Traktor/myenv/Lib/site-packages/scipy/sparse/tests/test_minmax1d.py

83 lines
2.3 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
"""Test of min-max 1D features of sparse array classes"""
import pytest
import numpy as np
from numpy.testing import assert_equal, assert_array_equal
from scipy.sparse import coo_array
from scipy.sparse._sputils import isscalarlike
def toarray(a):
if isinstance(a, np.ndarray) or isscalarlike(a):
return a
return a.toarray()
formats_for_minmax = [coo_array]
@pytest.mark.parametrize("spcreator", formats_for_minmax)
class Test_MinMaxMixin1D:
def test_minmax(self, spcreator):
D = np.arange(5)
X = spcreator(D)
assert_equal(X.min(), 0)
assert_equal(X.max(), 4)
assert_equal((-X).min(), -4)
assert_equal((-X).max(), 0)
def test_minmax_axis(self, spcreator):
D = np.arange(50)
X = spcreator(D)
for axis in [0, -1]:
assert_array_equal(
toarray(X.max(axis=axis)), D.max(axis=axis, keepdims=True)
)
assert_array_equal(
toarray(X.min(axis=axis)), D.min(axis=axis, keepdims=True)
)
for axis in [-2, 1]:
with pytest.raises(ValueError, match="axis out of range"):
X.min(axis=axis)
with pytest.raises(ValueError, match="axis out of range"):
X.max(axis=axis)
def test_numpy_minmax(self, spcreator):
dat = np.array([0, 1, 2])
datsp = spcreator(dat)
assert_array_equal(np.min(datsp), np.min(dat))
assert_array_equal(np.max(datsp), np.max(dat))
def test_argmax(self, spcreator):
D1 = np.array([-1, 5, 2, 3])
D2 = np.array([0, 0, -1, -2])
D3 = np.array([-1, -2, -3, -4])
D4 = np.array([1, 2, 3, 4])
D5 = np.array([1, 2, 0, 0])
for D in [D1, D2, D3, D4, D5]:
mat = spcreator(D)
assert_equal(mat.argmax(), np.argmax(D))
assert_equal(mat.argmin(), np.argmin(D))
assert_equal(mat.argmax(axis=0), np.argmax(D, axis=0))
assert_equal(mat.argmin(axis=0), np.argmin(D, axis=0))
D6 = np.empty((0,))
for axis in [None, 0]:
mat = spcreator(D6)
with pytest.raises(ValueError, match="to an empty matrix"):
mat.argmin(axis=axis)
with pytest.raises(ValueError, match="to an empty matrix"):
mat.argmax(axis=axis)