2803 lines
90 KiB
Plaintext
2803 lines
90 KiB
Plaintext
|
{{py:
|
||
|
|
||
|
implementation_specific_values = [
|
||
|
# Values are the following ones:
|
||
|
#
|
||
|
# name_suffix, INPUT_DTYPE_t, INPUT_DTYPE
|
||
|
('64', 'float64_t', 'np.float64'),
|
||
|
('32', 'float32_t', 'np.float32')
|
||
|
]
|
||
|
|
||
|
}}
|
||
|
# By Jake Vanderplas (2013) <jakevdp@cs.washington.edu>
|
||
|
# written for the scikit-learn project
|
||
|
# License: BSD
|
||
|
|
||
|
import numpy as np
|
||
|
cimport numpy as cnp
|
||
|
|
||
|
cnp.import_array() # required in order to use C-API
|
||
|
|
||
|
from libc.math cimport fabs, sqrt, exp, pow, cos, sin, asin
|
||
|
|
||
|
from scipy.sparse import csr_matrix, issparse
|
||
|
from ..utils._typedefs cimport float64_t, float32_t, int32_t, intp_t
|
||
|
from ..utils import check_array
|
||
|
from ..utils.fixes import parse_version, sp_base_version
|
||
|
|
||
|
cdef inline double fmax(double a, double b) noexcept nogil:
|
||
|
return max(a, b)
|
||
|
|
||
|
|
||
|
######################################################################
|
||
|
# newObj function
|
||
|
# this is a helper function for pickling
|
||
|
def newObj(obj):
|
||
|
return obj.__new__(obj)
|
||
|
|
||
|
|
||
|
BOOL_METRICS = [
|
||
|
"hamming",
|
||
|
"jaccard",
|
||
|
"dice",
|
||
|
"rogerstanimoto",
|
||
|
"russellrao",
|
||
|
"sokalmichener",
|
||
|
"sokalsneath",
|
||
|
]
|
||
|
if sp_base_version < parse_version("1.11"):
|
||
|
# Deprecated in SciPy 1.9 and removed in SciPy 1.11
|
||
|
BOOL_METRICS += ["kulsinski"]
|
||
|
if sp_base_version < parse_version("1.9"):
|
||
|
# Deprecated in SciPy 1.0 and removed in SciPy 1.9
|
||
|
BOOL_METRICS += ["matching"]
|
||
|
|
||
|
def get_valid_metric_ids(L):
|
||
|
"""Given an iterable of metric class names or class identifiers,
|
||
|
return a list of metric IDs which map to those classes.
|
||
|
|
||
|
Example:
|
||
|
>>> L = get_valid_metric_ids([EuclideanDistance, 'ManhattanDistance'])
|
||
|
>>> sorted(L)
|
||
|
['cityblock', 'euclidean', 'l1', 'l2', 'manhattan']
|
||
|
"""
|
||
|
return [key for (key, val) in METRIC_MAPPING64.items()
|
||
|
if (val.__name__ in L) or (val in L)]
|
||
|
|
||
|
cdef class DistanceMetric:
|
||
|
"""Uniform interface for fast distance metric functions.
|
||
|
|
||
|
The `DistanceMetric` class provides a convenient way to compute pairwise distances
|
||
|
between samples. It supports various distance metrics, such as Euclidean distance,
|
||
|
Manhattan distance, and more.
|
||
|
|
||
|
The `pairwise` method can be used to compute pairwise distances between samples in
|
||
|
the input arrays. It returns a distance matrix representing the distances between
|
||
|
all pairs of samples.
|
||
|
|
||
|
The :meth:`get_metric` method allows you to retrieve a specific metric using its
|
||
|
string identifier.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.metrics import DistanceMetric
|
||
|
>>> dist = DistanceMetric.get_metric('euclidean')
|
||
|
>>> X = [[1, 2], [3, 4], [5, 6]]
|
||
|
>>> Y = [[7, 8], [9, 10]]
|
||
|
>>> dist.pairwise(X,Y)
|
||
|
array([[7.81..., 10.63...]
|
||
|
[5.65..., 8.48...]
|
||
|
[1.41..., 4.24...]])
|
||
|
|
||
|
Available Metrics
|
||
|
|
||
|
The following lists the string metric identifiers and the associated
|
||
|
distance metric classes:
|
||
|
|
||
|
**Metrics intended for real-valued vector spaces:**
|
||
|
|
||
|
============== ==================== ======== ===============================
|
||
|
identifier class name args distance function
|
||
|
-------------- -------------------- -------- -------------------------------
|
||
|
"euclidean" EuclideanDistance - ``sqrt(sum((x - y)^2))``
|
||
|
"manhattan" ManhattanDistance - ``sum(|x - y|)``
|
||
|
"chebyshev" ChebyshevDistance - ``max(|x - y|)``
|
||
|
"minkowski" MinkowskiDistance p, w ``sum(w * |x - y|^p)^(1/p)``
|
||
|
"seuclidean" SEuclideanDistance V ``sqrt(sum((x - y)^2 / V))``
|
||
|
"mahalanobis" MahalanobisDistance V or VI ``sqrt((x - y)' V^-1 (x - y))``
|
||
|
============== ==================== ======== ===============================
|
||
|
|
||
|
**Metrics intended for two-dimensional vector spaces:** Note that the haversine
|
||
|
distance metric requires data in the form of [latitude, longitude] and both
|
||
|
inputs and outputs are in units of radians.
|
||
|
|
||
|
============ ================== ===============================================================
|
||
|
identifier class name distance function
|
||
|
------------ ------------------ ---------------------------------------------------------------
|
||
|
"haversine" HaversineDistance ``2 arcsin(sqrt(sin^2(0.5*dx) + cos(x1)cos(x2)sin^2(0.5*dy)))``
|
||
|
============ ================== ===============================================================
|
||
|
|
||
|
|
||
|
**Metrics intended for integer-valued vector spaces:** Though intended
|
||
|
for integer-valued vectors, these are also valid metrics in the case of
|
||
|
real-valued vectors.
|
||
|
|
||
|
============= ==================== ========================================
|
||
|
identifier class name distance function
|
||
|
------------- -------------------- ----------------------------------------
|
||
|
"hamming" HammingDistance ``N_unequal(x, y) / N_tot``
|
||
|
"canberra" CanberraDistance ``sum(|x - y| / (|x| + |y|))``
|
||
|
"braycurtis" BrayCurtisDistance ``sum(|x - y|) / (sum(|x|) + sum(|y|))``
|
||
|
============= ==================== ========================================
|
||
|
|
||
|
**Metrics intended for boolean-valued vector spaces:** Any nonzero entry
|
||
|
is evaluated to "True". In the listings below, the following
|
||
|
abbreviations are used:
|
||
|
|
||
|
- N : number of dimensions
|
||
|
- NTT : number of dims in which both values are True
|
||
|
- NTF : number of dims in which the first value is True, second is False
|
||
|
- NFT : number of dims in which the first value is False, second is True
|
||
|
- NFF : number of dims in which both values are False
|
||
|
- NNEQ : number of non-equal dimensions, NNEQ = NTF + NFT
|
||
|
- NNZ : number of nonzero dimensions, NNZ = NTF + NFT + NTT
|
||
|
|
||
|
================= ======================= ===============================
|
||
|
identifier class name distance function
|
||
|
----------------- ----------------------- -------------------------------
|
||
|
"jaccard" JaccardDistance NNEQ / NNZ
|
||
|
"matching" MatchingDistance NNEQ / N
|
||
|
"dice" DiceDistance NNEQ / (NTT + NNZ)
|
||
|
"kulsinski" KulsinskiDistance (NNEQ + N - NTT) / (NNEQ + N)
|
||
|
"rogerstanimoto" RogersTanimotoDistance 2 * NNEQ / (N + NNEQ)
|
||
|
"russellrao" RussellRaoDistance (N - NTT) / N
|
||
|
"sokalmichener" SokalMichenerDistance 2 * NNEQ / (N + NNEQ)
|
||
|
"sokalsneath" SokalSneathDistance NNEQ / (NNEQ + 0.5 * NTT)
|
||
|
================= ======================= ===============================
|
||
|
|
||
|
**User-defined distance:**
|
||
|
|
||
|
=========== =============== =======
|
||
|
identifier class name args
|
||
|
----------- --------------- -------
|
||
|
"pyfunc" PyFuncDistance func
|
||
|
=========== =============== =======
|
||
|
|
||
|
Here ``func`` is a function which takes two one-dimensional numpy
|
||
|
arrays, and returns a distance. Note that in order to be used within
|
||
|
the BallTree, the distance must be a true metric:
|
||
|
i.e. it must satisfy the following properties
|
||
|
|
||
|
1) Non-negativity: d(x, y) >= 0
|
||
|
2) Identity: d(x, y) = 0 if and only if x == y
|
||
|
3) Symmetry: d(x, y) = d(y, x)
|
||
|
4) Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)
|
||
|
|
||
|
Because of the Python object overhead involved in calling the python
|
||
|
function, this will be fairly slow, but it will have the same
|
||
|
scaling as other distances.
|
||
|
"""
|
||
|
@classmethod
|
||
|
def get_metric(cls, metric, dtype=np.float64, **kwargs):
|
||
|
"""Get the given distance metric from the string identifier.
|
||
|
|
||
|
See the docstring of DistanceMetric for a list of available metrics.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
metric : str or class name
|
||
|
The string identifier or class name of the desired distance metric.
|
||
|
See the documentation of the `DistanceMetric` class for a list of
|
||
|
available metrics.
|
||
|
|
||
|
dtype : {np.float32, np.float64}, default=np.float64
|
||
|
The data type of the input on which the metric will be applied.
|
||
|
This affects the precision of the computed distances.
|
||
|
By default, it is set to `np.float64`.
|
||
|
|
||
|
**kwargs
|
||
|
Additional keyword arguments that will be passed to the requested metric.
|
||
|
These arguments can be used to customize the behavior of the specific
|
||
|
metric.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
metric_obj : instance of the requested metric
|
||
|
An instance of the requested distance metric class.
|
||
|
"""
|
||
|
if dtype == np.float32:
|
||
|
specialized_class = DistanceMetric32
|
||
|
elif dtype == np.float64:
|
||
|
specialized_class = DistanceMetric64
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Unexpected dtype {dtype} provided. Please select a dtype from"
|
||
|
" {np.float32, np.float64}"
|
||
|
)
|
||
|
|
||
|
return specialized_class.get_metric(metric, **kwargs)
|
||
|
|
||
|
{{for name_suffix, INPUT_DTYPE_t, INPUT_DTYPE in implementation_specific_values}}
|
||
|
|
||
|
######################################################################
|
||
|
# metric mappings
|
||
|
# These map from metric id strings to class names
|
||
|
METRIC_MAPPING{{name_suffix}} = {
|
||
|
'euclidean': EuclideanDistance{{name_suffix}},
|
||
|
'l2': EuclideanDistance{{name_suffix}},
|
||
|
'minkowski': MinkowskiDistance{{name_suffix}},
|
||
|
'p': MinkowskiDistance{{name_suffix}},
|
||
|
'manhattan': ManhattanDistance{{name_suffix}},
|
||
|
'cityblock': ManhattanDistance{{name_suffix}},
|
||
|
'l1': ManhattanDistance{{name_suffix}},
|
||
|
'chebyshev': ChebyshevDistance{{name_suffix}},
|
||
|
'infinity': ChebyshevDistance{{name_suffix}},
|
||
|
'seuclidean': SEuclideanDistance{{name_suffix}},
|
||
|
'mahalanobis': MahalanobisDistance{{name_suffix}},
|
||
|
'hamming': HammingDistance{{name_suffix}},
|
||
|
'canberra': CanberraDistance{{name_suffix}},
|
||
|
'braycurtis': BrayCurtisDistance{{name_suffix}},
|
||
|
'matching': MatchingDistance{{name_suffix}},
|
||
|
'jaccard': JaccardDistance{{name_suffix}},
|
||
|
'dice': DiceDistance{{name_suffix}},
|
||
|
'kulsinski': KulsinskiDistance{{name_suffix}},
|
||
|
'rogerstanimoto': RogersTanimotoDistance{{name_suffix}},
|
||
|
'russellrao': RussellRaoDistance{{name_suffix}},
|
||
|
'sokalmichener': SokalMichenerDistance{{name_suffix}},
|
||
|
'sokalsneath': SokalSneathDistance{{name_suffix}},
|
||
|
'haversine': HaversineDistance{{name_suffix}},
|
||
|
'pyfunc': PyFuncDistance{{name_suffix}},
|
||
|
}
|
||
|
|
||
|
cdef inline object _buffer_to_ndarray{{name_suffix}}(const {{INPUT_DTYPE_t}}* x, intp_t n):
|
||
|
# Wrap a memory buffer with an ndarray. Warning: this is not robust.
|
||
|
# In particular, if x is deallocated before the returned array goes
|
||
|
# out of scope, this could cause memory errors. Since there is not
|
||
|
# a possibility of this for our use-case, this should be safe.
|
||
|
|
||
|
# Note: this Segfaults unless np.import_array() is called above
|
||
|
# TODO: remove the explicit cast to cnp.intp_t* when cython min version >= 3.0
|
||
|
return cnp.PyArray_SimpleNewFromData(1, <cnp.intp_t*>&n, cnp.NPY_FLOAT64, <void*>x)
|
||
|
|
||
|
|
||
|
cdef {{INPUT_DTYPE_t}} INF{{name_suffix}} = np.inf
|
||
|
|
||
|
|
||
|
######################################################################
|
||
|
# Distance Metric Classes
|
||
|
cdef class DistanceMetric{{name_suffix}}(DistanceMetric):
|
||
|
"""DistanceMetric class
|
||
|
|
||
|
This class provides a uniform interface to fast distance metric
|
||
|
functions. The various metrics can be accessed via the :meth:`get_metric`
|
||
|
class method and the metric string identifier (see below).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.metrics import DistanceMetric
|
||
|
>>> dist = DistanceMetric.get_metric('euclidean')
|
||
|
>>> X = [[0, 1, 2],
|
||
|
[3, 4, 5]]
|
||
|
>>> dist.pairwise(X)
|
||
|
array([[ 0. , 5.19615242],
|
||
|
[ 5.19615242, 0. ]])
|
||
|
|
||
|
Available Metrics
|
||
|
|
||
|
The following lists the string metric identifiers and the associated
|
||
|
distance metric classes:
|
||
|
|
||
|
**Metrics intended for real-valued vector spaces:**
|
||
|
|
||
|
============== ==================== ======== ===============================
|
||
|
identifier class name args distance function
|
||
|
-------------- -------------------- -------- -------------------------------
|
||
|
"euclidean" EuclideanDistance - ``sqrt(sum((x - y)^2))``
|
||
|
"manhattan" ManhattanDistance - ``sum(|x - y|)``
|
||
|
"chebyshev" ChebyshevDistance - ``max(|x - y|)``
|
||
|
"minkowski" MinkowskiDistance p, w ``sum(w * |x - y|^p)^(1/p)``
|
||
|
"seuclidean" SEuclideanDistance V ``sqrt(sum((x - y)^2 / V))``
|
||
|
"mahalanobis" MahalanobisDistance V or VI ``sqrt((x - y)' V^-1 (x - y))``
|
||
|
============== ==================== ======== ===============================
|
||
|
|
||
|
**Metrics intended for two-dimensional vector spaces:** Note that the haversine
|
||
|
distance metric requires data in the form of [latitude, longitude] and both
|
||
|
inputs and outputs are in units of radians.
|
||
|
|
||
|
============ ================== ===============================================================
|
||
|
identifier class name distance function
|
||
|
------------ ------------------ ---------------------------------------------------------------
|
||
|
"haversine" HaversineDistance ``2 arcsin(sqrt(sin^2(0.5*dx) + cos(x1)cos(x2)sin^2(0.5*dy)))``
|
||
|
============ ================== ===============================================================
|
||
|
|
||
|
|
||
|
**Metrics intended for integer-valued vector spaces:** Though intended
|
||
|
for integer-valued vectors, these are also valid metrics in the case of
|
||
|
real-valued vectors.
|
||
|
|
||
|
============= ==================== ========================================
|
||
|
identifier class name distance function
|
||
|
------------- -------------------- ----------------------------------------
|
||
|
"hamming" HammingDistance ``N_unequal(x, y) / N_tot``
|
||
|
"canberra" CanberraDistance ``sum(|x - y| / (|x| + |y|))``
|
||
|
"braycurtis" BrayCurtisDistance ``sum(|x - y|) / (sum(|x|) + sum(|y|))``
|
||
|
============= ==================== ========================================
|
||
|
|
||
|
**Metrics intended for boolean-valued vector spaces:** Any nonzero entry
|
||
|
is evaluated to "True". In the listings below, the following
|
||
|
abbreviations are used:
|
||
|
|
||
|
- N : number of dimensions
|
||
|
- NTT : number of dims in which both values are True
|
||
|
- NTF : number of dims in which the first value is True, second is False
|
||
|
- NFT : number of dims in which the first value is False, second is True
|
||
|
- NFF : number of dims in which both values are False
|
||
|
- NNEQ : number of non-equal dimensions, NNEQ = NTF + NFT
|
||
|
- NNZ : number of nonzero dimensions, NNZ = NTF + NFT + NTT
|
||
|
|
||
|
================= ======================= ===============================
|
||
|
identifier class name distance function
|
||
|
----------------- ----------------------- -------------------------------
|
||
|
"jaccard" JaccardDistance NNEQ / NNZ
|
||
|
"matching" MatchingDistance NNEQ / N
|
||
|
"dice" DiceDistance NNEQ / (NTT + NNZ)
|
||
|
"kulsinski" KulsinskiDistance (NNEQ + N - NTT) / (NNEQ + N)
|
||
|
"rogerstanimoto" RogersTanimotoDistance 2 * NNEQ / (N + NNEQ)
|
||
|
"russellrao" RussellRaoDistance (N - NTT) / N
|
||
|
"sokalmichener" SokalMichenerDistance 2 * NNEQ / (N + NNEQ)
|
||
|
"sokalsneath" SokalSneathDistance NNEQ / (NNEQ + 0.5 * NTT)
|
||
|
================= ======================= ===============================
|
||
|
|
||
|
**User-defined distance:**
|
||
|
|
||
|
=========== =============== =======
|
||
|
identifier class name args
|
||
|
----------- --------------- -------
|
||
|
"pyfunc" PyFuncDistance func
|
||
|
=========== =============== =======
|
||
|
|
||
|
Here ``func`` is a function which takes two one-dimensional numpy
|
||
|
arrays, and returns a distance. Note that in order to be used within
|
||
|
the BallTree, the distance must be a true metric:
|
||
|
i.e. it must satisfy the following properties
|
||
|
|
||
|
1) Non-negativity: d(x, y) >= 0
|
||
|
2) Identity: d(x, y) = 0 if and only if x == y
|
||
|
3) Symmetry: d(x, y) = d(y, x)
|
||
|
4) Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)
|
||
|
|
||
|
Because of the Python object overhead involved in calling the python
|
||
|
function, this will be fairly slow, but it will have the same
|
||
|
scaling as other distances.
|
||
|
"""
|
||
|
def __cinit__(self):
|
||
|
self.p = 2
|
||
|
self.vec = np.zeros(1, dtype=np.float64, order='C')
|
||
|
self.mat = np.zeros((1, 1), dtype=np.float64, order='C')
|
||
|
self.size = 1
|
||
|
|
||
|
def __reduce__(self):
|
||
|
"""
|
||
|
reduce method used for pickling
|
||
|
"""
|
||
|
return (newObj, (self.__class__,), self.__getstate__())
|
||
|
|
||
|
def __getstate__(self):
|
||
|
"""
|
||
|
get state for pickling
|
||
|
"""
|
||
|
if self.__class__.__name__ == "PyFuncDistance{{name_suffix}}":
|
||
|
return (float(self.p), np.asarray(self.vec), np.asarray(self.mat), self.func, self.kwargs)
|
||
|
return (float(self.p), np.asarray(self.vec), np.asarray(self.mat))
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
"""
|
||
|
set state for pickling
|
||
|
"""
|
||
|
self.p = state[0]
|
||
|
self.vec = state[1]
|
||
|
self.mat = state[2]
|
||
|
if self.__class__.__name__ == "PyFuncDistance{{name_suffix}}":
|
||
|
self.func = state[3]
|
||
|
self.kwargs = state[4]
|
||
|
self.size = self.vec.shape[0]
|
||
|
|
||
|
@classmethod
|
||
|
def get_metric(cls, metric, **kwargs):
|
||
|
"""Get the given distance metric from the string identifier.
|
||
|
|
||
|
See the docstring of DistanceMetric for a list of available metrics.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
metric : str or class name
|
||
|
The distance metric to use
|
||
|
**kwargs
|
||
|
additional arguments will be passed to the requested metric
|
||
|
"""
|
||
|
if isinstance(metric, DistanceMetric{{name_suffix}}):
|
||
|
return metric
|
||
|
|
||
|
if callable(metric):
|
||
|
return PyFuncDistance{{name_suffix}}(metric, **kwargs)
|
||
|
|
||
|
# Map the metric string ID to the metric class
|
||
|
if isinstance(metric, type) and issubclass(metric, DistanceMetric{{name_suffix}}):
|
||
|
pass
|
||
|
else:
|
||
|
try:
|
||
|
metric = METRIC_MAPPING{{name_suffix}}[metric]
|
||
|
except:
|
||
|
raise ValueError("Unrecognized metric '%s'" % metric)
|
||
|
|
||
|
# In Minkowski special cases, return more efficient methods
|
||
|
if metric is MinkowskiDistance{{name_suffix}}:
|
||
|
p = kwargs.pop('p', 2)
|
||
|
w = kwargs.pop('w', None)
|
||
|
if p == 1 and w is None:
|
||
|
return ManhattanDistance{{name_suffix}}(**kwargs)
|
||
|
elif p == 2 and w is None:
|
||
|
return EuclideanDistance{{name_suffix}}(**kwargs)
|
||
|
elif np.isinf(p) and w is None:
|
||
|
return ChebyshevDistance{{name_suffix}}(**kwargs)
|
||
|
else:
|
||
|
return MinkowskiDistance{{name_suffix}}(p, w, **kwargs)
|
||
|
else:
|
||
|
return metric(**kwargs)
|
||
|
|
||
|
def __init__(self):
|
||
|
if self.__class__ is DistanceMetric{{name_suffix}}:
|
||
|
raise NotImplementedError("DistanceMetric{{name_suffix}} is an abstract class")
|
||
|
|
||
|
def _validate_data(self, X):
|
||
|
"""Validate the input data.
|
||
|
|
||
|
This should be overridden in a base class if a specific input format
|
||
|
is required.
|
||
|
"""
|
||
|
return
|
||
|
|
||
|
cdef {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
"""Compute the distance between vectors x1 and x2
|
||
|
|
||
|
This should be overridden in a base class.
|
||
|
"""
|
||
|
return -999
|
||
|
|
||
|
cdef {{INPUT_DTYPE_t}} rdist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
"""Compute the rank-preserving surrogate distance between vectors x1 and x2.
|
||
|
|
||
|
This can optionally be overridden in a base class.
|
||
|
|
||
|
The rank-preserving surrogate distance is any measure that yields the same
|
||
|
rank as the distance, but is more efficient to compute. For example, the
|
||
|
rank-preserving surrogate distance of the Euclidean metric is the
|
||
|
squared-euclidean distance.
|
||
|
"""
|
||
|
return self.dist(x1, x2, size)
|
||
|
|
||
|
cdef int pdist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}[:, ::1] X,
|
||
|
{{INPUT_DTYPE_t}}[:, ::1] D,
|
||
|
) except -1:
|
||
|
"""Compute the pairwise distances between points in X"""
|
||
|
cdef intp_t i1, i2
|
||
|
for i1 in range(X.shape[0]):
|
||
|
for i2 in range(i1, X.shape[0]):
|
||
|
D[i1, i2] = self.dist(&X[i1, 0], &X[i2, 0], X.shape[1])
|
||
|
D[i2, i1] = D[i1, i2]
|
||
|
return 0
|
||
|
|
||
|
|
||
|
cdef int cdist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}[:, ::1] X,
|
||
|
const {{INPUT_DTYPE_t}}[:, ::1] Y,
|
||
|
{{INPUT_DTYPE_t}}[:, ::1] D,
|
||
|
) except -1:
|
||
|
"""Compute the cross-pairwise distances between arrays X and Y"""
|
||
|
cdef intp_t i1, i2
|
||
|
if X.shape[1] != Y.shape[1]:
|
||
|
raise ValueError('X and Y must have the same second dimension')
|
||
|
for i1 in range(X.shape[0]):
|
||
|
for i2 in range(Y.shape[0]):
|
||
|
D[i1, i2] = self.dist(&X[i1, 0], &Y[i2, 0], X.shape[1])
|
||
|
return 0
|
||
|
|
||
|
cdef {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
"""Compute the distance between vectors x1 and x2 represented
|
||
|
under the CSR format.
|
||
|
|
||
|
This must be overridden in a subclass.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
0. The implementation of this method in subclasses must be robust to the
|
||
|
presence of explicit zeros in the CSR representation.
|
||
|
|
||
|
1. The `data` arrays are passed using pointers to be able to support an
|
||
|
alternative representation of the CSR data structure for supporting
|
||
|
fused sparse-dense datasets pairs with minimum overhead.
|
||
|
|
||
|
See the explanations in `SparseDenseDatasetsPair.__init__`.
|
||
|
|
||
|
2. An alternative signature would be:
|
||
|
|
||
|
cdef {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
Where callers would use slicing on the original CSR data and indices
|
||
|
memoryviews:
|
||
|
|
||
|
x1_start = X1_csr.indices_ptr[i]
|
||
|
x1_end = X1_csr.indices_ptr[i+1]
|
||
|
x2_start = X2_csr.indices_ptr[j]
|
||
|
x2_end = X2_csr.indices_ptr[j+1]
|
||
|
|
||
|
self.dist_csr(
|
||
|
&x1_data[x1_start],
|
||
|
x1_indices[x1_start:x1_end],
|
||
|
&x2_data[x2_start],
|
||
|
x2_indices[x2_start:x2_end],
|
||
|
)
|
||
|
|
||
|
Yet, slicing on memoryview slows down execution as it takes the GIL.
|
||
|
See: https://github.com/scikit-learn/scikit-learn/issues/17299
|
||
|
|
||
|
Hence, to avoid slicing the data and indices arrays of the sparse
|
||
|
matrices containing respectively x1 and x2 (namely x{1,2}_{data,indices})
|
||
|
are passed as well as their indices pointers (namely x{1,2}_{start,end}).
|
||
|
|
||
|
3. For reference about the CSR format, see section 3.4 of
|
||
|
Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, SIAM.
|
||
|
https://www-users.cse.umn.edu/~saad/IterMethBook_2ndEd.pdf
|
||
|
"""
|
||
|
return -999
|
||
|
|
||
|
cdef {{INPUT_DTYPE_t}} rdist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
"""Distance between rows of CSR matrices x1 and x2.
|
||
|
|
||
|
This can optionally be overridden in a subclass.
|
||
|
|
||
|
The rank-preserving surrogate distance is any measure that yields the same
|
||
|
rank as the distance, but is more efficient to compute. For example, the
|
||
|
rank-preserving surrogate distance of the Euclidean metric is the
|
||
|
squared-euclidean distance.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The implementation of this method in subclasses must be robust to the
|
||
|
presence of explicit zeros in the CSR representation.
|
||
|
|
||
|
More information about the motives for this method signature is given
|
||
|
in the docstring of dist_csr.
|
||
|
"""
|
||
|
return self.dist_csr(
|
||
|
x1_data,
|
||
|
x1_indices,
|
||
|
x2_data,
|
||
|
x2_indices,
|
||
|
x1_start,
|
||
|
x1_end,
|
||
|
x2_start,
|
||
|
x2_end,
|
||
|
size,
|
||
|
)
|
||
|
|
||
|
cdef int pdist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t[::1] x1_indices,
|
||
|
const int32_t[::1] x1_indptr,
|
||
|
const intp_t size,
|
||
|
{{INPUT_DTYPE_t}}[:, ::1] D,
|
||
|
) except -1 nogil:
|
||
|
"""Pairwise distances between rows in CSR matrix X.
|
||
|
|
||
|
Note that this implementation is twice faster than cdist_csr(X, X)
|
||
|
because it leverages the symmetry of the problem.
|
||
|
"""
|
||
|
cdef:
|
||
|
intp_t i1, i2
|
||
|
intp_t n_x1 = x1_indptr.shape[0] - 1
|
||
|
intp_t x1_start, x1_end, x2_start, x2_end
|
||
|
|
||
|
for i1 in range(n_x1):
|
||
|
x1_start = x1_indptr[i1]
|
||
|
x1_end = x1_indptr[i1 + 1]
|
||
|
for i2 in range(i1, n_x1):
|
||
|
x2_start = x1_indptr[i2]
|
||
|
x2_end = x1_indptr[i2 + 1]
|
||
|
D[i1, i2] = D[i2, i1] = self.dist_csr(
|
||
|
x1_data,
|
||
|
&x1_indices[0],
|
||
|
x1_data,
|
||
|
&x1_indices[0],
|
||
|
x1_start,
|
||
|
x1_end,
|
||
|
x2_start,
|
||
|
x2_end,
|
||
|
size,
|
||
|
)
|
||
|
return 0
|
||
|
|
||
|
cdef int cdist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t[::1] x1_indices,
|
||
|
const int32_t[::1] x1_indptr,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t[::1] x2_indices,
|
||
|
const int32_t[::1] x2_indptr,
|
||
|
const intp_t size,
|
||
|
{{INPUT_DTYPE_t}}[:, ::1] D,
|
||
|
) except -1 nogil:
|
||
|
"""Compute the cross-pairwise distances between arrays X and Y
|
||
|
represented in the CSR format."""
|
||
|
cdef:
|
||
|
intp_t i1, i2
|
||
|
intp_t n_x1 = x1_indptr.shape[0] - 1
|
||
|
intp_t n_x2 = x2_indptr.shape[0] - 1
|
||
|
intp_t x1_start, x1_end, x2_start, x2_end
|
||
|
|
||
|
for i1 in range(n_x1):
|
||
|
x1_start = x1_indptr[i1]
|
||
|
x1_end = x1_indptr[i1 + 1]
|
||
|
for i2 in range(n_x2):
|
||
|
x2_start = x2_indptr[i2]
|
||
|
x2_end = x2_indptr[i2 + 1]
|
||
|
|
||
|
D[i1, i2] = self.dist_csr(
|
||
|
x1_data,
|
||
|
&x1_indices[0],
|
||
|
x2_data,
|
||
|
&x2_indices[0],
|
||
|
x1_start,
|
||
|
x1_end,
|
||
|
x2_start,
|
||
|
x2_end,
|
||
|
size,
|
||
|
)
|
||
|
return 0
|
||
|
|
||
|
cdef {{INPUT_DTYPE_t}} _rdist_to_dist(self, {{INPUT_DTYPE_t}} rdist) except -1 nogil:
|
||
|
"""Convert the rank-preserving surrogate distance to the distance"""
|
||
|
return rdist
|
||
|
|
||
|
cdef {{INPUT_DTYPE_t}} _dist_to_rdist(self, {{INPUT_DTYPE_t}} dist) except -1 nogil:
|
||
|
"""Convert the distance to the rank-preserving surrogate distance"""
|
||
|
return dist
|
||
|
|
||
|
def rdist_to_dist(self, rdist):
|
||
|
"""Convert the rank-preserving surrogate distance to the distance.
|
||
|
|
||
|
The surrogate distance is any measure that yields the same rank as the
|
||
|
distance, but is more efficient to compute. For example, the
|
||
|
rank-preserving surrogate distance of the Euclidean metric is the
|
||
|
squared-euclidean distance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
rdist : double
|
||
|
Surrogate distance.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
double
|
||
|
True distance.
|
||
|
"""
|
||
|
return rdist
|
||
|
|
||
|
def dist_to_rdist(self, dist):
|
||
|
"""Convert the true distance to the rank-preserving surrogate distance.
|
||
|
|
||
|
The surrogate distance is any measure that yields the same rank as the
|
||
|
distance, but is more efficient to compute. For example, the
|
||
|
rank-preserving surrogate distance of the Euclidean metric is the
|
||
|
squared-euclidean distance.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dist : double
|
||
|
True distance.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
double
|
||
|
Surrogate distance.
|
||
|
"""
|
||
|
return dist
|
||
|
|
||
|
def _pairwise_dense_dense(self, X, Y):
|
||
|
cdef const {{INPUT_DTYPE_t}}[:, ::1] Xarr
|
||
|
cdef const {{INPUT_DTYPE_t}}[:, ::1] Yarr
|
||
|
cdef {{INPUT_DTYPE_t}}[:, ::1] Darr
|
||
|
|
||
|
Xarr = np.asarray(X, dtype={{INPUT_DTYPE}}, order='C')
|
||
|
self._validate_data(Xarr)
|
||
|
if X is Y:
|
||
|
Darr = np.empty((Xarr.shape[0], Xarr.shape[0]), dtype={{INPUT_DTYPE}}, order='C')
|
||
|
self.pdist(Xarr, Darr)
|
||
|
else:
|
||
|
Yarr = np.asarray(Y, dtype={{INPUT_DTYPE}}, order='C')
|
||
|
self._validate_data(Yarr)
|
||
|
Darr = np.empty((Xarr.shape[0], Yarr.shape[0]), dtype={{INPUT_DTYPE}}, order='C')
|
||
|
self.cdist(Xarr, Yarr, Darr)
|
||
|
return np.asarray(Darr)
|
||
|
|
||
|
def _pairwise_sparse_sparse(self, X: csr_matrix , Y: csr_matrix):
|
||
|
cdef:
|
||
|
intp_t n_X, n_features
|
||
|
const {{INPUT_DTYPE_t}}[::1] X_data
|
||
|
const int32_t[::1] X_indices
|
||
|
const int32_t[::1] X_indptr
|
||
|
|
||
|
intp_t n_Y
|
||
|
const {{INPUT_DTYPE_t}}[::1] Y_data
|
||
|
const int32_t[::1] Y_indices
|
||
|
const int32_t[::1] Y_indptr
|
||
|
|
||
|
{{INPUT_DTYPE_t}}[:, ::1] Darr
|
||
|
|
||
|
X_csr = X.tocsr()
|
||
|
n_X, n_features = X_csr.shape
|
||
|
X_data = np.asarray(X_csr.data, dtype={{INPUT_DTYPE}})
|
||
|
X_indices = np.asarray(X_csr.indices, dtype=np.int32)
|
||
|
X_indptr = np.asarray(X_csr.indptr, dtype=np.int32)
|
||
|
if X is Y:
|
||
|
Darr = np.empty((n_X, n_X), dtype={{INPUT_DTYPE}}, order='C')
|
||
|
self.pdist_csr(
|
||
|
x1_data=&X_data[0],
|
||
|
x1_indices=X_indices,
|
||
|
x1_indptr=X_indptr,
|
||
|
size=n_features,
|
||
|
D=Darr,
|
||
|
)
|
||
|
else:
|
||
|
Y_csr = Y.tocsr()
|
||
|
n_Y, _ = Y_csr.shape
|
||
|
Y_data = np.asarray(Y_csr.data, dtype={{INPUT_DTYPE}})
|
||
|
Y_indices = np.asarray(Y_csr.indices, dtype=np.int32)
|
||
|
Y_indptr = np.asarray(Y_csr.indptr, dtype=np.int32)
|
||
|
|
||
|
Darr = np.empty((n_X, n_Y), dtype={{INPUT_DTYPE}}, order='C')
|
||
|
self.cdist_csr(
|
||
|
x1_data=&X_data[0],
|
||
|
x1_indices=X_indices,
|
||
|
x1_indptr=X_indptr,
|
||
|
x2_data=&Y_data[0],
|
||
|
x2_indices=Y_indices,
|
||
|
x2_indptr=Y_indptr,
|
||
|
size=n_features,
|
||
|
D=Darr,
|
||
|
)
|
||
|
return np.asarray(Darr)
|
||
|
|
||
|
def _pairwise_sparse_dense(self, X: csr_matrix, Y):
|
||
|
cdef:
|
||
|
intp_t n_X = X.shape[0]
|
||
|
intp_t n_features = X.shape[1]
|
||
|
const {{INPUT_DTYPE_t}}[::1] X_data = np.asarray(
|
||
|
X.data, dtype={{INPUT_DTYPE}},
|
||
|
)
|
||
|
const int32_t[::1] X_indices = np.asarray(
|
||
|
X.indices, dtype=np.int32,
|
||
|
)
|
||
|
const int32_t[::1] X_indptr = np.asarray(
|
||
|
X.indptr, dtype=np.int32,
|
||
|
)
|
||
|
|
||
|
const {{INPUT_DTYPE_t}}[:, ::1] Y_data = np.asarray(
|
||
|
Y, dtype={{INPUT_DTYPE}}, order="C",
|
||
|
)
|
||
|
intp_t n_Y = Y_data.shape[0]
|
||
|
const int32_t[::1] Y_indices = (
|
||
|
np.arange(n_features, dtype=np.int32)
|
||
|
)
|
||
|
|
||
|
{{INPUT_DTYPE_t}}[:, ::1] Darr = np.empty((n_X, n_Y), dtype={{INPUT_DTYPE}}, order='C')
|
||
|
|
||
|
intp_t i1, i2
|
||
|
intp_t x1_start, x1_end
|
||
|
{{INPUT_DTYPE_t}} * x2_data
|
||
|
|
||
|
with nogil:
|
||
|
# Use the exact same adaptation for CSR than in SparseDenseDatasetsPair
|
||
|
# for supporting the sparse-dense case with minimal overhead.
|
||
|
# Note: at this point this method is only a convenience method
|
||
|
# used in the tests via the DistanceMetric.pairwise method.
|
||
|
# Therefore, there is no need to attempt parallelization of those
|
||
|
# nested for-loops.
|
||
|
# Efficient parallel computation of pairwise distances can be
|
||
|
# achieved via the PairwiseDistances class instead. The latter
|
||
|
# internally calls into vector-wise distance computation from
|
||
|
# the DistanceMetric subclass while benefiting from the generic
|
||
|
# Cython/OpenMP parallelization template for the generic pairwise
|
||
|
# distance + reduction computational pattern.
|
||
|
for i1 in range(n_X):
|
||
|
x1_start = X_indptr[i1]
|
||
|
x1_end = X_indptr[i1 + 1]
|
||
|
for i2 in range(n_Y):
|
||
|
x2_data = &Y_data[0, 0] + i2 * n_features
|
||
|
|
||
|
Darr[i1, i2] = self.dist_csr(
|
||
|
x1_data=&X_data[0],
|
||
|
x1_indices=&X_indices[0],
|
||
|
x2_data=x2_data,
|
||
|
x2_indices=&Y_indices[0],
|
||
|
x1_start=x1_start,
|
||
|
x1_end=x1_end,
|
||
|
x2_start=0,
|
||
|
x2_end=n_features,
|
||
|
size=n_features,
|
||
|
)
|
||
|
|
||
|
return np.asarray(Darr)
|
||
|
|
||
|
def _pairwise_dense_sparse(self, X, Y: csr_matrix):
|
||
|
# We could have implemented this method using _pairwise_dense_sparse by
|
||
|
# swapping argument and by transposing the results, but this would
|
||
|
# have come with an extra copy to ensure C-contiguity of the result.
|
||
|
cdef:
|
||
|
intp_t n_X = X.shape[0]
|
||
|
intp_t n_features = X.shape[1]
|
||
|
|
||
|
const {{INPUT_DTYPE_t}}[:, ::1] X_data = np.asarray(
|
||
|
X, dtype={{INPUT_DTYPE}}, order="C",
|
||
|
)
|
||
|
const int32_t[::1] X_indices = np.arange(
|
||
|
n_features, dtype=np.int32,
|
||
|
)
|
||
|
|
||
|
intp_t n_Y = Y.shape[0]
|
||
|
const {{INPUT_DTYPE_t}}[::1] Y_data = np.asarray(
|
||
|
Y.data, dtype={{INPUT_DTYPE}},
|
||
|
)
|
||
|
const int32_t[::1] Y_indices = np.asarray(
|
||
|
Y.indices, dtype=np.int32,
|
||
|
)
|
||
|
const int32_t[::1] Y_indptr = np.asarray(
|
||
|
Y.indptr, dtype=np.int32,
|
||
|
)
|
||
|
|
||
|
{{INPUT_DTYPE_t}}[:, ::1] Darr = np.empty((n_X, n_Y), dtype={{INPUT_DTYPE}}, order='C')
|
||
|
|
||
|
intp_t i1, i2
|
||
|
{{INPUT_DTYPE_t}} * x1_data
|
||
|
|
||
|
intp_t x2_start, x2_end
|
||
|
|
||
|
with nogil:
|
||
|
# Use the exact same adaptation for CSR than in SparseDenseDatasetsPair
|
||
|
# for supporting the dense-sparse case with minimal overhead.
|
||
|
# Note: at this point this method is only a convenience method
|
||
|
# used in the tests via the DistanceMetric.pairwise method.
|
||
|
# Therefore, there is no need to attempt parallelization of those
|
||
|
# nested for-loops.
|
||
|
# Efficient parallel computation of pairwise distances can be
|
||
|
# achieved via the PairwiseDistances class instead. The latter
|
||
|
# internally calls into vector-wise distance computation from
|
||
|
# the DistanceMetric subclass while benefiting from the generic
|
||
|
# Cython/OpenMP parallelization template for the generic pairwise
|
||
|
# distance + reduction computational pattern.
|
||
|
for i1 in range(n_X):
|
||
|
x1_data = &X_data[0, 0] + i1 * n_features
|
||
|
for i2 in range(n_Y):
|
||
|
x2_start = Y_indptr[i2]
|
||
|
x2_end = Y_indptr[i2 + 1]
|
||
|
|
||
|
Darr[i1, i2] = self.dist_csr(
|
||
|
x1_data=x1_data,
|
||
|
x1_indices=&X_indices[0],
|
||
|
x2_data=&Y_data[0],
|
||
|
x2_indices=&Y_indices[0],
|
||
|
x1_start=0,
|
||
|
x1_end=n_features,
|
||
|
x2_start=x2_start,
|
||
|
x2_end=x2_end,
|
||
|
size=n_features,
|
||
|
)
|
||
|
|
||
|
return np.asarray(Darr)
|
||
|
|
||
|
|
||
|
def pairwise(self, X, Y=None):
|
||
|
"""Compute the pairwise distances between X and Y
|
||
|
|
||
|
This is a convenience routine for the sake of testing. For many
|
||
|
metrics, the utilities in scipy.spatial.distance.cdist and
|
||
|
scipy.spatial.distance.pdist will be faster.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : ndarray or CSR matrix of shape (n_samples_X, n_features)
|
||
|
Input data.
|
||
|
Y : ndarray or CSR matrix of shape (n_samples_Y, n_features)
|
||
|
Input data.
|
||
|
If not specified, then Y=X.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dist : ndarray of shape (n_samples_X, n_samples_Y)
|
||
|
The distance matrix of pairwise distances between points in X and Y.
|
||
|
"""
|
||
|
X = check_array(X, accept_sparse=['csr'])
|
||
|
|
||
|
if Y is None:
|
||
|
Y = X
|
||
|
else:
|
||
|
Y = check_array(Y, accept_sparse=['csr'])
|
||
|
|
||
|
X_is_sparse = issparse(X)
|
||
|
Y_is_sparse = issparse(Y)
|
||
|
|
||
|
if not X_is_sparse and not Y_is_sparse:
|
||
|
return self._pairwise_dense_dense(X, Y)
|
||
|
|
||
|
if X_is_sparse and Y_is_sparse:
|
||
|
return self._pairwise_sparse_sparse(X, Y)
|
||
|
|
||
|
if X_is_sparse and not Y_is_sparse:
|
||
|
return self._pairwise_sparse_dense(X, Y)
|
||
|
|
||
|
return self._pairwise_dense_sparse(X, Y)
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Euclidean Distance
|
||
|
# d = sqrt(sum(x_i^2 - y_i^2))
|
||
|
cdef class EuclideanDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Euclidean Distance metric
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = \sqrt{ \sum_i (x_i - y_i) ^ 2 }
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self.p = 2
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return euclidean_dist{{name_suffix}}(x1, x2, size)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist(self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return euclidean_rdist{{name_suffix}}(x1, x2, size)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _rdist_to_dist(self, {{INPUT_DTYPE_t}} rdist) except -1 nogil:
|
||
|
return sqrt(rdist)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _dist_to_rdist(self, {{INPUT_DTYPE_t}} dist) except -1 nogil:
|
||
|
return dist * dist
|
||
|
|
||
|
def rdist_to_dist(self, rdist):
|
||
|
return np.sqrt(rdist)
|
||
|
|
||
|
def dist_to_rdist(self, dist):
|
||
|
return dist ** 2
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t d = 0.0
|
||
|
float64_t unsquared = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
unsquared = x1_data[i1] - x2_data[i2]
|
||
|
d = d + (unsquared * unsquared)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
unsquared = x1_data[i1]
|
||
|
d = d + (unsquared * unsquared)
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
unsquared = x2_data[i2]
|
||
|
d = d + (unsquared * unsquared)
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
unsquared = x2_data[i2]
|
||
|
d = d + (unsquared * unsquared)
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
unsquared = x1_data[i1]
|
||
|
d = d + (unsquared * unsquared)
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return sqrt(
|
||
|
self.rdist_csr(
|
||
|
x1_data,
|
||
|
x1_indices,
|
||
|
x2_data,
|
||
|
x2_indices,
|
||
|
x1_start,
|
||
|
x1_end,
|
||
|
x2_start,
|
||
|
x2_end,
|
||
|
size,
|
||
|
))
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# SEuclidean Distance
|
||
|
# d = sqrt(sum((x_i - y_i2)^2 / v_i))
|
||
|
cdef class SEuclideanDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Standardized Euclidean Distance metric
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = \sqrt{ \sum_i \frac{ (x_i - y_i) ^ 2}{V_i} }
|
||
|
"""
|
||
|
def __init__(self, V):
|
||
|
self.vec = np.asarray(V, dtype=np.float64)
|
||
|
self.size = self.vec.shape[0]
|
||
|
self.p = 2
|
||
|
|
||
|
def _validate_data(self, X):
|
||
|
if X.shape[1] != self.size:
|
||
|
raise ValueError('SEuclidean dist: size of V does not match')
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef float64_t tmp, d=0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tmp = x1[j] - x2[j]
|
||
|
d += (tmp * tmp / self.vec[j])
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return sqrt(self.rdist(x1, x2, size))
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _rdist_to_dist(self, {{INPUT_DTYPE_t}} rdist) except -1 nogil:
|
||
|
return sqrt(rdist)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _dist_to_rdist(self, {{INPUT_DTYPE_t}} dist) except -1 nogil:
|
||
|
return dist * dist
|
||
|
|
||
|
def rdist_to_dist(self, rdist):
|
||
|
return np.sqrt(rdist)
|
||
|
|
||
|
def dist_to_rdist(self, dist):
|
||
|
return dist ** 2
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t d = 0.0
|
||
|
float64_t unsquared = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
unsquared = x1_data[i1] - x2_data[i2]
|
||
|
d = d + (unsquared * unsquared) / self.vec[ix1]
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
unsquared = x1_data[i1]
|
||
|
d = d + (unsquared * unsquared) / self.vec[ix1]
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
unsquared = x2_data[i2]
|
||
|
d = d + (unsquared * unsquared) / self.vec[ix2]
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
ix2 = x2_indices[i2]
|
||
|
unsquared = x2_data[i2]
|
||
|
d = d + (unsquared * unsquared) / self.vec[ix2]
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
unsquared = x1_data[i1]
|
||
|
d = d + (unsquared * unsquared) / self.vec[ix1]
|
||
|
i1 = i1 + 1
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return sqrt(
|
||
|
self.rdist_csr(
|
||
|
x1_data,
|
||
|
x1_indices,
|
||
|
x2_data,
|
||
|
x2_indices,
|
||
|
x1_start,
|
||
|
x1_end,
|
||
|
x2_start,
|
||
|
x2_end,
|
||
|
size,
|
||
|
))
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Manhattan Distance
|
||
|
# d = sum(abs(x_i - y_i))
|
||
|
cdef class ManhattanDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Manhattan/City-block Distance metric
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = \sum_i |x_i - y_i|
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self.p = 1
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef float64_t d = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
d += fabs(x1[j] - x2[j])
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
{{INPUT_DTYPE_t}} d = 0.0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
d = d + fabs(x1_data[i1] - x2_data[i2])
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
d = d + fabs(x1_data[i1])
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
d = d + fabs(x2_data[i2])
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
d = d + fabs(x2_data[i2])
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
d = d + fabs(x1_data[i1])
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return d
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Chebyshev Distance
|
||
|
# d = max_i(abs(x_i - y_i))
|
||
|
cdef class ChebyshevDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
"""Chebyshev/Infinity Distance
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = max_i (|x_i - y_i|)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.metrics.dist_metrics import DistanceMetric
|
||
|
>>> dist = DistanceMetric.get_metric('chebyshev')
|
||
|
>>> X = [[0, 1, 2],
|
||
|
... [3, 4, 5]]
|
||
|
>>> Y = [[-1, 0, 1],
|
||
|
... [3, 4, 5]]
|
||
|
>>> dist.pairwise(X, Y)
|
||
|
array([[1.732..., 5.196...],
|
||
|
[6.928..., 0.... ]])
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self.p = INF{{name_suffix}}
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef float64_t d = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
d = fmax(d, fabs(x1[j] - x2[j]))
|
||
|
return d
|
||
|
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t d = 0.0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
d = fmax(d, fabs(x1_data[i1] - x2_data[i2]))
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
d = fmax(d, fabs(x1_data[i1]))
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
d = fmax(d, fabs(x2_data[i2]))
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
d = fmax(d, fabs(x2_data[i2]))
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
d = fmax(d, fabs(x1_data[i1]))
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return d
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Minkowski Distance
|
||
|
cdef class MinkowskiDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Minkowski Distance
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = {||u-v||}_p
|
||
|
|
||
|
when w is None.
|
||
|
|
||
|
Here is the more general expanded expression for the weighted case:
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = [\sum_i w_i *|x_i - y_i|^p] ^ (1/p)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
p : float
|
||
|
The order of the p-norm of the difference (see above).
|
||
|
|
||
|
.. versionchanged:: 1.4.0
|
||
|
Minkowski distance allows `p` to be `0<p<1`.
|
||
|
|
||
|
|
||
|
w : (N,) array-like (optional)
|
||
|
The weight vector.
|
||
|
|
||
|
Minkowski Distance requires p > 0 and finite.
|
||
|
When :math:`p \in (0,1)`, it isn't a true metric but is permissible when
|
||
|
the triangular inequality isn't necessary.
|
||
|
For p = infinity, use ChebyshevDistance.
|
||
|
Note that for p=1, ManhattanDistance is more efficient, and for
|
||
|
p=2, EuclideanDistance is more efficient.
|
||
|
|
||
|
"""
|
||
|
def __init__(self, p, w=None):
|
||
|
if p <= 0:
|
||
|
raise ValueError("p must be greater than 0")
|
||
|
elif np.isinf(p):
|
||
|
raise ValueError("MinkowskiDistance requires finite p. "
|
||
|
"For p=inf, use ChebyshevDistance.")
|
||
|
|
||
|
self.p = p
|
||
|
if w is not None:
|
||
|
w_array = check_array(
|
||
|
w, ensure_2d=False, dtype=np.float64, input_name="w"
|
||
|
)
|
||
|
if (w_array < 0).any():
|
||
|
raise ValueError("w cannot contain negative weights")
|
||
|
self.vec = w_array
|
||
|
self.size = self.vec.shape[0]
|
||
|
else:
|
||
|
self.vec = np.asarray([], dtype=np.float64)
|
||
|
self.size = 0
|
||
|
|
||
|
def _validate_data(self, X):
|
||
|
if self.size > 0 and X.shape[1] != self.size:
|
||
|
raise ValueError("MinkowskiDistance: the size of w must match "
|
||
|
f"the number of features ({X.shape[1]}). "
|
||
|
f"Currently len(w)={self.size}.")
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef float64_t d=0
|
||
|
cdef intp_t j
|
||
|
cdef bint has_w = self.size > 0
|
||
|
if has_w:
|
||
|
for j in range(size):
|
||
|
d += (self.vec[j] * pow(fabs(x1[j] - x2[j]), self.p))
|
||
|
else:
|
||
|
for j in range(size):
|
||
|
d += (pow(fabs(x1[j] - x2[j]), self.p))
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return pow(self.rdist(x1, x2, size), 1. / self.p)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _rdist_to_dist(self, {{INPUT_DTYPE_t}} rdist) except -1 nogil:
|
||
|
return pow(rdist, 1. / self.p)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _dist_to_rdist(self, {{INPUT_DTYPE_t}} dist) except -1 nogil:
|
||
|
return pow(dist, self.p)
|
||
|
|
||
|
def rdist_to_dist(self, rdist):
|
||
|
return rdist ** (1. / self.p)
|
||
|
|
||
|
def dist_to_rdist(self, dist):
|
||
|
return dist ** self.p
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t d = 0.0
|
||
|
bint has_w = self.size > 0
|
||
|
|
||
|
if has_w:
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
d = d + (self.vec[ix1] * pow(fabs(
|
||
|
x1_data[i1] - x2_data[i2]
|
||
|
), self.p))
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
d = d + (self.vec[ix1] * pow(fabs(x1_data[i1]), self.p))
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
d = d + (self.vec[ix2] * pow(fabs(x2_data[i2]), self.p))
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
ix2 = x2_indices[i2]
|
||
|
d = d + (self.vec[ix2] * pow(fabs(x2_data[i2]), self.p))
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
d = d + (self.vec[ix1] * pow(fabs(x1_data[i1]), self.p))
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return d
|
||
|
else:
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
d = d + (pow(fabs(
|
||
|
x1_data[i1] - x2_data[i2]
|
||
|
), self.p))
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
d = d + (pow(fabs(x1_data[i1]), self.p))
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
d = d + (pow(fabs(x2_data[i2]), self.p))
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
d = d + (pow(fabs(x2_data[i2]), self.p))
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
d = d + (pow(fabs(x1_data[i1]), self.p))
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return pow(
|
||
|
self.rdist_csr(
|
||
|
x1_data,
|
||
|
x1_indices,
|
||
|
x2_data,
|
||
|
x2_indices,
|
||
|
x1_start,
|
||
|
x1_end,
|
||
|
x2_start,
|
||
|
x2_end,
|
||
|
size,
|
||
|
),
|
||
|
1 / self.p
|
||
|
)
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Mahalanobis Distance
|
||
|
# d = sqrt( (x - y)^T V^-1 (x - y) )
|
||
|
cdef class MahalanobisDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
"""Mahalanobis Distance
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = \sqrt{ (x - y)^T V^{-1} (x - y) }
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
V : array-like
|
||
|
Symmetric positive-definite covariance matrix.
|
||
|
The inverse of this matrix will be explicitly computed.
|
||
|
VI : array-like
|
||
|
optionally specify the inverse directly. If VI is passed,
|
||
|
then V is not referenced.
|
||
|
"""
|
||
|
cdef float64_t[::1] buffer
|
||
|
|
||
|
def __init__(self, V=None, VI=None):
|
||
|
if VI is None:
|
||
|
if V is None:
|
||
|
raise ValueError("Must provide either V or VI "
|
||
|
"for Mahalanobis distance")
|
||
|
VI = np.linalg.inv(V)
|
||
|
if VI.ndim != 2 or VI.shape[0] != VI.shape[1]:
|
||
|
raise ValueError("V/VI must be square")
|
||
|
|
||
|
self.mat = np.asarray(VI, dtype=np.float64, order='C')
|
||
|
|
||
|
self.size = self.mat.shape[0]
|
||
|
|
||
|
# We need to create a buffer to store the vectors' coordinates' differences
|
||
|
self.buffer = np.zeros(self.size, dtype=np.float64)
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
super().__setstate__(state)
|
||
|
self.size = self.mat.shape[0]
|
||
|
self.buffer = np.zeros(self.size, dtype=np.float64)
|
||
|
|
||
|
def _validate_data(self, X):
|
||
|
if X.shape[1] != self.size:
|
||
|
raise ValueError('Mahalanobis dist: size of V does not match')
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef float64_t tmp, d = 0
|
||
|
cdef intp_t i, j
|
||
|
|
||
|
# compute (x1 - x2).T * VI * (x1 - x2)
|
||
|
for i in range(size):
|
||
|
self.buffer[i] = x1[i] - x2[i]
|
||
|
|
||
|
for i in range(size):
|
||
|
tmp = 0
|
||
|
for j in range(size):
|
||
|
tmp += self.mat[i, j] * self.buffer[j]
|
||
|
d += tmp * self.buffer[i]
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return sqrt(self.rdist(x1, x2, size))
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _rdist_to_dist(self, {{INPUT_DTYPE_t}} rdist) except -1 nogil:
|
||
|
return sqrt(rdist)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _dist_to_rdist(self, {{INPUT_DTYPE_t}} dist) except -1 nogil:
|
||
|
return dist * dist
|
||
|
|
||
|
def rdist_to_dist(self, rdist):
|
||
|
return np.sqrt(rdist)
|
||
|
|
||
|
def dist_to_rdist(self, dist):
|
||
|
return dist ** 2
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t tmp, d = 0.0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
self.buffer[ix1] = x1_data[i1] - x2_data[i2]
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
self.buffer[ix1] = x1_data[i1]
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
self.buffer[ix2] = - x2_data[i2]
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
ix2 = x2_indices[i2]
|
||
|
self.buffer[ix2] = - x2_data[i2]
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
self.buffer[ix1] = x1_data[i1]
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
for i in range(size):
|
||
|
tmp = 0
|
||
|
for j in range(size):
|
||
|
tmp += self.mat[i, j] * self.buffer[j]
|
||
|
d += tmp * self.buffer[i]
|
||
|
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return sqrt(
|
||
|
self.rdist_csr(
|
||
|
x1_data,
|
||
|
x1_indices,
|
||
|
x2_data,
|
||
|
x2_indices,
|
||
|
x1_start,
|
||
|
x1_end,
|
||
|
x2_start,
|
||
|
x2_end,
|
||
|
size,
|
||
|
))
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Hamming Distance
|
||
|
# d = N_unequal(x, y) / N_tot
|
||
|
cdef class HammingDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Hamming Distance
|
||
|
|
||
|
Hamming distance is meant for discrete-valued vectors, though it is
|
||
|
a valid metric for real-valued vectors.
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = \frac{1}{N} \sum_i \delta_{x_i, y_i}
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int n_unequal = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
if x1[j] != x2[j]:
|
||
|
n_unequal += 1
|
||
|
return float(n_unequal) / size
|
||
|
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t d = 0.0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
d += (x1_data[i1] != x2_data[i2])
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
d += (x1_data[i1] != 0)
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
d += (x2_data[i2] != 0)
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
d += (x2_data[i2] != 0)
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
d += (x1_data[i1] != 0)
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
d /= size
|
||
|
|
||
|
return d
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Canberra Distance
|
||
|
# D(x, y) = sum[ abs(x_i - y_i) / (abs(x_i) + abs(y_i)) ]
|
||
|
cdef class CanberraDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Canberra Distance
|
||
|
|
||
|
Canberra distance is meant for discrete-valued vectors, though it is
|
||
|
a valid metric for real-valued vectors.
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = \sum_i \frac{|x_i - y_i|}{|x_i| + |y_i|}
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef float64_t denom, d = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
denom = fabs(x1[j]) + fabs(x2[j])
|
||
|
if denom > 0:
|
||
|
d += fabs(x1[j] - x2[j]) / denom
|
||
|
return d
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t d = 0.0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
d += (
|
||
|
fabs(x1_data[i1] - x2_data[i2]) /
|
||
|
(fabs(x1_data[i1]) + fabs(x2_data[i2]))
|
||
|
)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
d += 1.
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
d += 1.
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
d += 1.
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
d += 1.
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return d
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Bray-Curtis Distance
|
||
|
# D(x, y) = sum[abs(x_i - y_i)] / sum[abs(x_i) + abs(y_i)]
|
||
|
cdef class BrayCurtisDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Bray-Curtis Distance
|
||
|
|
||
|
Bray-Curtis distance is meant for discrete-valued vectors, though it is
|
||
|
a valid metric for real-valued vectors.
|
||
|
|
||
|
.. math::
|
||
|
D(x, y) = \frac{\sum_i |x_i - y_i|}{\sum_i(|x_i| + |y_i|)}
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef float64_t num = 0, denom = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
num += fabs(x1[j] - x2[j])
|
||
|
denom += fabs(x1[j]) + fabs(x2[j])
|
||
|
if denom > 0:
|
||
|
return num / denom
|
||
|
else:
|
||
|
return 0.0
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t num = 0.0
|
||
|
float64_t denom = 0.0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
num += fabs(x1_data[i1] - x2_data[i2])
|
||
|
denom += fabs(x1_data[i1]) + fabs(x2_data[i2])
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
num += fabs(x1_data[i1])
|
||
|
denom += fabs(x1_data[i1])
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
num += fabs(x2_data[i2])
|
||
|
denom += fabs(x2_data[i2])
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
num += fabs(x1_data[i1])
|
||
|
denom += fabs(x1_data[i1])
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
num += fabs(x2_data[i2])
|
||
|
denom += fabs(x2_data[i2])
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return num / denom
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Jaccard Distance (boolean)
|
||
|
# D(x, y) = N_unequal(x, y) / N_nonzero(x, y)
|
||
|
cdef class JaccardDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Jaccard Distance
|
||
|
|
||
|
Jaccard Distance is a dissimilarity measure for boolean-valued
|
||
|
vectors. All nonzero entries will be treated as True, zero entries will
|
||
|
be treated as False.
|
||
|
|
||
|
D(x, y) = (N_TF + N_FT) / (N_TT + N_TF + N_FT)
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int tf1, tf2, n_eq = 0, nnz = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tf1 = x1[j] != 0
|
||
|
tf2 = x2[j] != 0
|
||
|
nnz += (tf1 or tf2)
|
||
|
n_eq += (tf1 and tf2)
|
||
|
# Based on https://github.com/scipy/scipy/pull/7373
|
||
|
# When comparing two all-zero vectors, scipy>=1.2.0 jaccard metric
|
||
|
# was changed to return 0, instead of nan.
|
||
|
if nnz == 0:
|
||
|
return 0
|
||
|
return (nnz - n_eq) * 1.0 / nnz
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
intp_t tf1, tf2, n_tt = 0, nnz = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
nnz += (tf1 or tf2)
|
||
|
n_tt += (tf1 and tf2)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
nnz += tf1
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
nnz += tf2
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
nnz += tf2
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
nnz += tf1
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
# Based on https://github.com/scipy/scipy/pull/7373
|
||
|
# When comparing two all-zero vectors, scipy>=1.2.0 jaccard metric
|
||
|
# was changed to return 0, instead of nan.
|
||
|
if nnz == 0:
|
||
|
return 0
|
||
|
return (nnz - n_tt) * 1.0 / nnz
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Matching Distance (boolean)
|
||
|
# D(x, y) = n_neq / n
|
||
|
cdef class MatchingDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Matching Distance
|
||
|
|
||
|
Matching Distance is a dissimilarity measure for boolean-valued
|
||
|
vectors. All nonzero entries will be treated as True, zero entries will
|
||
|
be treated as False.
|
||
|
|
||
|
D(x, y) = (N_TF + N_FT) / N
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int tf1, tf2, n_neq = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tf1 = x1[j] != 0
|
||
|
tf2 = x2[j] != 0
|
||
|
n_neq += (tf1 != tf2)
|
||
|
return n_neq * 1. / size
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
intp_t tf1, tf2, n_neq = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
n_neq += (tf1 != tf2)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
n_neq += (x1_data[i1] != 0)
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
n_neq += (x2_data[i2] != 0)
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
n_neq += (x2_data[i2] != 0)
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
n_neq += (x1_data[i1] != 0)
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return n_neq * 1.0 / size
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Dice Distance (boolean)
|
||
|
# D(x, y) = n_neq / (2 * ntt + n_neq)
|
||
|
cdef class DiceDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Dice Distance
|
||
|
|
||
|
Dice Distance is a dissimilarity measure for boolean-valued
|
||
|
vectors. All nonzero entries will be treated as True, zero entries will
|
||
|
be treated as False.
|
||
|
|
||
|
D(x, y) = (N_TF + N_FT) / (2 * N_TT + N_TF + N_FT)
|
||
|
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int tf1, tf2, n_neq = 0, n_tt = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tf1 = x1[j] != 0
|
||
|
tf2 = x2[j] != 0
|
||
|
n_tt += (tf1 and tf2)
|
||
|
n_neq += (tf1 != tf2)
|
||
|
return n_neq / (2.0 * n_tt + n_neq)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
intp_t tf1, tf2, n_tt = 0, n_neq = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
n_tt += (tf1 and tf2)
|
||
|
n_neq += (tf1 != tf2)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return n_neq / (2.0 * n_tt + n_neq)
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Kulsinski Distance (boolean)
|
||
|
# D(x, y) = (ntf + nft - ntt + n) / (n_neq + n)
|
||
|
cdef class KulsinskiDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Kulsinski Distance
|
||
|
|
||
|
Kulsinski Distance is a dissimilarity measure for boolean-valued
|
||
|
vectors. All nonzero entries will be treated as True, zero entries will
|
||
|
be treated as False.
|
||
|
|
||
|
D(x, y) = 1 - N_TT / (N + N_TF + N_FT)
|
||
|
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int tf1, tf2, n_tt = 0, n_neq = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tf1 = x1[j] != 0
|
||
|
tf2 = x2[j] != 0
|
||
|
n_neq += (tf1 != tf2)
|
||
|
n_tt += (tf1 and tf2)
|
||
|
return (n_neq - n_tt + size) * 1.0 / (n_neq + size)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
intp_t tf1, tf2, n_tt = 0, n_neq = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
n_tt += (tf1 and tf2)
|
||
|
n_neq += (tf1 != tf2)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return (n_neq - n_tt + size) * 1.0 / (n_neq + size)
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Rogers-Tanimoto Distance (boolean)
|
||
|
# D(x, y) = 2 * n_neq / (n + n_neq)
|
||
|
cdef class RogersTanimotoDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Rogers-Tanimoto Distance
|
||
|
|
||
|
Rogers-Tanimoto Distance is a dissimilarity measure for boolean-valued
|
||
|
vectors. All nonzero entries will be treated as True, zero entries will
|
||
|
be treated as False.
|
||
|
|
||
|
D(x, y) = 2 (N_TF + N_FT) / (N + N_TF + N_FT)
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int tf1, tf2, n_neq = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tf1 = x1[j] != 0
|
||
|
tf2 = x2[j] != 0
|
||
|
n_neq += (tf1 != tf2)
|
||
|
return (2.0 * n_neq) / (size + n_neq)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
intp_t tf1, tf2, n_neq = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
n_neq += (tf1 != tf2)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return (2.0 * n_neq) / (size + n_neq)
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Russell-Rao Distance (boolean)
|
||
|
# D(x, y) = (n - ntt) / n
|
||
|
cdef class RussellRaoDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Russell-Rao Distance
|
||
|
|
||
|
Russell-Rao Distance is a dissimilarity measure for boolean-valued
|
||
|
vectors. All nonzero entries will be treated as True, zero entries will
|
||
|
be treated as False.
|
||
|
|
||
|
D(x, y) = (N - N_TT) / N
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int tf1, tf2, n_tt = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tf1 = x1[j] != 0
|
||
|
tf2 = x2[j] != 0
|
||
|
n_tt += (tf1 and tf2)
|
||
|
return (size - n_tt) * 1. / size
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
intp_t tf1, tf2, n_tt = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
n_tt += (tf1 and tf2)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
# We don't need to go through all the longest
|
||
|
# vector because tf1 or tf2 will be false
|
||
|
# and thus n_tt won't be increased.
|
||
|
|
||
|
return (size - n_tt) * 1. / size
|
||
|
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Sokal-Michener Distance (boolean)
|
||
|
# D(x, y) = 2 * n_neq / (n + n_neq)
|
||
|
cdef class SokalMichenerDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Sokal-Michener Distance
|
||
|
|
||
|
Sokal-Michener Distance is a dissimilarity measure for boolean-valued
|
||
|
vectors. All nonzero entries will be treated as True, zero entries will
|
||
|
be treated as False.
|
||
|
|
||
|
D(x, y) = 2 (N_TF + N_FT) / (N + N_TF + N_FT)
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int tf1, tf2, n_neq = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tf1 = x1[j] != 0
|
||
|
tf2 = x2[j] != 0
|
||
|
n_neq += (tf1 != tf2)
|
||
|
return (2.0 * n_neq) / (size + n_neq)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
intp_t tf1, tf2, n_neq = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
n_neq += (tf1 != tf2)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return (2.0 * n_neq) / (size + n_neq)
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Sokal-Sneath Distance (boolean)
|
||
|
# D(x, y) = n_neq / (0.5 * n_tt + n_neq)
|
||
|
cdef class SokalSneathDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
r"""Sokal-Sneath Distance
|
||
|
|
||
|
Sokal-Sneath Distance is a dissimilarity measure for boolean-valued
|
||
|
vectors. All nonzero entries will be treated as True, zero entries will
|
||
|
be treated as False.
|
||
|
|
||
|
D(x, y) = (N_TF + N_FT) / (N_TT / 2 + N_FT + N_TF)
|
||
|
"""
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef int tf1, tf2, n_tt = 0, n_neq = 0
|
||
|
cdef intp_t j
|
||
|
for j in range(size):
|
||
|
tf1 = x1[j] != 0
|
||
|
tf2 = x2[j] != 0
|
||
|
n_neq += (tf1 != tf2)
|
||
|
n_tt += (tf1 and tf2)
|
||
|
return n_neq / (0.5 * n_tt + n_neq)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
intp_t tf1, tf2, n_tt = 0, n_neq = 0
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
|
||
|
if ix1 == ix2:
|
||
|
n_tt += (tf1 and tf2)
|
||
|
n_neq += (tf1 != tf2)
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
elif ix1 < ix2:
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
else:
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
tf2 = x2_data[i2] != 0
|
||
|
n_neq += tf2
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
tf1 = x1_data[i1] != 0
|
||
|
n_neq += tf1
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
return n_neq / (0.5 * n_tt + n_neq)
|
||
|
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# Haversine Distance (2 dimensional)
|
||
|
# D(x, y) = 2 arcsin{sqrt[sin^2 ((x1 - y1) / 2)
|
||
|
# + cos(x1) cos(y1) sin^2 ((x2 - y2) / 2)]}
|
||
|
cdef class HaversineDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
"""Haversine (Spherical) Distance
|
||
|
|
||
|
The Haversine distance is the angular distance between two points on
|
||
|
the surface of a sphere. The first distance of each point is assumed
|
||
|
to be the latitude, the second is the longitude, given in radians.
|
||
|
The dimension of the points must be 2:
|
||
|
|
||
|
D(x, y) = 2 arcsin[sqrt{sin^2((x1 - y1) / 2) + cos(x1)cos(y1)sin^2((x2 - y2) / 2)}]
|
||
|
|
||
|
"""
|
||
|
|
||
|
def _validate_data(self, X):
|
||
|
if X.shape[1] != 2:
|
||
|
raise ValueError("Haversine distance only valid "
|
||
|
"in 2 dimensions")
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist(self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
cdef float64_t sin_0 = sin(0.5 * ((x1[0]) - (x2[0])))
|
||
|
cdef float64_t sin_1 = sin(0.5 * ((x1[1]) - (x2[1])))
|
||
|
return (sin_0 * sin_0 + cos(x1[0]) * cos(x2[0]) * sin_1 * sin_1)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return 2 * asin(sqrt(self.rdist(x1, x2, size)))
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _rdist_to_dist(self, {{INPUT_DTYPE_t}} rdist) except -1 nogil:
|
||
|
return 2 * asin(sqrt(rdist))
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _dist_to_rdist(self, {{INPUT_DTYPE_t}} dist) except -1 nogil:
|
||
|
cdef float64_t tmp = sin(0.5 * dist)
|
||
|
return tmp * tmp
|
||
|
|
||
|
def rdist_to_dist(self, rdist):
|
||
|
return 2 * np.arcsin(np.sqrt(rdist))
|
||
|
|
||
|
def dist_to_rdist(self, dist):
|
||
|
tmp = np.sin(0.5 * dist)
|
||
|
return tmp * tmp
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return 2 * asin(sqrt(self.rdist_csr(
|
||
|
x1_data,
|
||
|
x1_indices,
|
||
|
x2_data,
|
||
|
x2_indices,
|
||
|
x1_start,
|
||
|
x1_end,
|
||
|
x2_start,
|
||
|
x2_end,
|
||
|
size,
|
||
|
)))
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} rdist_csr(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1_data,
|
||
|
const int32_t* x1_indices,
|
||
|
const {{INPUT_DTYPE_t}}* x2_data,
|
||
|
const int32_t* x2_indices,
|
||
|
const int32_t x1_start,
|
||
|
const int32_t x1_end,
|
||
|
const int32_t x2_start,
|
||
|
const int32_t x2_end,
|
||
|
const intp_t size,
|
||
|
) except -1 nogil:
|
||
|
|
||
|
cdef:
|
||
|
intp_t ix1, ix2
|
||
|
intp_t i1 = x1_start
|
||
|
intp_t i2 = x2_start
|
||
|
|
||
|
float64_t x1_0 = 0
|
||
|
float64_t x1_1 = 0
|
||
|
float64_t x2_0 = 0
|
||
|
float64_t x2_1 = 0
|
||
|
float64_t sin_0
|
||
|
float64_t sin_1
|
||
|
|
||
|
while i1 < x1_end and i2 < x2_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
ix2 = x2_indices[i2]
|
||
|
|
||
|
# Find the components in the 2D vectors to work with
|
||
|
x1_component = ix1 if (x1_start == 0) else ix1 % x1_start
|
||
|
x2_component = ix2 if (x2_start == 0) else ix2 % x2_start
|
||
|
|
||
|
if x1_component == 0:
|
||
|
x1_0 = x1_data[i1]
|
||
|
else:
|
||
|
x1_1 = x1_data[i1]
|
||
|
|
||
|
if x2_component == 0:
|
||
|
x2_0 = x2_data[i2]
|
||
|
else:
|
||
|
x2_1 = x2_data[i2]
|
||
|
|
||
|
i1 = i1 + 1
|
||
|
i2 = i2 + 1
|
||
|
|
||
|
if i1 == x1_end:
|
||
|
while i2 < x2_end:
|
||
|
ix2 = x2_indices[i2]
|
||
|
x2_component = ix2 if (x2_start == 0) else ix2 % x2_start
|
||
|
if x2_component == 0:
|
||
|
x2_0 = x2_data[i2]
|
||
|
else:
|
||
|
x2_1 = x2_data[i2]
|
||
|
i2 = i2 + 1
|
||
|
else:
|
||
|
while i1 < x1_end:
|
||
|
ix1 = x1_indices[i1]
|
||
|
x1_component = ix1 if (x1_start == 0) else ix1 % x1_start
|
||
|
if x1_component == 0:
|
||
|
x1_0 = x1_data[i1]
|
||
|
else:
|
||
|
x1_1 = x1_data[i1]
|
||
|
i1 = i1 + 1
|
||
|
|
||
|
sin_0 = sin(0.5 * (x1_0 - x2_0))
|
||
|
sin_1 = sin(0.5 * (x1_1 - x2_1))
|
||
|
|
||
|
return (sin_0 * sin_0 + cos(x1_0) * cos(x2_0) * sin_1 * sin_1)
|
||
|
|
||
|
#------------------------------------------------------------
|
||
|
# User-defined distance
|
||
|
#
|
||
|
cdef class PyFuncDistance{{name_suffix}}(DistanceMetric{{name_suffix}}):
|
||
|
"""PyFunc Distance
|
||
|
|
||
|
A user-defined distance
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
func should take two numpy arrays as input, and return a distance.
|
||
|
"""
|
||
|
def __init__(self, func, **kwargs):
|
||
|
self.func = func
|
||
|
self.kwargs = kwargs
|
||
|
|
||
|
# in cython < 0.26, GIL was required to be acquired during definition of
|
||
|
# the function and inside the body of the function. This behaviour is not
|
||
|
# allowed in cython >= 0.26 since it is a redundant GIL acquisition. The
|
||
|
# only way to be back compatible is to inherit `dist` from the base class
|
||
|
# without GIL and called an inline `_dist` which acquire GIL.
|
||
|
cdef inline {{INPUT_DTYPE_t}} dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 nogil:
|
||
|
return self._dist(x1, x2, size)
|
||
|
|
||
|
cdef inline {{INPUT_DTYPE_t}} _dist(
|
||
|
self,
|
||
|
const {{INPUT_DTYPE_t}}* x1,
|
||
|
const {{INPUT_DTYPE_t}}* x2,
|
||
|
intp_t size,
|
||
|
) except -1 with gil:
|
||
|
cdef:
|
||
|
object x1arr = _buffer_to_ndarray{{name_suffix}}(x1, size)
|
||
|
object x2arr = _buffer_to_ndarray{{name_suffix}}(x2, size)
|
||
|
d = self.func(x1arr, x2arr, **self.kwargs)
|
||
|
try:
|
||
|
# Cython generates code here that results in a TypeError
|
||
|
# if d is the wrong type.
|
||
|
return d
|
||
|
except TypeError:
|
||
|
raise TypeError("Custom distance function must accept two "
|
||
|
"vectors and return a float.")
|
||
|
|
||
|
{{endfor}}
|