104 lines
3.6 KiB
Python
104 lines
3.6 KiB
Python
|
"""
|
||
|
The mod:`sklearn.utils.random` module includes utilities for random sampling.
|
||
|
"""
|
||
|
|
||
|
# Author: Hamzeh Alsalhi <ha258@cornell.edu>
|
||
|
#
|
||
|
# License: BSD 3 clause
|
||
|
import array
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
|
||
|
from . import check_random_state
|
||
|
from ._random import sample_without_replacement
|
||
|
|
||
|
__all__ = ["sample_without_replacement"]
|
||
|
|
||
|
|
||
|
def _random_choice_csc(n_samples, classes, class_probability=None, random_state=None):
|
||
|
"""Generate a sparse random matrix given column class distributions
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_samples : int,
|
||
|
Number of samples to draw in each column.
|
||
|
|
||
|
classes : list of size n_outputs of arrays of size (n_classes,)
|
||
|
List of classes for each column.
|
||
|
|
||
|
class_probability : list of size n_outputs of arrays of \
|
||
|
shape (n_classes,), default=None
|
||
|
Class distribution of each column. If None, uniform distribution is
|
||
|
assumed.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Controls the randomness of the sampled classes.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
random_matrix : sparse csc matrix of size (n_samples, n_outputs)
|
||
|
|
||
|
"""
|
||
|
data = array.array("i")
|
||
|
indices = array.array("i")
|
||
|
indptr = array.array("i", [0])
|
||
|
|
||
|
for j in range(len(classes)):
|
||
|
classes[j] = np.asarray(classes[j])
|
||
|
if classes[j].dtype.kind != "i":
|
||
|
raise ValueError("class dtype %s is not supported" % classes[j].dtype)
|
||
|
classes[j] = classes[j].astype(np.int64, copy=False)
|
||
|
|
||
|
# use uniform distribution if no class_probability is given
|
||
|
if class_probability is None:
|
||
|
class_prob_j = np.empty(shape=classes[j].shape[0])
|
||
|
class_prob_j.fill(1 / classes[j].shape[0])
|
||
|
else:
|
||
|
class_prob_j = np.asarray(class_probability[j])
|
||
|
|
||
|
if not np.isclose(np.sum(class_prob_j), 1.0):
|
||
|
raise ValueError(
|
||
|
"Probability array at index {0} does not sum to one".format(j)
|
||
|
)
|
||
|
|
||
|
if class_prob_j.shape[0] != classes[j].shape[0]:
|
||
|
raise ValueError(
|
||
|
"classes[{0}] (length {1}) and "
|
||
|
"class_probability[{0}] (length {2}) have "
|
||
|
"different length.".format(
|
||
|
j, classes[j].shape[0], class_prob_j.shape[0]
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# If 0 is not present in the classes insert it with a probability 0.0
|
||
|
if 0 not in classes[j]:
|
||
|
classes[j] = np.insert(classes[j], 0, 0)
|
||
|
class_prob_j = np.insert(class_prob_j, 0, 0.0)
|
||
|
|
||
|
# If there are nonzero classes choose randomly using class_probability
|
||
|
rng = check_random_state(random_state)
|
||
|
if classes[j].shape[0] > 1:
|
||
|
index_class_0 = np.flatnonzero(classes[j] == 0).item()
|
||
|
p_nonzero = 1 - class_prob_j[index_class_0]
|
||
|
nnz = int(n_samples * p_nonzero)
|
||
|
ind_sample = sample_without_replacement(
|
||
|
n_population=n_samples, n_samples=nnz, random_state=random_state
|
||
|
)
|
||
|
indices.extend(ind_sample)
|
||
|
|
||
|
# Normalize probabilities for the nonzero elements
|
||
|
classes_j_nonzero = classes[j] != 0
|
||
|
class_probability_nz = class_prob_j[classes_j_nonzero]
|
||
|
class_probability_nz_norm = class_probability_nz / np.sum(
|
||
|
class_probability_nz
|
||
|
)
|
||
|
classes_ind = np.searchsorted(
|
||
|
class_probability_nz_norm.cumsum(), rng.uniform(size=nnz)
|
||
|
)
|
||
|
data.extend(classes[j][classes_j_nonzero][classes_ind])
|
||
|
indptr.append(len(indices))
|
||
|
|
||
|
return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
|