|
||
|
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
|
||
|
4: """
|
||
|
No more knots can be added because the number of b-spline coefficients
|
||
|
(nx-kx-1)*(ny-ky-1) already exceeds the number of data points m:
|
||
|
either s or m too small.
|
||
|
The weighted least-squares spline corresponds to the current set of
|
||
|
knots.""",
|
||
|
5: """
|
||
|
No more knots can be added because the additional knot would (quasi)
|
||
|
coincide with an old one: s too small or too large a weight to an
|
||
|
inaccurate data point.
|
||
|
The weighted least-squares spline corresponds to the current set of
|
||
|
knots.""",
|
||
|
10: """
|
||
|
Error on entry, no approximation returned. The following conditions
|
||
|
must hold:
|
||
|
xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1
|
||
|
If iopt==-1, then
|
||
|
xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe
|
||
|
yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""",
|
||
|
-3: """
|
||
|
The coefficients of the spline returned have been computed as the
|
||
|
minimal norm least-squares solution of a (numerically) rank deficient
|
||
|
system (deficiency=%i). If deficiency is large, the results may be
|
||
|
inaccurate. Deficiency may strongly depend on the value of eps."""
|
||
|
}
|
||
|
|
||
|
|
||
|
class BivariateSpline(_BivariateSplineBase):
|
||
|
"""
|
||
|
Base class for bivariate splines.
|
||
|
|
||
|
This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on
|
||
|
the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set
|
||
|
of data points ``(x, y, z)``.
|
||
|
|
||
|
This class is meant to be subclassed, not instantiated directly.
|
||
|
To construct these splines, call either `SmoothBivariateSpline` or
|
||
|
`LSQBivariateSpline` or `RectBivariateSpline`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
LSQBivariateSpline :
|
||
|
a bivariate spline using weighted least-squares fitting
|
||
|
RectSphereBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh on a sphere
|
||
|
SmoothSphereBivariateSpline :
|
||
|
a smoothing bivariate spline in spherical coordinates
|
||
|
LSQSphereBivariateSpline :
|
||
|
a bivariate spline in spherical coordinates using weighted
|
||
|
least-squares fitting
|
||
|
RectBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh.
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
"""
|
||
|
|
||
|
def ev(self, xi, yi, dx=0, dy=0):
|
||
|
"""
|
||
|
Evaluate the spline at points
|
||
|
|
||
|
Returns the interpolated value at ``(xi[i], yi[i]),
|
||
|
i=0,...,len(xi)-1``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xi, yi : array_like
|
||
|
Input coordinates. Standard Numpy broadcasting is obeyed.
|
||
|
The ordering of axes is consistent with
|
||
|
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
|
||
|
default ordering ``np.meshgrid(..., indexing="xy")``.
|
||
|
dx : int, optional
|
||
|
Order of x-derivative
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
dy : int, optional
|
||
|
Order of y-derivative
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Suppose that we want to bilinearly interpolate an exponentially decaying
|
||
|
function in 2 dimensions.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import RectBivariateSpline
|
||
|
>>> def f(x, y):
|
||
|
... return np.exp(-np.sqrt((x / 2) ** 2 + y**2))
|
||
|
|
||
|
We sample the function on a coarse grid and set up the interpolator. Note that
|
||
|
the default ``indexing="xy"`` of meshgrid would result in an unexpected
|
||
|
(transposed) result after interpolation.
|
||
|
|
||
|
>>> xarr = np.linspace(-3, 3, 21)
|
||
|
>>> yarr = np.linspace(-3, 3, 21)
|
||
|
>>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij")
|
||
|
>>> zdata = f(xgrid, ygrid)
|
||
|
>>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1)
|
||
|
|
||
|
Next we sample the function along a diagonal slice through the coordinate space
|
||
|
on a finer grid using interpolation.
|
||
|
|
||
|
>>> xinterp = np.linspace(-3, 3, 201)
|
||
|
>>> yinterp = np.linspace(3, -3, 201)
|
||
|
>>> zinterp = rbs.ev(xinterp, yinterp)
|
||
|
|
||
|
And check that the interpolation passes through the function evaluations as a
|
||
|
function of the distance from the origin along the slice.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(1, 1, 1)
|
||
|
>>> ax1.plot(np.sqrt(xarr**2 + yarr**2), np.diag(zdata), "or")
|
||
|
>>> ax1.plot(np.sqrt(xinterp**2 + yinterp**2), zinterp, "-b")
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
return self.__call__(xi, yi, dx=dx, dy=dy, grid=False)
|
||
|
|
||
|
def integral(self, xa, xb, ya, yb):
|
||
|
"""
|
||
|
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xa, xb : float
|
||
|
The end-points of the x integration interval.
|
||
|
ya, yb : float
|
||
|
The end-points of the y integration interval.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
integ : float
|
||
|
The value of the resulting integral.
|
||
|
|
||
|
"""
|
||
|
tx, ty, c = self.tck[:3]
|
||
|
kx, ky = self.degrees
|
||
|
return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)
|
||
|
|
||
|
@staticmethod
|
||
|
def _validate_input(x, y, z, w, kx, ky, eps):
|
||
|
x, y, z = np.asarray(x), np.asarray(y), np.asarray(z)
|
||
|
if not x.size == y.size == z.size:
|
||
|
raise ValueError('x, y, and z should have a same length')
|
||
|
|
||
|
if w is not None:
|
||
|
w = np.asarray(w)
|
||
|
if x.size != w.size:
|
||
|
raise ValueError('x, y, z, and w should have a same length')
|
||
|
elif not np.all(w >= 0.0):
|
||
|
raise ValueError('w should be positive')
|
||
|
if (eps is not None) and (not 0.0 < eps < 1.0):
|
||
|
raise ValueError('eps should be between (0, 1)')
|
||
|
if not x.size >= (kx + 1) * (ky + 1):
|
||
|
raise ValueError('The length of x, y and z should be at least'
|
||
|
' (kx+1) * (ky+1)')
|
||
|
return x, y, z, w
|
||
|
|
||
|
|
||
|
class _DerivedBivariateSpline(_BivariateSplineBase):
|
||
|
"""Bivariate spline constructed from the coefficients and knots of another
|
||
|
spline.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The class is not meant to be instantiated directly from the data to be
|
||
|
interpolated or smoothed. As a result, its ``fp`` attribute and
|
||
|
``get_residual`` method are inherited but overridden; ``AttributeError`` is
|
||
|
raised when they are accessed.
|
||
|
|
||
|
The other inherited attributes can be used as usual.
|
||
|
"""
|
||
|
_invalid_why = ("is unavailable, because _DerivedBivariateSpline"
|
||
|
" instance is not constructed from data that are to be"
|
||
|
" interpolated or smoothed, but derived from the"
|
||
|
" underlying knots and coefficients of another spline"
|
||
|
" object")
|
||
|
|
||
|
@property
|
||
|
def fp(self):
|
||
|
raise AttributeError("attribute \"fp\" %s" % self._invalid_why)
|
||
|
|
||
|
def get_residual(self):
|
||
|
raise AttributeError("method \"get_residual\" %s" % self._invalid_why)
|
||
|
|
||
|
|
||
|
class SmoothBivariateSpline(BivariateSpline):
|
||
|
"""
|
||
|
Smooth bivariate spline approximation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y, z : array_like
|
||
|
1-D sequences of data points (order is not important).
|
||
|
w : array_like, optional
|
||
|
Positive 1-D sequence of weights, of same length as `x`, `y` and `z`.
|
||
|
bbox : array_like, optional
|
||
|
Sequence of length 4 specifying the boundary of the rectangular
|
||
|
approximation domain. By default,
|
||
|
``bbox=[min(x), max(x), min(y), max(y)]``.
|
||
|
kx, ky : ints, optional
|
||
|
Degrees of the bivariate spline. Default is 3.
|
||
|
s : float, optional
|
||
|
Positive smoothing factor defined for estimation condition:
|
||
|
``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
|
||
|
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
|
||
|
estimate of the standard deviation of ``z[i]``.
|
||
|
eps : float, optional
|
||
|
A threshold for determining the effective rank of an over-determined
|
||
|
linear system of equations. `eps` should have a value within the open
|
||
|
interval ``(0, 1)``, the default is 1e-16.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
BivariateSpline :
|
||
|
a base class for bivariate splines.
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
LSQBivariateSpline :
|
||
|
a bivariate spline using weighted least-squares fitting
|
||
|
RectSphereBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh on a sphere
|
||
|
SmoothSphereBivariateSpline :
|
||
|
a smoothing bivariate spline in spherical coordinates
|
||
|
LSQSphereBivariateSpline :
|
||
|
a bivariate spline in spherical coordinates using weighted
|
||
|
least-squares fitting
|
||
|
RectBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
|
||
|
|
||
|
If the input data is such that input dimensions have incommensurate
|
||
|
units and differ by many orders of magnitude, the interpolant may have
|
||
|
numerical artifacts. Consider rescaling the data before interpolating.
|
||
|
|
||
|
This routine constructs spline knot vectors automatically via the FITPACK
|
||
|
algorithm. The spline knots may be placed away from the data points. For
|
||
|
some data sets, this routine may fail to construct an interpolating spline,
|
||
|
even if one is requested via ``s=0`` parameter. In such situations, it is
|
||
|
recommended to use `bisplrep` / `bisplev` directly instead of this routine
|
||
|
and, if needed, increase the values of ``nxest`` and ``nyest`` parameters
|
||
|
of `bisplrep`.
|
||
|
|
||
|
For linear interpolation, prefer `LinearNDInterpolator`.
|
||
|
See ``https://gist.github.com/ev-br/8544371b40f414b7eaf3fe6217209bff``
|
||
|
for discussion.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None,
|
||
|
eps=1e-16):
|
||
|
|
||
|
x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
|
||
|
bbox = ravel(bbox)
|
||
|
if not bbox.shape == (4,):
|
||
|
raise ValueError('bbox shape should be (4,)')
|
||
|
if s is not None and not s >= 0.0:
|
||
|
raise ValueError("s should be s >= 0.0")
|
||
|
|
||
|
xb, xe, yb, ye = bbox
|
||
|
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
|
||
|
xb, xe, yb,
|
||
|
ye, kx, ky,
|
||
|
s=s, eps=eps,
|
||
|
lwrk2=1)
|
||
|
if ier > 10: # lwrk2 was to small, re-run
|
||
|
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
|
||
|
xb, xe, yb,
|
||
|
ye, kx, ky,
|
||
|
s=s,
|
||
|
eps=eps,
|
||
|
lwrk2=ier)
|
||
|
if ier in [0, -1, -2]: # normal return
|
||
|
pass
|
||
|
else:
|
||
|
message = _surfit_messages.get(ier, 'ier=%s' % (ier))
|
||
|
warnings.warn(message, stacklevel=2)
|
||
|
|
||
|
self.fp = fp
|
||
|
self.tck = tx[:nx], ty[:ny], c[:(nx-kx-1)*(ny-ky-1)]
|
||
|
self.degrees = kx, ky
|
||
|
|
||
|
|
||
|
class LSQBivariateSpline(BivariateSpline):
|
||
|
"""
|
||
|
Weighted least-squares bivariate spline approximation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x, y, z : array_like
|
||
|
1-D sequences of data points (order is not important).
|
||
|
tx, ty : array_like
|
||
|
Strictly ordered 1-D sequences of knots coordinates.
|
||
|
w : array_like, optional
|
||
|
Positive 1-D array of weights, of the same length as `x`, `y` and `z`.
|
||
|
bbox : (4,) array_like, optional
|
||
|
Sequence of length 4 specifying the boundary of the rectangular
|
||
|
approximation domain. By default,
|
||
|
``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
|
||
|
kx, ky : ints, optional
|
||
|
Degrees of the bivariate spline. Default is 3.
|
||
|
eps : float, optional
|
||
|
A threshold for determining the effective rank of an over-determined
|
||
|
linear system of equations. `eps` should have a value within the open
|
||
|
interval ``(0, 1)``, the default is 1e-16.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
BivariateSpline :
|
||
|
a base class for bivariate splines.
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
RectSphereBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh on a sphere
|
||
|
SmoothSphereBivariateSpline :
|
||
|
a smoothing bivariate spline in spherical coordinates
|
||
|
LSQSphereBivariateSpline :
|
||
|
a bivariate spline in spherical coordinates using weighted
|
||
|
least-squares fitting
|
||
|
RectBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh.
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
|
||
|
|
||
|
If the input data is such that input dimensions have incommensurate
|
||
|
units and differ by many orders of magnitude, the interpolant may have
|
||
|
numerical artifacts. Consider rescaling the data before interpolating.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3,
|
||
|
eps=None):
|
||
|
|
||
|
x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
|
||
|
bbox = ravel(bbox)
|
||
|
if not bbox.shape == (4,):
|
||
|
raise ValueError('bbox shape should be (4,)')
|
||
|
|
||
|
nx = 2*kx+2+len(tx)
|
||
|
ny = 2*ky+2+len(ty)
|
||
|
# The Fortran subroutine "surfit" (called as dfitpack.surfit_lsq)
|
||
|
# requires that the knot arrays passed as input should be "real
|
||
|
# array(s) of dimension nmax" where "nmax" refers to the greater of nx
|
||
|
# and ny. We pad the tx1/ty1 arrays here so that this is satisfied, and
|
||
|
# slice them to the desired sizes upon return.
|
||
|
nmax = max(nx, ny)
|
||
|
tx1 = zeros((nmax,), float)
|
||
|
ty1 = zeros((nmax,), float)
|
||
|
tx1[kx+1:nx-kx-1] = tx
|
||
|
ty1[ky+1:ny-ky-1] = ty
|
||
|
|
||
|
xb, xe, yb, ye = bbox
|
||
|
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, nx, tx1, ny, ty1,
|
||
|
w, xb, xe, yb, ye,
|
||
|
kx, ky, eps, lwrk2=1)
|
||
|
if ier > 10:
|
||
|
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z,
|
||
|
nx, tx1, ny, ty1, w,
|
||
|
xb, xe, yb, ye,
|
||
|
kx, ky, eps, lwrk2=ier)
|
||
|
if ier in [0, -1, -2]: # normal return
|
||
|
pass
|
||
|
else:
|
||
|
if ier < -2:
|
||
|
deficiency = (nx-kx-1)*(ny-ky-1)+ier
|
||
|
message = _surfit_messages.get(-3) % (deficiency)
|
||
|
else:
|
||
|
message = _surfit_messages.get(ier, 'ier=%s' % (ier))
|
||
|
warnings.warn(message, stacklevel=2)
|
||
|
self.fp = fp
|
||
|
self.tck = tx1[:nx], ty1[:ny], c
|
||
|
self.degrees = kx, ky
|
||
|
|
||
|
|
||
|
class RectBivariateSpline(BivariateSpline):
|
||
|
"""
|
||
|
Bivariate spline approximation over a rectangular mesh.
|
||
|
|
||
|
Can be used for both smoothing and interpolating data.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x,y : array_like
|
||
|
1-D arrays of coordinates in strictly ascending order.
|
||
|
Evaluated points outside the data range will be extrapolated.
|
||
|
z : array_like
|
||
|
2-D array of data with shape (x.size,y.size).
|
||
|
bbox : array_like, optional
|
||
|
Sequence of length 4 specifying the boundary of the rectangular
|
||
|
approximation domain, which means the start and end spline knots of
|
||
|
each dimension are set by these values. By default,
|
||
|
``bbox=[min(x), max(x), min(y), max(y)]``.
|
||
|
kx, ky : ints, optional
|
||
|
Degrees of the bivariate spline. Default is 3.
|
||
|
s : float, optional
|
||
|
Positive smoothing factor defined for estimation condition:
|
||
|
``sum((z[i]-f(x[i], y[i]))**2, axis=0) <= s`` where f is a spline
|
||
|
function. Default is ``s=0``, which is for interpolation.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
BivariateSpline :
|
||
|
a base class for bivariate splines.
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
LSQBivariateSpline :
|
||
|
a bivariate spline using weighted least-squares fitting
|
||
|
RectSphereBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh on a sphere
|
||
|
SmoothSphereBivariateSpline :
|
||
|
a smoothing bivariate spline in spherical coordinates
|
||
|
LSQSphereBivariateSpline :
|
||
|
a bivariate spline in spherical coordinates using weighted
|
||
|
least-squares fitting
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
If the input data is such that input dimensions have incommensurate
|
||
|
units and differ by many orders of magnitude, the interpolant may have
|
||
|
numerical artifacts. Consider rescaling the data before interpolating.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0):
|
||
|
x, y, bbox = ravel(x), ravel(y), ravel(bbox)
|
||
|
z = np.asarray(z)
|
||
|
if not np.all(diff(x) > 0.0):
|
||
|
raise ValueError('x must be strictly increasing')
|
||
|
if not np.all(diff(y) > 0.0):
|
||
|
raise ValueError('y must be strictly increasing')
|
||
|
if not x.size == z.shape[0]:
|
||
|
raise ValueError('x dimension of z must have same number of '
|
||
|
'elements as x')
|
||
|
if not y.size == z.shape[1]:
|
||
|
raise ValueError('y dimension of z must have same number of '
|
||
|
'elements as y')
|
||
|
if not bbox.shape == (4,):
|
||
|
raise ValueError('bbox shape should be (4,)')
|
||
|
if s is not None and not s >= 0.0:
|
||
|
raise ValueError("s should be s >= 0.0")
|
||
|
|
||
|
z = ravel(z)
|
||
|
xb, xe, yb, ye = bbox
|
||
|
nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb,
|
||
|
ye, kx, ky, s)
|
||
|
|
||
|
if ier not in [0, -1, -2]:
|
||
|
msg = _surfit_messages.get(ier, 'ier=%s' % (ier))
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
self.fp = fp
|
||
|
self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)]
|
||
|
self.degrees = kx, ky
|
||
|
|
||
|
|
||
|
_spherefit_messages = _surfit_messages.copy()
|
||
|
_spherefit_messages[10] = """
|
||
|
ERROR. On entry, the input data are controlled on validity. The following
|
||
|
restrictions must be satisfied:
|
||
|
-1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1,
|
||
|
0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m
|
||
|
lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m
|
||
|
kwrk >= m+(ntest-7)*(npest-7)
|
||
|
if iopt=-1: 8<=nt<=ntest , 9<=np<=npest
|
||
|
0<tt(5)<tt(6)<...<tt(nt-4)<pi
|
||
|
0<tp(5)<tp(6)<...<tp(np-4)<2*pi
|
||
|
if iopt>=0: s>=0
|
||
|
if one of these conditions is found to be violated,control
|
||
|
is immediately repassed to the calling program. in that
|
||
|
case there is no approximation returned."""
|
||
|
_spherefit_messages[-3] = """
|
||
|
WARNING. The coefficients of the spline returned have been computed as the
|
||
|
minimal norm least-squares solution of a (numerically) rank
|
||
|
deficient system (deficiency=%i, rank=%i). Especially if the rank
|
||
|
deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large,
|
||
|
the results may be inaccurate. They could also seriously depend on
|
||
|
the value of eps."""
|
||
|
|
||
|
|
||
|
class SphereBivariateSpline(_BivariateSplineBase):
|
||
|
"""
|
||
|
Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a
|
||
|
given set of data points (theta,phi,r).
|
||
|
|
||
|
.. versionadded:: 0.11.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
LSQUnivariateSpline :
|
||
|
a univariate spline using weighted least-squares fitting
|
||
|
"""
|
||
|
|
||
|
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
|
||
|
"""
|
||
|
Evaluate the spline or its derivatives at given positions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
theta, phi : array_like
|
||
|
Input coordinates.
|
||
|
|
||
|
If `grid` is False, evaluate the spline at points
|
||
|
``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard
|
||
|
Numpy broadcasting is obeyed.
|
||
|
|
||
|
If `grid` is True: evaluate spline at the grid points
|
||
|
defined by the coordinate arrays theta, phi. The arrays
|
||
|
must be sorted to increasing order.
|
||
|
The ordering of axes is consistent with
|
||
|
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
|
||
|
default ordering ``np.meshgrid(..., indexing="xy")``.
|
||
|
dtheta : int, optional
|
||
|
Order of theta-derivative
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
dphi : int
|
||
|
Order of phi-derivative
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
grid : bool
|
||
|
Whether to evaluate the results on a grid spanned by the
|
||
|
input arrays, or at points specified by the input arrays.
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
Suppose that we want to use splines to interpolate a bivariate function on a
|
||
|
sphere. The value of the function is known on a grid of longitudes and
|
||
|
colatitudes.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import RectSphereBivariateSpline
|
||
|
>>> def f(theta, phi):
|
||
|
... return np.sin(theta) * np.cos(phi)
|
||
|
|
||
|
We evaluate the function on the grid. Note that the default indexing="xy"
|
||
|
of meshgrid would result in an unexpected (transposed) result after
|
||
|
interpolation.
|
||
|
|
||
|
>>> thetaarr = np.linspace(0, np.pi, 22)[1:-1]
|
||
|
>>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1]
|
||
|
>>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij")
|
||
|
>>> zdata = f(thetagrid, phigrid)
|
||
|
|
||
|
We next set up the interpolator and use it to evaluate the function
|
||
|
on a finer grid.
|
||
|
|
||
|
>>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata)
|
||
|
>>> thetaarr_fine = np.linspace(0, np.pi, 200)
|
||
|
>>> phiarr_fine = np.linspace(0, 2 * np.pi, 200)
|
||
|
>>> zdata_fine = rsbs(thetaarr_fine, phiarr_fine)
|
||
|
|
||
|
Finally we plot the coarsly-sampled input data alongside the
|
||
|
finely-sampled interpolated data to check that they agree.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(1, 2, 1)
|
||
|
>>> ax2 = fig.add_subplot(1, 2, 2)
|
||
|
>>> ax1.imshow(zdata)
|
||
|
>>> ax2.imshow(zdata_fine)
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
theta = np.asarray(theta)
|
||
|
phi = np.asarray(phi)
|
||
|
|
||
|
if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi):
|
||
|
raise ValueError("requested theta out of bounds.")
|
||
|
|
||
|
return _BivariateSplineBase.__call__(self, theta, phi,
|
||
|
dx=dtheta, dy=dphi, grid=grid)
|
||
|
|
||
|
def ev(self, theta, phi, dtheta=0, dphi=0):
|
||
|
"""
|
||
|
Evaluate the spline at points
|
||
|
|
||
|
Returns the interpolated value at ``(theta[i], phi[i]),
|
||
|
i=0,...,len(theta)-1``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
theta, phi : array_like
|
||
|
Input coordinates. Standard Numpy broadcasting is obeyed.
|
||
|
The ordering of axes is consistent with
|
||
|
np.meshgrid(..., indexing="ij") and inconsistent with the
|
||
|
default ordering np.meshgrid(..., indexing="xy").
|
||
|
dtheta : int, optional
|
||
|
Order of theta-derivative
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
dphi : int, optional
|
||
|
Order of phi-derivative
|
||
|
|
||
|
.. versionadded:: 0.14.0
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Suppose that we want to use splines to interpolate a bivariate function on a
|
||
|
sphere. The value of the function is known on a grid of longitudes and
|
||
|
colatitudes.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.interpolate import RectSphereBivariateSpline
|
||
|
>>> def f(theta, phi):
|
||
|
... return np.sin(theta) * np.cos(phi)
|
||
|
|
||
|
We evaluate the function on the grid. Note that the default indexing="xy"
|
||
|
of meshgrid would result in an unexpected (transposed) result after
|
||
|
interpolation.
|
||
|
|
||
|
>>> thetaarr = np.linspace(0, np.pi, 22)[1:-1]
|
||
|
>>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1]
|
||
|
>>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij")
|
||
|
>>> zdata = f(thetagrid, phigrid)
|
||
|
|
||
|
We next set up the interpolator and use it to evaluate the function
|
||
|
at points not on the original grid.
|
||
|
|
||
|
>>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata)
|
||
|
>>> thetainterp = np.linspace(thetaarr[0], thetaarr[-1], 200)
|
||
|
>>> phiinterp = np.linspace(phiarr[0], phiarr[-1], 200)
|
||
|
>>> zinterp = rsbs.ev(thetainterp, phiinterp)
|
||
|
|
||
|
Finally we plot the original data for a diagonal slice through the
|
||
|
initial grid, and the spline approximation along the same slice.
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(1, 1, 1)
|
||
|
>>> ax1.plot(np.sin(thetaarr) * np.sin(phiarr), np.diag(zdata), "or")
|
||
|
>>> ax1.plot(np.sin(thetainterp) * np.sin(phiinterp), zinterp, "-b")
|
||
|
>>> plt.show()
|
||
|
"""
|
||
|
return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False)
|
||
|
|
||
|
|
||
|
class SmoothSphereBivariateSpline(SphereBivariateSpline):
|
||
|
"""
|
||
|
Smooth bivariate spline approximation in spherical coordinates.
|
||
|
|
||
|
.. versionadded:: 0.11.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
theta, phi, r : array_like
|
||
|
1-D sequences of data points (order is not important). Coordinates
|
||
|
must be given in radians. Theta must lie within the interval
|
||
|
``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
|
||
|
w : array_like, optional
|
||
|
Positive 1-D sequence of weights.
|
||
|
s : float, optional
|
||
|
Positive smoothing factor defined for estimation condition:
|
||
|
``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s``
|
||
|
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
|
||
|
estimate of the standard deviation of ``r[i]``.
|
||
|
eps : float, optional
|
||
|
A threshold for determining the effective rank of an over-determined
|
||
|
linear system of equations. `eps` should have a value within the open
|
||
|
interval ``(0, 1)``, the default is 1e-16.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
BivariateSpline :
|
||
|
a base class for bivariate splines.
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
LSQBivariateSpline :
|
||
|
a bivariate spline using weighted least-squares fitting
|
||
|
RectSphereBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh on a sphere
|
||
|
LSQSphereBivariateSpline :
|
||
|
a bivariate spline in spherical coordinates using weighted
|
||
|
least-squares fitting
|
||
|
RectBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh.
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For more information, see the FITPACK_ site about this function.
|
||
|
|
||
|
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Suppose we have global data on a coarse grid (the input data does not
|
||
|
have to be on a grid):
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> theta = np.linspace(0., np.pi, 7)
|
||
|
>>> phi = np.linspace(0., 2*np.pi, 9)
|
||
|
>>> data = np.empty((theta.shape[0], phi.shape[0]))
|
||
|
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
|
||
|
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
|
||
|
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
|
||
|
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
|
||
|
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
|
||
|
>>> data[3,3:-2] = 3.
|
||
|
>>> data = np.roll(data, 4, 1)
|
||
|
|
||
|
We need to set up the interpolator object
|
||
|
|
||
|
>>> lats, lons = np.meshgrid(theta, phi)
|
||
|
>>> from scipy.interpolate import SmoothSphereBivariateSpline
|
||
|
>>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
|
||
|
... data.T.ravel(), s=3.5)
|
||
|
|
||
|
As a first test, we'll see what the algorithm returns when run on the
|
||
|
input coordinates
|
||
|
|
||
|
>>> data_orig = lut(theta, phi)
|
||
|
|
||
|
Finally we interpolate the data to a finer grid
|
||
|
|
||
|
>>> fine_lats = np.linspace(0., np.pi, 70)
|
||
|
>>> fine_lons = np.linspace(0., 2 * np.pi, 90)
|
||
|
|
||
|
>>> data_smth = lut(fine_lats, fine_lons)
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(131)
|
||
|
>>> ax1.imshow(data, interpolation='nearest')
|
||
|
>>> ax2 = fig.add_subplot(132)
|
||
|
>>> ax2.imshow(data_orig, interpolation='nearest')
|
||
|
>>> ax3 = fig.add_subplot(133)
|
||
|
>>> ax3.imshow(data_smth, interpolation='nearest')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16):
|
||
|
|
||
|
theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
|
||
|
|
||
|
# input validation
|
||
|
if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
|
||
|
raise ValueError('theta should be between [0, pi]')
|
||
|
if not ((0.0 <= phi).all() and (phi <= 2.0 * np.pi).all()):
|
||
|
raise ValueError('phi should be between [0, 2pi]')
|
||
|
if w is not None:
|
||
|
w = np.asarray(w)
|
||
|
if not (w >= 0.0).all():
|
||
|
raise ValueError('w should be positive')
|
||
|
if not s >= 0.0:
|
||
|
raise ValueError('s should be positive')
|
||
|
if not 0.0 < eps < 1.0:
|
||
|
raise ValueError('eps should be between (0, 1)')
|
||
|
|
||
|
nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi,
|
||
|
r, w=w, s=s,
|
||
|
eps=eps)
|
||
|
if ier not in [0, -1, -2]:
|
||
|
message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
|
||
|
raise ValueError(message)
|
||
|
|
||
|
self.fp = fp
|
||
|
self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)]
|
||
|
self.degrees = (3, 3)
|
||
|
|
||
|
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
|
||
|
|
||
|
theta = np.asarray(theta)
|
||
|
phi = np.asarray(phi)
|
||
|
|
||
|
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
|
||
|
raise ValueError("requested phi out of bounds.")
|
||
|
|
||
|
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
|
||
|
dphi=dphi, grid=grid)
|
||
|
|
||
|
|
||
|
class LSQSphereBivariateSpline(SphereBivariateSpline):
|
||
|
"""
|
||
|
Weighted least-squares bivariate spline approximation in spherical
|
||
|
coordinates.
|
||
|
|
||
|
Determines a smoothing bicubic spline according to a given
|
||
|
set of knots in the `theta` and `phi` directions.
|
||
|
|
||
|
.. versionadded:: 0.11.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
theta, phi, r : array_like
|
||
|
1-D sequences of data points (order is not important). Coordinates
|
||
|
must be given in radians. Theta must lie within the interval
|
||
|
``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
|
||
|
tt, tp : array_like
|
||
|
Strictly ordered 1-D sequences of knots coordinates.
|
||
|
Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``.
|
||
|
w : array_like, optional
|
||
|
Positive 1-D sequence of weights, of the same length as `theta`, `phi`
|
||
|
and `r`.
|
||
|
eps : float, optional
|
||
|
A threshold for determining the effective rank of an over-determined
|
||
|
linear system of equations. `eps` should have a value within the
|
||
|
open interval ``(0, 1)``, the default is 1e-16.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
BivariateSpline :
|
||
|
a base class for bivariate splines.
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
LSQBivariateSpline :
|
||
|
a bivariate spline using weighted least-squares fitting
|
||
|
RectSphereBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh on a sphere
|
||
|
SmoothSphereBivariateSpline :
|
||
|
a smoothing bivariate spline in spherical coordinates
|
||
|
RectBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh.
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For more information, see the FITPACK_ site about this function.
|
||
|
|
||
|
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Suppose we have global data on a coarse grid (the input data does not
|
||
|
have to be on a grid):
|
||
|
|
||
|
>>> from scipy.interpolate import LSQSphereBivariateSpline
|
||
|
>>> import numpy as np
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
|
||
|
>>> theta = np.linspace(0, np.pi, num=7)
|
||
|
>>> phi = np.linspace(0, 2*np.pi, num=9)
|
||
|
>>> data = np.empty((theta.shape[0], phi.shape[0]))
|
||
|
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
|
||
|
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
|
||
|
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
|
||
|
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
|
||
|
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
|
||
|
>>> data[3,3:-2] = 3.
|
||
|
>>> data = np.roll(data, 4, 1)
|
||
|
|
||
|
We need to set up the interpolator object. Here, we must also specify the
|
||
|
coordinates of the knots to use.
|
||
|
|
||
|
>>> lats, lons = np.meshgrid(theta, phi)
|
||
|
>>> knotst, knotsp = theta.copy(), phi.copy()
|
||
|
>>> knotst[0] += .0001
|
||
|
>>> knotst[-1] -= .0001
|
||
|
>>> knotsp[0] += .0001
|
||
|
>>> knotsp[-1] -= .0001
|
||
|
>>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
|
||
|
... data.T.ravel(), knotst, knotsp)
|
||
|
|
||
|
As a first test, we'll see what the algorithm returns when run on the
|
||
|
input coordinates
|
||
|
|
||
|
>>> data_orig = lut(theta, phi)
|
||
|
|
||
|
Finally we interpolate the data to a finer grid
|
||
|
|
||
|
>>> fine_lats = np.linspace(0., np.pi, 70)
|
||
|
>>> fine_lons = np.linspace(0., 2*np.pi, 90)
|
||
|
>>> data_lsq = lut(fine_lats, fine_lons)
|
||
|
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(131)
|
||
|
>>> ax1.imshow(data, interpolation='nearest')
|
||
|
>>> ax2 = fig.add_subplot(132)
|
||
|
>>> ax2.imshow(data_orig, interpolation='nearest')
|
||
|
>>> ax3 = fig.add_subplot(133)
|
||
|
>>> ax3.imshow(data_lsq, interpolation='nearest')
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16):
|
||
|
|
||
|
theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
|
||
|
tt, tp = np.asarray(tt), np.asarray(tp)
|
||
|
|
||
|
if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
|
||
|
raise ValueError('theta should be between [0, pi]')
|
||
|
if not ((0.0 <= phi).all() and (phi <= 2*np.pi).all()):
|
||
|
raise ValueError('phi should be between [0, 2pi]')
|
||
|
if not ((0.0 < tt).all() and (tt < np.pi).all()):
|
||
|
raise ValueError('tt should be between (0, pi)')
|
||
|
if not ((0.0 < tp).all() and (tp < 2*np.pi).all()):
|
||
|
raise ValueError('tp should be between (0, 2pi)')
|
||
|
if w is not None:
|
||
|
w = np.asarray(w)
|
||
|
if not (w >= 0.0).all():
|
||
|
raise ValueError('w should be positive')
|
||
|
if not 0.0 < eps < 1.0:
|
||
|
raise ValueError('eps should be between (0, 1)')
|
||
|
|
||
|
nt_, np_ = 8 + len(tt), 8 + len(tp)
|
||
|
tt_, tp_ = zeros((nt_,), float), zeros((np_,), float)
|
||
|
tt_[4:-4], tp_[4:-4] = tt, tp
|
||
|
tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi
|
||
|
tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_,
|
||
|
w=w, eps=eps)
|
||
|
if ier > 0:
|
||
|
message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
|
||
|
raise ValueError(message)
|
||
|
|
||
|
self.fp = fp
|
||
|
self.tck = tt_, tp_, c
|
||
|
self.degrees = (3, 3)
|
||
|
|
||
|
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
|
||
|
|
||
|
theta = np.asarray(theta)
|
||
|
phi = np.asarray(phi)
|
||
|
|
||
|
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
|
||
|
raise ValueError("requested phi out of bounds.")
|
||
|
|
||
|
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
|
||
|
dphi=dphi, grid=grid)
|
||
|
|
||
|
|
||
|
_spfit_messages = _surfit_messages.copy()
|
||
|
_spfit_messages[10] = """
|
||
|
ERROR: on entry, the input data are controlled on validity
|
||
|
the following restrictions must be satisfied.
|
||
|
-1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1,
|
||
|
-1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0.
|
||
|
-1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0.
|
||
|
mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8,
|
||
|
kwrk>=5+mu+mv+nuest+nvest,
|
||
|
lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest)
|
||
|
0< u(i-1)<u(i)< pi,i=2,..,mu,
|
||
|
-pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv
|
||
|
if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3))
|
||
|
0<tu(5)<tu(6)<...<tu(nu-4)< pi
|
||
|
8<=nv<=min(nvest,mv+7)
|
||
|
v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi
|
||
|
the schoenberg-whitney conditions, i.e. there must be
|
||
|
subset of grid coordinates uu(p) and vv(q) such that
|
||
|
tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4
|
||
|
(iopt(2)=1 and iopt(3)=1 also count for a uu-value
|
||
|
tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4
|
||
|
(vv(q) is either a value v(j) or v(j)+2*pi)
|
||
|
if iopt(1)>=0: s>=0
|
||
|
if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7
|
||
|
if one of these conditions is found to be violated,control is
|
||
|
immediately repassed to the calling program. in that case there is no
|
||
|
approximation returned."""
|
||
|
|
||
|
|
||
|
class RectSphereBivariateSpline(SphereBivariateSpline):
|
||
|
"""
|
||
|
Bivariate spline approximation over a rectangular mesh on a sphere.
|
||
|
|
||
|
Can be used for smoothing data.
|
||
|
|
||
|
.. versionadded:: 0.11.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
u : array_like
|
||
|
1-D array of colatitude coordinates in strictly ascending order.
|
||
|
Coordinates must be given in radians and lie within the open interval
|
||
|
``(0, pi)``.
|
||
|
v : array_like
|
||
|
1-D array of longitude coordinates in strictly ascending order.
|
||
|
Coordinates must be given in radians. First element (``v[0]``) must lie
|
||
|
within the interval ``[-pi, pi)``. Last element (``v[-1]``) must satisfy
|
||
|
``v[-1] <= v[0] + 2*pi``.
|
||
|
r : array_like
|
||
|
2-D array of data with shape ``(u.size, v.size)``.
|
||
|
s : float, optional
|
||
|
Positive smoothing factor defined for estimation condition
|
||
|
(``s=0`` is for interpolation).
|
||
|
pole_continuity : bool or (bool, bool), optional
|
||
|
Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and
|
||
|
``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole
|
||
|
will be 1 or 0 when this is True or False, respectively.
|
||
|
Defaults to False.
|
||
|
pole_values : float or (float, float), optional
|
||
|
Data values at the poles ``u=0`` and ``u=pi``. Either the whole
|
||
|
parameter or each individual element can be None. Defaults to None.
|
||
|
pole_exact : bool or (bool, bool), optional
|
||
|
Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the
|
||
|
value is considered to be the right function value, and it will be
|
||
|
fitted exactly. If False, the value will be considered to be a data
|
||
|
value just like the other data values. Defaults to False.
|
||
|
pole_flat : bool or (bool, bool), optional
|
||
|
For the poles at ``u=0`` and ``u=pi``, specify whether or not the
|
||
|
approximation has vanishing derivatives. Defaults to False.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
BivariateSpline :
|
||
|
a base class for bivariate splines.
|
||
|
UnivariateSpline :
|
||
|
a smooth univariate spline to fit a given set of data points.
|
||
|
SmoothBivariateSpline :
|
||
|
a smoothing bivariate spline through the given points
|
||
|
LSQBivariateSpline :
|
||
|
a bivariate spline using weighted least-squares fitting
|
||
|
SmoothSphereBivariateSpline :
|
||
|
a smoothing bivariate spline in spherical coordinates
|
||
|
LSQSphereBivariateSpline :
|
||
|
a bivariate spline in spherical coordinates using weighted
|
||
|
least-squares fitting
|
||
|
RectBivariateSpline :
|
||
|
a bivariate spline over a rectangular mesh.
|
||
|
bisplrep :
|
||
|
a function to find a bivariate B-spline representation of a surface
|
||
|
bisplev :
|
||
|
a function to evaluate a bivariate B-spline and its derivatives
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Currently, only the smoothing spline approximation (``iopt[0] = 0`` and
|
||
|
``iopt[0] = 1`` in the FITPACK routine) is supported. The exact
|
||
|
least-squares spline approximation is not implemented yet.
|
||
|
|
||
|
When actually performing the interpolation, the requested `v` values must
|
||
|
lie within the same length 2pi interval that the original `v` values were
|
||
|
chosen from.
|
||
|
|
||
|
For more information, see the FITPACK_ site about this function.
|
||
|
|
||
|
.. _FITPACK: http://www.netlib.org/dierckx/spgrid.f
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Suppose we have global data on a coarse grid
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> lats = np.linspace(10, 170, 9) * np.pi / 180.
|
||
|
>>> lons = np.linspace(0, 350, 18) * np.pi / 180.
|
||
|
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
|
||
|
... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T
|
||
|
|
||
|
We want to interpolate it to a global one-degree grid
|
||
|
|
||
|
>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
|
||
|
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
|
||
|
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)
|
||
|
|
||
|
We need to set up the interpolator object
|
||
|
|
||
|
>>> from scipy.interpolate import RectSphereBivariateSpline
|
||
|
>>> lut = RectSphereBivariateSpline(lats, lons, data)
|
||
|
|
||
|
Finally we interpolate the data. The `RectSphereBivariateSpline` object
|
||
|
only takes 1-D arrays as input, therefore we need to do some reshaping.
|
||
|
|
||
|
>>> data_interp = lut.ev(new_lats.ravel(),
|
||
|
... new_lons.ravel()).reshape((360, 180)).T
|
||
|
|
||
|
Looking at the original and the interpolated data, one can see that the
|
||
|
interpolant reproduces the original data very well:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig = plt.figure()
|
||
|
>>> ax1 = fig.add_subplot(211)
|
||
|
>>> ax1.imshow(data, interpolation='nearest')
|
||
|
>>> ax2 = fig.add_subplot(212)
|
||
|
>>> ax2.imshow(data_interp, interpolation='nearest')
|
||
|
>>> plt.show()
|
||
|
|
||
|
Choosing the optimal value of ``s`` can be a delicate task. Recommended
|
||
|
values for ``s`` depend on the accuracy of the data values. If the user
|
||
|
has an idea of the statistical errors on the data, she can also find a
|
||
|
proper estimate for ``s``. By assuming that, if she specifies the
|
||
|
right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly
|
||
|
reproduces the function underlying the data, she can evaluate
|
||
|
``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``.
|
||
|
For example, if she knows that the statistical errors on her
|
||
|
``r(i,j)``-values are not greater than 0.1, she may expect that a good
|
||
|
``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``.
|
||
|
|
||
|
If nothing is known about the statistical error in ``r(i,j)``, ``s`` must
|
||
|
be determined by trial and error. The best is then to start with a very
|
||
|
large value of ``s`` (to determine the least-squares polynomial and the
|
||
|
corresponding upper bound ``fp0`` for ``s``) and then to progressively
|
||
|
decrease the value of ``s`` (say by a factor 10 in the beginning, i.e.
|
||
|
``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation
|
||
|
shows more detail) to obtain closer fits.
|
||
|
|
||
|
The interpolation results for different values of ``s`` give some insight
|
||
|
into this process:
|
||
|
|
||
|
>>> fig2 = plt.figure()
|
||
|
>>> s = [3e9, 2e9, 1e9, 1e8]
|
||
|
>>> for idx, sval in enumerate(s, 1):
|
||
|
... lut = RectSphereBivariateSpline(lats, lons, data, s=sval)
|
||
|
... data_interp = lut.ev(new_lats.ravel(),
|
||
|
... new_lons.ravel()).reshape((360, 180)).T
|
||
|
... ax = fig2.add_subplot(2, 2, idx)
|
||
|
... ax.imshow(data_interp, interpolation='nearest')
|
||
|
... ax.set_title(f"s = {sval:g}")
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None,
|
||
|
pole_exact=False, pole_flat=False):
|
||
|
iopt = np.array([0, 0, 0], dtype=dfitpack_int)
|
||
|
ider = np.array([-1, 0, -1, 0], dtype=dfitpack_int)
|
||
|
if pole_values is None:
|
||
|
pole_values = (None, None)
|
||
|
elif isinstance(pole_values, (float, np.float32, np.float64)):
|
||
|
pole_values = (pole_values, pole_values)
|
||
|
if isinstance(pole_continuity, bool):
|
||
|
pole_continuity = (pole_continuity, pole_continuity)
|
||
|
if isinstance(pole_exact, bool):
|
||
|
pole_exact = (pole_exact, pole_exact)
|
||
|
if isinstance(pole_flat, bool):
|
||
|
pole_flat = (pole_flat, pole_flat)
|
||
|
|
||
|
r0, r1 = pole_values
|
||
|
iopt[1:] = pole_continuity
|
||
|
if r0 is None:
|
||
|
ider[0] = -1
|
||
|
else:
|
||
|
ider[0] = pole_exact[0]
|
||
|
|
||
|
if r1 is None:
|
||
|
ider[2] = -1
|
||
|
else:
|
||
|
ider[2] = pole_exact[1]
|
||
|
|
||
|
ider[1], ider[3] = pole_flat
|
||
|
|
||
|
u, v = np.ravel(u), np.ravel(v)
|
||
|
r = np.asarray(r)
|
||
|
|
||
|
if not (0.0 < u[0] and u[-1] < np.pi):
|
||
|
raise ValueError('u should be between (0, pi)')
|
||
|
if not -np.pi <= v[0] < np.pi:
|
||
|
raise ValueError('v[0] should be between [-pi, pi)')
|
||
|
if not v[-1] <= v[0] + 2*np.pi:
|
||
|
raise ValueError('v[-1] should be v[0] + 2pi or less ')
|
||
|
|
||
|
if not np.all(np.diff(u) > 0.0):
|
||
|
raise ValueError('u must be strictly increasing')
|
||
|
if not np.all(np.diff(v) > 0.0):
|
||
|
raise ValueError('v must be strictly increasing')
|
||
|
|
||
|
if not u.size == r.shape[0]:
|
||
|
raise ValueError('u dimension of r must have same number of '
|
||
|
'elements as u')
|
||
|
if not v.size == r.shape[1]:
|
||
|
raise ValueError('v dimension of r must have same number of '
|
||
|
'elements as v')
|
||
|
|
||
|
if pole_continuity[1] is False and pole_flat[1] is True:
|
||
|
raise ValueError('if pole_continuity is False, so must be '
|
||
|
'pole_flat')
|
||
|
if pole_continuity[0] is False and pole_flat[0] is True:
|
||
|
raise ValueError('if pole_continuity is False, so must be '
|
||
|
'pole_flat')
|
||
|
|
||
|
if not s >= 0.0:
|
||
|
raise ValueError('s should be positive')
|
||
|
|
||
|
r = np.ravel(r)
|
||
|
nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider,
|
||
|
u.copy(),
|
||
|
v.copy(),
|
||
|
r.copy(),
|
||
|
r0, r1, s)
|
||
|
|
||
|
if ier not in [0, -1, -2]:
|
||
|
msg = _spfit_messages.get(ier, 'ier=%s' % (ier))
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
self.fp = fp
|
||
|
self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)]
|
||
|
self.degrees = (3, 3)
|
||
|
self.v0 = v[0]
|
||
|
|
||
|
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
|
||
|
|
||
|
theta = np.asarray(theta)
|
||
|
phi = np.asarray(phi)
|
||
|
|
||
|
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
|
||
|
dphi=dphi, grid=grid)
|