Traktor/myenv/Lib/site-packages/sklearn/utils/tests/test_fixes.py

163 lines
5.3 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
# Justin Vincent
# Lars Buitinck
# License: BSD 3 clause
import numpy as np
import pytest
from sklearn.utils._testing import assert_array_equal
from sklearn.utils.fixes import _object_dtype_isnan, _smallest_admissible_index_dtype
@pytest.mark.parametrize("dtype, val", ([object, 1], [object, "a"], [float, 1]))
def test_object_dtype_isnan(dtype, val):
X = np.array([[val, np.nan], [np.nan, val]], dtype=dtype)
expected_mask = np.array([[False, True], [True, False]])
mask = _object_dtype_isnan(X)
assert_array_equal(mask, expected_mask)
@pytest.mark.parametrize(
"params, expected_dtype",
[
({}, np.int32), # default behaviour
({"maxval": np.iinfo(np.int32).max}, np.int32),
({"maxval": np.iinfo(np.int32).max + 1}, np.int64),
],
)
def test_smallest_admissible_index_dtype_max_val(params, expected_dtype):
"""Check the behaviour of `smallest_admissible_index_dtype` depending only on the
`max_val` parameter.
"""
assert _smallest_admissible_index_dtype(**params) == expected_dtype
@pytest.mark.parametrize(
"params, expected_dtype",
[
# Arrays dtype is int64 and thus should not be downcasted to int32 without
# checking the content of providing maxval.
({"arrays": np.array([1, 2], dtype=np.int64)}, np.int64),
# One of the array is int64 and should not be downcasted to int32
# for the same reasons.
(
{
"arrays": (
np.array([1, 2], dtype=np.int32),
np.array([1, 2], dtype=np.int64),
)
},
np.int64,
),
# Both arrays are already int32: we can just keep this dtype.
(
{
"arrays": (
np.array([1, 2], dtype=np.int32),
np.array([1, 2], dtype=np.int32),
)
},
np.int32,
),
# Arrays should be upcasted to at least int32 precision.
({"arrays": np.array([1, 2], dtype=np.int8)}, np.int32),
# Check that `maxval` takes precedence over the arrays and thus upcast to
# int64.
(
{
"arrays": np.array([1, 2], dtype=np.int32),
"maxval": np.iinfo(np.int32).max + 1,
},
np.int64,
),
],
)
def test_smallest_admissible_index_dtype_without_checking_contents(
params, expected_dtype
):
"""Check the behaviour of `smallest_admissible_index_dtype` using the passed
arrays but without checking the contents of the arrays.
"""
assert _smallest_admissible_index_dtype(**params) == expected_dtype
@pytest.mark.parametrize(
"params, expected_dtype",
[
# empty arrays should always be converted to int32 indices
(
{
"arrays": (np.array([], dtype=np.int64), np.array([], dtype=np.int64)),
"check_contents": True,
},
np.int32,
),
# arrays respecting np.iinfo(np.int32).min < x < np.iinfo(np.int32).max should
# be converted to int32,
(
{"arrays": np.array([1], dtype=np.int64), "check_contents": True},
np.int32,
),
# otherwise, it should be converted to int64. We need to create a uint32
# arrays to accommodate a value > np.iinfo(np.int32).max
(
{
"arrays": np.array([np.iinfo(np.int32).max + 1], dtype=np.uint32),
"check_contents": True,
},
np.int64,
),
# maxval should take precedence over the arrays contents and thus upcast to
# int64.
(
{
"arrays": np.array([1], dtype=np.int32),
"check_contents": True,
"maxval": np.iinfo(np.int32).max + 1,
},
np.int64,
),
# when maxval is small, but check_contents is True and the contents
# require np.int64, we still require np.int64 indexing in the end.
(
{
"arrays": np.array([np.iinfo(np.int32).max + 1], dtype=np.uint32),
"check_contents": True,
"maxval": 1,
},
np.int64,
),
],
)
def test_smallest_admissible_index_dtype_by_checking_contents(params, expected_dtype):
"""Check the behaviour of `smallest_admissible_index_dtype` using the dtype of the
arrays but as well the contents.
"""
assert _smallest_admissible_index_dtype(**params) == expected_dtype
@pytest.mark.parametrize(
"params, err_type, err_msg",
[
(
{"maxval": np.iinfo(np.int64).max + 1},
ValueError,
"is to large to be represented as np.int64",
),
(
{"arrays": np.array([1, 2], dtype=np.float64)},
ValueError,
"Array dtype float64 is not supported",
),
({"arrays": [1, 2]}, TypeError, "Arrays should be of type np.ndarray"),
],
)
def test_smallest_admissible_index_dtype_error(params, err_type, err_msg):
"""Check that we raise the proper error message."""
with pytest.raises(err_type, match=err_msg):
_smallest_admissible_index_dtype(**params)