1630 lines
47 KiB
Python
1630 lines
47 KiB
Python
|
import copy
|
||
|
|
||
|
from sympy.core import S
|
||
|
from sympy.core.function import expand_mul
|
||
|
from sympy.functions.elementary.miscellaneous import Min, sqrt
|
||
|
from sympy.functions.elementary.complexes import sign
|
||
|
|
||
|
from .common import NonSquareMatrixError, NonPositiveDefiniteMatrixError
|
||
|
from .utilities import _get_intermediate_simp, _iszero
|
||
|
from .determinant import _find_reasonable_pivot_naive
|
||
|
|
||
|
|
||
|
def _rank_decomposition(M, iszerofunc=_iszero, simplify=False):
|
||
|
r"""Returns a pair of matrices (`C`, `F`) with matching rank
|
||
|
such that `A = C F`.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
iszerofunc : Function, optional
|
||
|
A function used for detecting whether an element can
|
||
|
act as a pivot. ``lambda x: x.is_zero`` is used by default.
|
||
|
|
||
|
simplify : Bool or Function, optional
|
||
|
A function used to simplify elements when looking for a
|
||
|
pivot. By default SymPy's ``simplify`` is used.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
(C, F) : Matrices
|
||
|
`C` and `F` are full-rank matrices with rank as same as `A`,
|
||
|
whose product gives `A`.
|
||
|
|
||
|
See Notes for additional mathematical details.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> A = Matrix([
|
||
|
... [1, 3, 1, 4],
|
||
|
... [2, 7, 3, 9],
|
||
|
... [1, 5, 3, 1],
|
||
|
... [1, 2, 0, 8]
|
||
|
... ])
|
||
|
>>> C, F = A.rank_decomposition()
|
||
|
>>> C
|
||
|
Matrix([
|
||
|
[1, 3, 4],
|
||
|
[2, 7, 9],
|
||
|
[1, 5, 1],
|
||
|
[1, 2, 8]])
|
||
|
>>> F
|
||
|
Matrix([
|
||
|
[1, 0, -2, 0],
|
||
|
[0, 1, 1, 0],
|
||
|
[0, 0, 0, 1]])
|
||
|
>>> C * F == A
|
||
|
True
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Obtaining `F`, an RREF of `A`, is equivalent to creating a
|
||
|
product
|
||
|
|
||
|
.. math::
|
||
|
E_n E_{n-1} ... E_1 A = F
|
||
|
|
||
|
where `E_n, E_{n-1}, \dots, E_1` are the elimination matrices or
|
||
|
permutation matrices equivalent to each row-reduction step.
|
||
|
|
||
|
The inverse of the same product of elimination matrices gives
|
||
|
`C`:
|
||
|
|
||
|
.. math::
|
||
|
C = \left(E_n E_{n-1} \dots E_1\right)^{-1}
|
||
|
|
||
|
It is not necessary, however, to actually compute the inverse:
|
||
|
the columns of `C` are those from the original matrix with the
|
||
|
same column indices as the indices of the pivot columns of `F`.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Rank_factorization
|
||
|
|
||
|
.. [2] Piziak, R.; Odell, P. L. (1 June 1999).
|
||
|
"Full Rank Factorization of Matrices".
|
||
|
Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.matrices.matrices.MatrixReductions.rref
|
||
|
"""
|
||
|
|
||
|
F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc,
|
||
|
pivots=True)
|
||
|
rank = len(pivot_cols)
|
||
|
|
||
|
C = M.extract(range(M.rows), pivot_cols)
|
||
|
F = F[:rank, :]
|
||
|
|
||
|
return C, F
|
||
|
|
||
|
|
||
|
def _liupc(M):
|
||
|
"""Liu's algorithm, for pre-determination of the Elimination Tree of
|
||
|
the given matrix, used in row-based symbolic Cholesky factorization.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import SparseMatrix
|
||
|
>>> S = SparseMatrix([
|
||
|
... [1, 0, 3, 2],
|
||
|
... [0, 0, 1, 0],
|
||
|
... [4, 0, 0, 5],
|
||
|
... [0, 6, 7, 0]])
|
||
|
>>> S.liupc()
|
||
|
([[0], [], [0], [1, 2]], [4, 3, 4, 4])
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
|
||
|
Jeroen Van Grondelle (1999)
|
||
|
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
|
||
|
"""
|
||
|
# Algorithm 2.4, p 17 of reference
|
||
|
|
||
|
# get the indices of the elements that are non-zero on or below diag
|
||
|
R = [[] for r in range(M.rows)]
|
||
|
|
||
|
for r, c, _ in M.row_list():
|
||
|
if c <= r:
|
||
|
R[r].append(c)
|
||
|
|
||
|
inf = len(R) # nothing will be this large
|
||
|
parent = [inf]*M.rows
|
||
|
virtual = [inf]*M.rows
|
||
|
|
||
|
for r in range(M.rows):
|
||
|
for c in R[r][:-1]:
|
||
|
while virtual[c] < r:
|
||
|
t = virtual[c]
|
||
|
virtual[c] = r
|
||
|
c = t
|
||
|
|
||
|
if virtual[c] == inf:
|
||
|
parent[c] = virtual[c] = r
|
||
|
|
||
|
return R, parent
|
||
|
|
||
|
def _row_structure_symbolic_cholesky(M):
|
||
|
"""Symbolic cholesky factorization, for pre-determination of the
|
||
|
non-zero structure of the Cholesky factororization.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import SparseMatrix
|
||
|
>>> S = SparseMatrix([
|
||
|
... [1, 0, 3, 2],
|
||
|
... [0, 0, 1, 0],
|
||
|
... [4, 0, 0, 5],
|
||
|
... [0, 6, 7, 0]])
|
||
|
>>> S.row_structure_symbolic_cholesky()
|
||
|
[[0], [], [0], [1, 2]]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
|
||
|
Jeroen Van Grondelle (1999)
|
||
|
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
|
||
|
"""
|
||
|
|
||
|
R, parent = M.liupc()
|
||
|
inf = len(R) # this acts as infinity
|
||
|
Lrow = copy.deepcopy(R)
|
||
|
|
||
|
for k in range(M.rows):
|
||
|
for j in R[k]:
|
||
|
while j != inf and j != k:
|
||
|
Lrow[k].append(j)
|
||
|
j = parent[j]
|
||
|
|
||
|
Lrow[k] = sorted(set(Lrow[k]))
|
||
|
|
||
|
return Lrow
|
||
|
|
||
|
|
||
|
def _cholesky(M, hermitian=True):
|
||
|
"""Returns the Cholesky-type decomposition L of a matrix A
|
||
|
such that L * L.H == A if hermitian flag is True,
|
||
|
or L * L.T == A if hermitian is False.
|
||
|
|
||
|
A must be a Hermitian positive-definite matrix if hermitian is True,
|
||
|
or a symmetric matrix if it is False.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
|
||
|
>>> A.cholesky()
|
||
|
Matrix([
|
||
|
[ 5, 0, 0],
|
||
|
[ 3, 3, 0],
|
||
|
[-1, 1, 3]])
|
||
|
>>> A.cholesky() * A.cholesky().T
|
||
|
Matrix([
|
||
|
[25, 15, -5],
|
||
|
[15, 18, 0],
|
||
|
[-5, 0, 11]])
|
||
|
|
||
|
The matrix can have complex entries:
|
||
|
|
||
|
>>> from sympy import I
|
||
|
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
|
||
|
>>> A.cholesky()
|
||
|
Matrix([
|
||
|
[ 3, 0],
|
||
|
[-I, 2]])
|
||
|
>>> A.cholesky() * A.cholesky().H
|
||
|
Matrix([
|
||
|
[ 9, 3*I],
|
||
|
[-3*I, 5]])
|
||
|
|
||
|
Non-hermitian Cholesky-type decomposition may be useful when the
|
||
|
matrix is not positive-definite.
|
||
|
|
||
|
>>> A = Matrix([[1, 2], [2, 1]])
|
||
|
>>> L = A.cholesky(hermitian=False)
|
||
|
>>> L
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[2, sqrt(3)*I]])
|
||
|
>>> L*L.T == A
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.matrices.dense.DenseMatrix.LDLdecomposition
|
||
|
sympy.matrices.matrices.MatrixBase.LUdecomposition
|
||
|
QRdecomposition
|
||
|
"""
|
||
|
|
||
|
from .dense import MutableDenseMatrix
|
||
|
|
||
|
if not M.is_square:
|
||
|
raise NonSquareMatrixError("Matrix must be square.")
|
||
|
if hermitian and not M.is_hermitian:
|
||
|
raise ValueError("Matrix must be Hermitian.")
|
||
|
if not hermitian and not M.is_symmetric():
|
||
|
raise ValueError("Matrix must be symmetric.")
|
||
|
|
||
|
L = MutableDenseMatrix.zeros(M.rows, M.rows)
|
||
|
|
||
|
if hermitian:
|
||
|
for i in range(M.rows):
|
||
|
for j in range(i):
|
||
|
L[i, j] = ((1 / L[j, j])*(M[i, j] -
|
||
|
sum(L[i, k]*L[j, k].conjugate() for k in range(j))))
|
||
|
|
||
|
Lii2 = (M[i, i] -
|
||
|
sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
|
||
|
|
||
|
if Lii2.is_positive is False:
|
||
|
raise NonPositiveDefiniteMatrixError(
|
||
|
"Matrix must be positive-definite")
|
||
|
|
||
|
L[i, i] = sqrt(Lii2)
|
||
|
|
||
|
else:
|
||
|
for i in range(M.rows):
|
||
|
for j in range(i):
|
||
|
L[i, j] = ((1 / L[j, j])*(M[i, j] -
|
||
|
sum(L[i, k]*L[j, k] for k in range(j))))
|
||
|
|
||
|
L[i, i] = sqrt(M[i, i] -
|
||
|
sum(L[i, k]**2 for k in range(i)))
|
||
|
|
||
|
return M._new(L)
|
||
|
|
||
|
def _cholesky_sparse(M, hermitian=True):
|
||
|
"""
|
||
|
Returns the Cholesky decomposition L of a matrix A
|
||
|
such that L * L.T = A
|
||
|
|
||
|
A must be a square, symmetric, positive-definite
|
||
|
and non-singular matrix
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import SparseMatrix
|
||
|
>>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11)))
|
||
|
>>> A.cholesky()
|
||
|
Matrix([
|
||
|
[ 5, 0, 0],
|
||
|
[ 3, 3, 0],
|
||
|
[-1, 1, 3]])
|
||
|
>>> A.cholesky() * A.cholesky().T == A
|
||
|
True
|
||
|
|
||
|
The matrix can have complex entries:
|
||
|
|
||
|
>>> from sympy import I
|
||
|
>>> A = SparseMatrix(((9, 3*I), (-3*I, 5)))
|
||
|
>>> A.cholesky()
|
||
|
Matrix([
|
||
|
[ 3, 0],
|
||
|
[-I, 2]])
|
||
|
>>> A.cholesky() * A.cholesky().H
|
||
|
Matrix([
|
||
|
[ 9, 3*I],
|
||
|
[-3*I, 5]])
|
||
|
|
||
|
Non-hermitian Cholesky-type decomposition may be useful when the
|
||
|
matrix is not positive-definite.
|
||
|
|
||
|
>>> A = SparseMatrix([[1, 2], [2, 1]])
|
||
|
>>> L = A.cholesky(hermitian=False)
|
||
|
>>> L
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[2, sqrt(3)*I]])
|
||
|
>>> L*L.T == A
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.matrices.sparse.SparseMatrix.LDLdecomposition
|
||
|
sympy.matrices.matrices.MatrixBase.LUdecomposition
|
||
|
QRdecomposition
|
||
|
"""
|
||
|
|
||
|
from .dense import MutableDenseMatrix
|
||
|
|
||
|
if not M.is_square:
|
||
|
raise NonSquareMatrixError("Matrix must be square.")
|
||
|
if hermitian and not M.is_hermitian:
|
||
|
raise ValueError("Matrix must be Hermitian.")
|
||
|
if not hermitian and not M.is_symmetric():
|
||
|
raise ValueError("Matrix must be symmetric.")
|
||
|
|
||
|
dps = _get_intermediate_simp(expand_mul, expand_mul)
|
||
|
Crowstruc = M.row_structure_symbolic_cholesky()
|
||
|
C = MutableDenseMatrix.zeros(M.rows)
|
||
|
|
||
|
for i in range(len(Crowstruc)):
|
||
|
for j in Crowstruc[i]:
|
||
|
if i != j:
|
||
|
C[i, j] = M[i, j]
|
||
|
summ = 0
|
||
|
|
||
|
for p1 in Crowstruc[i]:
|
||
|
if p1 < j:
|
||
|
for p2 in Crowstruc[j]:
|
||
|
if p2 < j:
|
||
|
if p1 == p2:
|
||
|
if hermitian:
|
||
|
summ += C[i, p1]*C[j, p1].conjugate()
|
||
|
else:
|
||
|
summ += C[i, p1]*C[j, p1]
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
C[i, j] = dps((C[i, j] - summ) / C[j, j])
|
||
|
|
||
|
else: # i == j
|
||
|
C[j, j] = M[j, j]
|
||
|
summ = 0
|
||
|
|
||
|
for k in Crowstruc[j]:
|
||
|
if k < j:
|
||
|
if hermitian:
|
||
|
summ += C[j, k]*C[j, k].conjugate()
|
||
|
else:
|
||
|
summ += C[j, k]**2
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
Cjj2 = dps(C[j, j] - summ)
|
||
|
|
||
|
if hermitian and Cjj2.is_positive is False:
|
||
|
raise NonPositiveDefiniteMatrixError(
|
||
|
"Matrix must be positive-definite")
|
||
|
|
||
|
C[j, j] = sqrt(Cjj2)
|
||
|
|
||
|
return M._new(C)
|
||
|
|
||
|
|
||
|
def _LDLdecomposition(M, hermitian=True):
|
||
|
"""Returns the LDL Decomposition (L, D) of matrix A,
|
||
|
such that L * D * L.H == A if hermitian flag is True, or
|
||
|
L * D * L.T == A if hermitian is False.
|
||
|
This method eliminates the use of square root.
|
||
|
Further this ensures that all the diagonal entries of L are 1.
|
||
|
A must be a Hermitian positive-definite matrix if hermitian is True,
|
||
|
or a symmetric matrix otherwise.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix, eye
|
||
|
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
|
||
|
>>> L, D = A.LDLdecomposition()
|
||
|
>>> L
|
||
|
Matrix([
|
||
|
[ 1, 0, 0],
|
||
|
[ 3/5, 1, 0],
|
||
|
[-1/5, 1/3, 1]])
|
||
|
>>> D
|
||
|
Matrix([
|
||
|
[25, 0, 0],
|
||
|
[ 0, 9, 0],
|
||
|
[ 0, 0, 9]])
|
||
|
>>> L * D * L.T * A.inv() == eye(A.rows)
|
||
|
True
|
||
|
|
||
|
The matrix can have complex entries:
|
||
|
|
||
|
>>> from sympy import I
|
||
|
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
|
||
|
>>> L, D = A.LDLdecomposition()
|
||
|
>>> L
|
||
|
Matrix([
|
||
|
[ 1, 0],
|
||
|
[-I/3, 1]])
|
||
|
>>> D
|
||
|
Matrix([
|
||
|
[9, 0],
|
||
|
[0, 4]])
|
||
|
>>> L*D*L.H == A
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.matrices.dense.DenseMatrix.cholesky
|
||
|
sympy.matrices.matrices.MatrixBase.LUdecomposition
|
||
|
QRdecomposition
|
||
|
"""
|
||
|
|
||
|
from .dense import MutableDenseMatrix
|
||
|
|
||
|
if not M.is_square:
|
||
|
raise NonSquareMatrixError("Matrix must be square.")
|
||
|
if hermitian and not M.is_hermitian:
|
||
|
raise ValueError("Matrix must be Hermitian.")
|
||
|
if not hermitian and not M.is_symmetric():
|
||
|
raise ValueError("Matrix must be symmetric.")
|
||
|
|
||
|
D = MutableDenseMatrix.zeros(M.rows, M.rows)
|
||
|
L = MutableDenseMatrix.eye(M.rows)
|
||
|
|
||
|
if hermitian:
|
||
|
for i in range(M.rows):
|
||
|
for j in range(i):
|
||
|
L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
|
||
|
L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
|
||
|
|
||
|
D[i, i] = (M[i, i] -
|
||
|
sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
|
||
|
|
||
|
if D[i, i].is_positive is False:
|
||
|
raise NonPositiveDefiniteMatrixError(
|
||
|
"Matrix must be positive-definite")
|
||
|
|
||
|
else:
|
||
|
for i in range(M.rows):
|
||
|
for j in range(i):
|
||
|
L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
|
||
|
L[i, k]*L[j, k]*D[k, k] for k in range(j)))
|
||
|
|
||
|
D[i, i] = M[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
|
||
|
|
||
|
return M._new(L), M._new(D)
|
||
|
|
||
|
def _LDLdecomposition_sparse(M, hermitian=True):
|
||
|
"""
|
||
|
Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix
|
||
|
``A``, such that ``L * D * L.T == A``. ``A`` must be a square,
|
||
|
symmetric, positive-definite and non-singular.
|
||
|
|
||
|
This method eliminates the use of square root and ensures that all
|
||
|
the diagonal entries of L are 1.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import SparseMatrix
|
||
|
>>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
|
||
|
>>> L, D = A.LDLdecomposition()
|
||
|
>>> L
|
||
|
Matrix([
|
||
|
[ 1, 0, 0],
|
||
|
[ 3/5, 1, 0],
|
||
|
[-1/5, 1/3, 1]])
|
||
|
>>> D
|
||
|
Matrix([
|
||
|
[25, 0, 0],
|
||
|
[ 0, 9, 0],
|
||
|
[ 0, 0, 9]])
|
||
|
>>> L * D * L.T == A
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
|
||
|
from .dense import MutableDenseMatrix
|
||
|
|
||
|
if not M.is_square:
|
||
|
raise NonSquareMatrixError("Matrix must be square.")
|
||
|
if hermitian and not M.is_hermitian:
|
||
|
raise ValueError("Matrix must be Hermitian.")
|
||
|
if not hermitian and not M.is_symmetric():
|
||
|
raise ValueError("Matrix must be symmetric.")
|
||
|
|
||
|
dps = _get_intermediate_simp(expand_mul, expand_mul)
|
||
|
Lrowstruc = M.row_structure_symbolic_cholesky()
|
||
|
L = MutableDenseMatrix.eye(M.rows)
|
||
|
D = MutableDenseMatrix.zeros(M.rows, M.cols)
|
||
|
|
||
|
for i in range(len(Lrowstruc)):
|
||
|
for j in Lrowstruc[i]:
|
||
|
if i != j:
|
||
|
L[i, j] = M[i, j]
|
||
|
summ = 0
|
||
|
|
||
|
for p1 in Lrowstruc[i]:
|
||
|
if p1 < j:
|
||
|
for p2 in Lrowstruc[j]:
|
||
|
if p2 < j:
|
||
|
if p1 == p2:
|
||
|
if hermitian:
|
||
|
summ += L[i, p1]*L[j, p1].conjugate()*D[p1, p1]
|
||
|
else:
|
||
|
summ += L[i, p1]*L[j, p1]*D[p1, p1]
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
L[i, j] = dps((L[i, j] - summ) / D[j, j])
|
||
|
|
||
|
else: # i == j
|
||
|
D[i, i] = M[i, i]
|
||
|
summ = 0
|
||
|
|
||
|
for k in Lrowstruc[i]:
|
||
|
if k < i:
|
||
|
if hermitian:
|
||
|
summ += L[i, k]*L[i, k].conjugate()*D[k, k]
|
||
|
else:
|
||
|
summ += L[i, k]**2*D[k, k]
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
D[i, i] = dps(D[i, i] - summ)
|
||
|
|
||
|
if hermitian and D[i, i].is_positive is False:
|
||
|
raise NonPositiveDefiniteMatrixError(
|
||
|
"Matrix must be positive-definite")
|
||
|
|
||
|
return M._new(L), M._new(D)
|
||
|
|
||
|
|
||
|
def _LUdecomposition(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False):
|
||
|
"""Returns (L, U, perm) where L is a lower triangular matrix with unit
|
||
|
diagonal, U is an upper triangular matrix, and perm is a list of row
|
||
|
swap index pairs. If A is the original matrix, then
|
||
|
``A = (L*U).permuteBkwd(perm)``, and the row permutation matrix P such
|
||
|
that $P A = L U$ can be computed by ``P = eye(A.rows).permuteFwd(perm)``.
|
||
|
|
||
|
See documentation for LUCombined for details about the keyword argument
|
||
|
rankcheck, iszerofunc, and simpfunc.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
rankcheck : bool, optional
|
||
|
Determines if this function should detect the rank
|
||
|
deficiency of the matrixis and should raise a
|
||
|
``ValueError``.
|
||
|
|
||
|
iszerofunc : function, optional
|
||
|
A function which determines if a given expression is zero.
|
||
|
|
||
|
The function should be a callable that takes a single
|
||
|
SymPy expression and returns a 3-valued boolean value
|
||
|
``True``, ``False``, or ``None``.
|
||
|
|
||
|
It is internally used by the pivot searching algorithm.
|
||
|
See the notes section for a more information about the
|
||
|
pivot searching algorithm.
|
||
|
|
||
|
simpfunc : function or None, optional
|
||
|
A function that simplifies the input.
|
||
|
|
||
|
If this is specified as a function, this function should be
|
||
|
a callable that takes a single SymPy expression and returns
|
||
|
an another SymPy expression that is algebraically
|
||
|
equivalent.
|
||
|
|
||
|
If ``None``, it indicates that the pivot search algorithm
|
||
|
should not attempt to simplify any candidate pivots.
|
||
|
|
||
|
It is internally used by the pivot searching algorithm.
|
||
|
See the notes section for a more information about the
|
||
|
pivot searching algorithm.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> a = Matrix([[4, 3], [6, 3]])
|
||
|
>>> L, U, _ = a.LUdecomposition()
|
||
|
>>> L
|
||
|
Matrix([
|
||
|
[ 1, 0],
|
||
|
[3/2, 1]])
|
||
|
>>> U
|
||
|
Matrix([
|
||
|
[4, 3],
|
||
|
[0, -3/2]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.matrices.dense.DenseMatrix.cholesky
|
||
|
sympy.matrices.dense.DenseMatrix.LDLdecomposition
|
||
|
QRdecomposition
|
||
|
LUdecomposition_Simple
|
||
|
LUdecompositionFF
|
||
|
LUsolve
|
||
|
"""
|
||
|
|
||
|
combined, p = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
|
||
|
simpfunc=simpfunc, rankcheck=rankcheck)
|
||
|
|
||
|
# L is lower triangular ``M.rows x M.rows``
|
||
|
# U is upper triangular ``M.rows x M.cols``
|
||
|
# L has unit diagonal. For each column in combined, the subcolumn
|
||
|
# below the diagonal of combined is shared by L.
|
||
|
# If L has more columns than combined, then the remaining subcolumns
|
||
|
# below the diagonal of L are zero.
|
||
|
# The upper triangular portion of L and combined are equal.
|
||
|
def entry_L(i, j):
|
||
|
if i < j:
|
||
|
# Super diagonal entry
|
||
|
return M.zero
|
||
|
elif i == j:
|
||
|
return M.one
|
||
|
elif j < combined.cols:
|
||
|
return combined[i, j]
|
||
|
|
||
|
# Subdiagonal entry of L with no corresponding
|
||
|
# entry in combined
|
||
|
return M.zero
|
||
|
|
||
|
def entry_U(i, j):
|
||
|
return M.zero if i > j else combined[i, j]
|
||
|
|
||
|
L = M._new(combined.rows, combined.rows, entry_L)
|
||
|
U = M._new(combined.rows, combined.cols, entry_U)
|
||
|
|
||
|
return L, U, p
|
||
|
|
||
|
def _LUdecomposition_Simple(M, iszerofunc=_iszero, simpfunc=None,
|
||
|
rankcheck=False):
|
||
|
r"""Compute the PLU decomposition of the matrix.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
rankcheck : bool, optional
|
||
|
Determines if this function should detect the rank
|
||
|
deficiency of the matrixis and should raise a
|
||
|
``ValueError``.
|
||
|
|
||
|
iszerofunc : function, optional
|
||
|
A function which determines if a given expression is zero.
|
||
|
|
||
|
The function should be a callable that takes a single
|
||
|
SymPy expression and returns a 3-valued boolean value
|
||
|
``True``, ``False``, or ``None``.
|
||
|
|
||
|
It is internally used by the pivot searching algorithm.
|
||
|
See the notes section for a more information about the
|
||
|
pivot searching algorithm.
|
||
|
|
||
|
simpfunc : function or None, optional
|
||
|
A function that simplifies the input.
|
||
|
|
||
|
If this is specified as a function, this function should be
|
||
|
a callable that takes a single SymPy expression and returns
|
||
|
an another SymPy expression that is algebraically
|
||
|
equivalent.
|
||
|
|
||
|
If ``None``, it indicates that the pivot search algorithm
|
||
|
should not attempt to simplify any candidate pivots.
|
||
|
|
||
|
It is internally used by the pivot searching algorithm.
|
||
|
See the notes section for a more information about the
|
||
|
pivot searching algorithm.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
(lu, row_swaps) : (Matrix, list)
|
||
|
If the original matrix is a $m, n$ matrix:
|
||
|
|
||
|
*lu* is a $m, n$ matrix, which contains result of the
|
||
|
decomposition in a compressed form. See the notes section
|
||
|
to see how the matrix is compressed.
|
||
|
|
||
|
*row_swaps* is a $m$-element list where each element is a
|
||
|
pair of row exchange indices.
|
||
|
|
||
|
``A = (L*U).permute_backward(perm)``, and the row
|
||
|
permutation matrix $P$ from the formula $P A = L U$ can be
|
||
|
computed by ``P=eye(A.row).permute_forward(perm)``.
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
ValueError
|
||
|
Raised if ``rankcheck=True`` and the matrix is found to
|
||
|
be rank deficient during the computation.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
About the PLU decomposition:
|
||
|
|
||
|
PLU decomposition is a generalization of a LU decomposition
|
||
|
which can be extended for rank-deficient matrices.
|
||
|
|
||
|
It can further be generalized for non-square matrices, and this
|
||
|
is the notation that SymPy is using.
|
||
|
|
||
|
PLU decomposition is a decomposition of a $m, n$ matrix $A$ in
|
||
|
the form of $P A = L U$ where
|
||
|
|
||
|
* $L$ is a $m, m$ lower triangular matrix with unit diagonal
|
||
|
entries.
|
||
|
* $U$ is a $m, n$ upper triangular matrix.
|
||
|
* $P$ is a $m, m$ permutation matrix.
|
||
|
|
||
|
So, for a square matrix, the decomposition would look like:
|
||
|
|
||
|
.. math::
|
||
|
L = \begin{bmatrix}
|
||
|
1 & 0 & 0 & \cdots & 0 \\
|
||
|
L_{1, 0} & 1 & 0 & \cdots & 0 \\
|
||
|
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
|
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1
|
||
|
\end{bmatrix}
|
||
|
|
||
|
.. math::
|
||
|
U = \begin{bmatrix}
|
||
|
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
|
||
|
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
|
||
|
0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
|
0 & 0 & 0 & \cdots & U_{n-1, n-1}
|
||
|
\end{bmatrix}
|
||
|
|
||
|
And for a matrix with more rows than the columns,
|
||
|
the decomposition would look like:
|
||
|
|
||
|
.. math::
|
||
|
L = \begin{bmatrix}
|
||
|
1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
|
||
|
L_{1, 0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
|
||
|
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots
|
||
|
& \vdots \\
|
||
|
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 & 0
|
||
|
& \cdots & 0 \\
|
||
|
L_{n, 0} & L_{n, 1} & L_{n, 2} & \cdots & L_{n, n-1} & 1
|
||
|
& \cdots & 0 \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots
|
||
|
& \ddots & \vdots \\
|
||
|
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1}
|
||
|
& 0 & \cdots & 1 \\
|
||
|
\end{bmatrix}
|
||
|
|
||
|
.. math::
|
||
|
U = \begin{bmatrix}
|
||
|
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
|
||
|
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
|
||
|
0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
|
0 & 0 & 0 & \cdots & U_{n-1, n-1} \\
|
||
|
0 & 0 & 0 & \cdots & 0 \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
|
0 & 0 & 0 & \cdots & 0
|
||
|
\end{bmatrix}
|
||
|
|
||
|
Finally, for a matrix with more columns than the rows, the
|
||
|
decomposition would look like:
|
||
|
|
||
|
.. math::
|
||
|
L = \begin{bmatrix}
|
||
|
1 & 0 & 0 & \cdots & 0 \\
|
||
|
L_{1, 0} & 1 & 0 & \cdots & 0 \\
|
||
|
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
|
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & 1
|
||
|
\end{bmatrix}
|
||
|
|
||
|
.. math::
|
||
|
U = \begin{bmatrix}
|
||
|
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
|
||
|
& \cdots & U_{0, n-1} \\
|
||
|
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
|
||
|
& \cdots & U_{1, n-1} \\
|
||
|
0 & 0 & U_{2, 2} & \cdots & U_{2, m-1}
|
||
|
& \cdots & U_{2, n-1} \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots
|
||
|
& \cdots & \vdots \\
|
||
|
0 & 0 & 0 & \cdots & U_{m-1, m-1}
|
||
|
& \cdots & U_{m-1, n-1} \\
|
||
|
\end{bmatrix}
|
||
|
|
||
|
About the compressed LU storage:
|
||
|
|
||
|
The results of the decomposition are often stored in compressed
|
||
|
forms rather than returning $L$ and $U$ matrices individually.
|
||
|
|
||
|
It may be less intiuitive, but it is commonly used for a lot of
|
||
|
numeric libraries because of the efficiency.
|
||
|
|
||
|
The storage matrix is defined as following for this specific
|
||
|
method:
|
||
|
|
||
|
* The subdiagonal elements of $L$ are stored in the subdiagonal
|
||
|
portion of $LU$, that is $LU_{i, j} = L_{i, j}$ whenever
|
||
|
$i > j$.
|
||
|
* The elements on the diagonal of $L$ are all 1, and are not
|
||
|
explicitly stored.
|
||
|
* $U$ is stored in the upper triangular portion of $LU$, that is
|
||
|
$LU_{i, j} = U_{i, j}$ whenever $i <= j$.
|
||
|
* For a case of $m > n$, the right side of the $L$ matrix is
|
||
|
trivial to store.
|
||
|
* For a case of $m < n$, the below side of the $U$ matrix is
|
||
|
trivial to store.
|
||
|
|
||
|
So, for a square matrix, the compressed output matrix would be:
|
||
|
|
||
|
.. math::
|
||
|
LU = \begin{bmatrix}
|
||
|
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
|
||
|
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
|
||
|
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
|
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1}
|
||
|
\end{bmatrix}
|
||
|
|
||
|
For a matrix with more rows than the columns, the compressed
|
||
|
output matrix would be:
|
||
|
|
||
|
.. math::
|
||
|
LU = \begin{bmatrix}
|
||
|
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
|
||
|
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
|
||
|
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
|
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots
|
||
|
& U_{n-1, n-1} \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
||
|
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots
|
||
|
& L_{m-1, n-1} \\
|
||
|
\end{bmatrix}
|
||
|
|
||
|
For a matrix with more columns than the rows, the compressed
|
||
|
output matrix would be:
|
||
|
|
||
|
.. math::
|
||
|
LU = \begin{bmatrix}
|
||
|
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
|
||
|
& \cdots & U_{0, n-1} \\
|
||
|
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
|
||
|
& \cdots & U_{1, n-1} \\
|
||
|
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, m-1}
|
||
|
& \cdots & U_{2, n-1} \\
|
||
|
\vdots & \vdots & \vdots & \ddots & \vdots
|
||
|
& \cdots & \vdots \\
|
||
|
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & U_{m-1, m-1}
|
||
|
& \cdots & U_{m-1, n-1} \\
|
||
|
\end{bmatrix}
|
||
|
|
||
|
About the pivot searching algorithm:
|
||
|
|
||
|
When a matrix contains symbolic entries, the pivot search algorithm
|
||
|
differs from the case where every entry can be categorized as zero or
|
||
|
nonzero.
|
||
|
The algorithm searches column by column through the submatrix whose
|
||
|
top left entry coincides with the pivot position.
|
||
|
If it exists, the pivot is the first entry in the current search
|
||
|
column that iszerofunc guarantees is nonzero.
|
||
|
If no such candidate exists, then each candidate pivot is simplified
|
||
|
if simpfunc is not None.
|
||
|
The search is repeated, with the difference that a candidate may be
|
||
|
the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero.
|
||
|
In the second search the pivot is the first candidate that
|
||
|
iszerofunc can guarantee is nonzero.
|
||
|
If no such candidate exists, then the pivot is the first candidate
|
||
|
for which iszerofunc returns None.
|
||
|
If no such candidate exists, then the search is repeated in the next
|
||
|
column to the right.
|
||
|
The pivot search algorithm differs from the one in ``rref()``, which
|
||
|
relies on ``_find_reasonable_pivot()``.
|
||
|
Future versions of ``LUdecomposition_simple()`` may use
|
||
|
``_find_reasonable_pivot()``.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.matrices.matrices.MatrixBase.LUdecomposition
|
||
|
LUdecompositionFF
|
||
|
LUsolve
|
||
|
"""
|
||
|
|
||
|
if rankcheck:
|
||
|
# https://github.com/sympy/sympy/issues/9796
|
||
|
pass
|
||
|
|
||
|
if S.Zero in M.shape:
|
||
|
# Define LU decomposition of a matrix with no entries as a matrix
|
||
|
# of the same dimensions with all zero entries.
|
||
|
return M.zeros(M.rows, M.cols), []
|
||
|
|
||
|
dps = _get_intermediate_simp()
|
||
|
lu = M.as_mutable()
|
||
|
row_swaps = []
|
||
|
|
||
|
pivot_col = 0
|
||
|
|
||
|
for pivot_row in range(0, lu.rows - 1):
|
||
|
# Search for pivot. Prefer entry that iszeropivot determines
|
||
|
# is nonzero, over entry that iszeropivot cannot guarantee
|
||
|
# is zero.
|
||
|
# XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279
|
||
|
# Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc
|
||
|
# to _find_reasonable_pivot().
|
||
|
# In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):``
|
||
|
# calls sympy.simplify(), and not the simplification function passed in via
|
||
|
# the keyword argument simpfunc.
|
||
|
iszeropivot = True
|
||
|
|
||
|
while pivot_col != M.cols and iszeropivot:
|
||
|
sub_col = (lu[r, pivot_col] for r in range(pivot_row, M.rows))
|
||
|
|
||
|
pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\
|
||
|
_find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc)
|
||
|
|
||
|
iszeropivot = pivot_value is None
|
||
|
|
||
|
if iszeropivot:
|
||
|
# All candidate pivots in this column are zero.
|
||
|
# Proceed to next column.
|
||
|
pivot_col += 1
|
||
|
|
||
|
if rankcheck and pivot_col != pivot_row:
|
||
|
# All entries including and below the pivot position are
|
||
|
# zero, which indicates that the rank of the matrix is
|
||
|
# strictly less than min(num rows, num cols)
|
||
|
# Mimic behavior of previous implementation, by throwing a
|
||
|
# ValueError.
|
||
|
raise ValueError("Rank of matrix is strictly less than"
|
||
|
" number of rows or columns."
|
||
|
" Pass keyword argument"
|
||
|
" rankcheck=False to compute"
|
||
|
" the LU decomposition of this matrix.")
|
||
|
|
||
|
candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset
|
||
|
|
||
|
if candidate_pivot_row is None and iszeropivot:
|
||
|
# If candidate_pivot_row is None and iszeropivot is True
|
||
|
# after pivot search has completed, then the submatrix
|
||
|
# below and to the right of (pivot_row, pivot_col) is
|
||
|
# all zeros, indicating that Gaussian elimination is
|
||
|
# complete.
|
||
|
return lu, row_swaps
|
||
|
|
||
|
# Update entries simplified during pivot search.
|
||
|
for offset, val in ind_simplified_pairs:
|
||
|
lu[pivot_row + offset, pivot_col] = val
|
||
|
|
||
|
if pivot_row != candidate_pivot_row:
|
||
|
# Row swap book keeping:
|
||
|
# Record which rows were swapped.
|
||
|
# Update stored portion of L factor by multiplying L on the
|
||
|
# left and right with the current permutation.
|
||
|
# Swap rows of U.
|
||
|
row_swaps.append([pivot_row, candidate_pivot_row])
|
||
|
|
||
|
# Update L.
|
||
|
lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \
|
||
|
lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row]
|
||
|
|
||
|
# Swap pivot row of U with candidate pivot row.
|
||
|
lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \
|
||
|
lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols]
|
||
|
|
||
|
# Introduce zeros below the pivot by adding a multiple of the
|
||
|
# pivot row to a row under it, and store the result in the
|
||
|
# row under it.
|
||
|
# Only entries in the target row whose index is greater than
|
||
|
# start_col may be nonzero.
|
||
|
start_col = pivot_col + 1
|
||
|
|
||
|
for row in range(pivot_row + 1, lu.rows):
|
||
|
# Store factors of L in the subcolumn below
|
||
|
# (pivot_row, pivot_row).
|
||
|
lu[row, pivot_row] = \
|
||
|
dps(lu[row, pivot_col]/lu[pivot_row, pivot_col])
|
||
|
|
||
|
# Form the linear combination of the pivot row and the current
|
||
|
# row below the pivot row that zeros the entries below the pivot.
|
||
|
# Employing slicing instead of a loop here raises
|
||
|
# NotImplementedError: Cannot add Zero to MutableSparseMatrix
|
||
|
# in sympy/matrices/tests/test_sparse.py.
|
||
|
# c = pivot_row + 1 if pivot_row == pivot_col else pivot_col
|
||
|
for c in range(start_col, lu.cols):
|
||
|
lu[row, c] = dps(lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c])
|
||
|
|
||
|
if pivot_row != pivot_col:
|
||
|
# matrix rank < min(num rows, num cols),
|
||
|
# so factors of L are not stored directly below the pivot.
|
||
|
# These entries are zero by construction, so don't bother
|
||
|
# computing them.
|
||
|
for row in range(pivot_row + 1, lu.rows):
|
||
|
lu[row, pivot_col] = M.zero
|
||
|
|
||
|
pivot_col += 1
|
||
|
|
||
|
if pivot_col == lu.cols:
|
||
|
# All candidate pivots are zero implies that Gaussian
|
||
|
# elimination is complete.
|
||
|
return lu, row_swaps
|
||
|
|
||
|
if rankcheck:
|
||
|
if iszerofunc(
|
||
|
lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]):
|
||
|
raise ValueError("Rank of matrix is strictly less than"
|
||
|
" number of rows or columns."
|
||
|
" Pass keyword argument"
|
||
|
" rankcheck=False to compute"
|
||
|
" the LU decomposition of this matrix.")
|
||
|
|
||
|
return lu, row_swaps
|
||
|
|
||
|
def _LUdecompositionFF(M):
|
||
|
"""Compute a fraction-free LU decomposition.
|
||
|
|
||
|
Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
|
||
|
If the elements of the matrix belong to some integral domain I, then all
|
||
|
elements of L, D and U are guaranteed to belong to I.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.matrices.matrices.MatrixBase.LUdecomposition
|
||
|
LUdecomposition_Simple
|
||
|
LUsolve
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
|
||
|
for LU and QR factors". Frontiers in Computer Science in China,
|
||
|
Vol 2, no. 1, pp. 67-80, 2008.
|
||
|
"""
|
||
|
|
||
|
from sympy.matrices import SparseMatrix
|
||
|
|
||
|
zeros = SparseMatrix.zeros
|
||
|
eye = SparseMatrix.eye
|
||
|
n, m = M.rows, M.cols
|
||
|
U, L, P = M.as_mutable(), eye(n), eye(n)
|
||
|
DD = zeros(n, n)
|
||
|
oldpivot = 1
|
||
|
|
||
|
for k in range(n - 1):
|
||
|
if U[k, k] == 0:
|
||
|
for kpivot in range(k + 1, n):
|
||
|
if U[kpivot, k]:
|
||
|
break
|
||
|
else:
|
||
|
raise ValueError("Matrix is not full rank")
|
||
|
|
||
|
U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
|
||
|
L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
|
||
|
P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
|
||
|
|
||
|
L [k, k] = Ukk = U[k, k]
|
||
|
DD[k, k] = oldpivot * Ukk
|
||
|
|
||
|
for i in range(k + 1, n):
|
||
|
L[i, k] = Uik = U[i, k]
|
||
|
|
||
|
for j in range(k + 1, m):
|
||
|
U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot
|
||
|
|
||
|
U[i, k] = 0
|
||
|
|
||
|
oldpivot = Ukk
|
||
|
|
||
|
DD[n - 1, n - 1] = oldpivot
|
||
|
|
||
|
return P, L, DD, U
|
||
|
|
||
|
def _singular_value_decomposition(A):
|
||
|
r"""Returns a Condensed Singular Value decomposition.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A Singular Value decomposition is a decomposition in the form $A = U \Sigma V$
|
||
|
where
|
||
|
|
||
|
- $U, V$ are column orthogonal matrix.
|
||
|
- $\Sigma$ is a diagonal matrix, where the main diagonal contains singular
|
||
|
values of matrix A.
|
||
|
|
||
|
A column orthogonal matrix satisfies
|
||
|
$\mathbb{I} = U^H U$ while a full orthogonal matrix satisfies
|
||
|
relation $\mathbb{I} = U U^H = U^H U$ where $\mathbb{I}$ is an identity
|
||
|
matrix with matching dimensions.
|
||
|
|
||
|
For matrices which are not square or are rank-deficient, it is
|
||
|
sufficient to return a column orthogonal matrix because augmenting
|
||
|
them may introduce redundant computations.
|
||
|
In condensed Singular Value Decomposition we only return column orthogonal
|
||
|
matrices because of this reason
|
||
|
|
||
|
If you want to augment the results to return a full orthogonal
|
||
|
decomposition, you should use the following procedures.
|
||
|
|
||
|
- Augment the $U, V$ matrices with columns that are orthogonal to every
|
||
|
other columns and make it square.
|
||
|
- Augment the $\Sigma$ matrix with zero rows to make it have the same
|
||
|
shape as the original matrix.
|
||
|
|
||
|
The procedure will be illustrated in the examples section.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
we take a full rank matrix first:
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> A = Matrix([[1, 2],[2,1]])
|
||
|
>>> U, S, V = A.singular_value_decomposition()
|
||
|
>>> U
|
||
|
Matrix([
|
||
|
[ sqrt(2)/2, sqrt(2)/2],
|
||
|
[-sqrt(2)/2, sqrt(2)/2]])
|
||
|
>>> S
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[0, 3]])
|
||
|
>>> V
|
||
|
Matrix([
|
||
|
[-sqrt(2)/2, sqrt(2)/2],
|
||
|
[ sqrt(2)/2, sqrt(2)/2]])
|
||
|
|
||
|
If a matrix if square and full rank both U, V
|
||
|
are orthogonal in both directions
|
||
|
|
||
|
>>> U * U.H
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[0, 1]])
|
||
|
>>> U.H * U
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[0, 1]])
|
||
|
|
||
|
>>> V * V.H
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[0, 1]])
|
||
|
>>> V.H * V
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[0, 1]])
|
||
|
>>> A == U * S * V.H
|
||
|
True
|
||
|
|
||
|
>>> C = Matrix([
|
||
|
... [1, 0, 0, 0, 2],
|
||
|
... [0, 0, 3, 0, 0],
|
||
|
... [0, 0, 0, 0, 0],
|
||
|
... [0, 2, 0, 0, 0],
|
||
|
... ])
|
||
|
>>> U, S, V = C.singular_value_decomposition()
|
||
|
|
||
|
>>> V.H * V
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
>>> V * V.H
|
||
|
Matrix([
|
||
|
[1/5, 0, 0, 0, 2/5],
|
||
|
[ 0, 1, 0, 0, 0],
|
||
|
[ 0, 0, 1, 0, 0],
|
||
|
[ 0, 0, 0, 0, 0],
|
||
|
[2/5, 0, 0, 0, 4/5]])
|
||
|
|
||
|
If you want to augment the results to be a full orthogonal
|
||
|
decomposition, you should augment $V$ with an another orthogonal
|
||
|
column.
|
||
|
|
||
|
You are able to append an arbitrary standard basis that are linearly
|
||
|
independent to every other columns and you can run the Gram-Schmidt
|
||
|
process to make them augmented as orthogonal basis.
|
||
|
|
||
|
>>> V_aug = V.row_join(Matrix([[0,0,0,0,1],
|
||
|
... [0,0,0,1,0]]).H)
|
||
|
>>> V_aug = V_aug.QRdecomposition()[0]
|
||
|
>>> V_aug
|
||
|
Matrix([
|
||
|
[0, sqrt(5)/5, 0, -2*sqrt(5)/5, 0],
|
||
|
[1, 0, 0, 0, 0],
|
||
|
[0, 0, 1, 0, 0],
|
||
|
[0, 0, 0, 0, 1],
|
||
|
[0, 2*sqrt(5)/5, 0, sqrt(5)/5, 0]])
|
||
|
>>> V_aug.H * V_aug
|
||
|
Matrix([
|
||
|
[1, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 0],
|
||
|
[0, 0, 1, 0, 0],
|
||
|
[0, 0, 0, 1, 0],
|
||
|
[0, 0, 0, 0, 1]])
|
||
|
>>> V_aug * V_aug.H
|
||
|
Matrix([
|
||
|
[1, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 0],
|
||
|
[0, 0, 1, 0, 0],
|
||
|
[0, 0, 0, 1, 0],
|
||
|
[0, 0, 0, 0, 1]])
|
||
|
|
||
|
Similarly we augment U
|
||
|
|
||
|
>>> U_aug = U.row_join(Matrix([0,0,1,0]))
|
||
|
>>> U_aug = U_aug.QRdecomposition()[0]
|
||
|
>>> U_aug
|
||
|
Matrix([
|
||
|
[0, 1, 0, 0],
|
||
|
[0, 0, 1, 0],
|
||
|
[0, 0, 0, 1],
|
||
|
[1, 0, 0, 0]])
|
||
|
|
||
|
>>> U_aug.H * U_aug
|
||
|
Matrix([
|
||
|
[1, 0, 0, 0],
|
||
|
[0, 1, 0, 0],
|
||
|
[0, 0, 1, 0],
|
||
|
[0, 0, 0, 1]])
|
||
|
>>> U_aug * U_aug.H
|
||
|
Matrix([
|
||
|
[1, 0, 0, 0],
|
||
|
[0, 1, 0, 0],
|
||
|
[0, 0, 1, 0],
|
||
|
[0, 0, 0, 1]])
|
||
|
|
||
|
We add 2 zero columns and one row to S
|
||
|
|
||
|
>>> S_aug = S.col_join(Matrix([[0,0,0]]))
|
||
|
>>> S_aug = S_aug.row_join(Matrix([[0,0,0,0],
|
||
|
... [0,0,0,0]]).H)
|
||
|
>>> S_aug
|
||
|
Matrix([
|
||
|
[2, 0, 0, 0, 0],
|
||
|
[0, sqrt(5), 0, 0, 0],
|
||
|
[0, 0, 3, 0, 0],
|
||
|
[0, 0, 0, 0, 0]])
|
||
|
|
||
|
|
||
|
|
||
|
>>> U_aug * S_aug * V_aug.H == C
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
|
||
|
AH = A.H
|
||
|
m, n = A.shape
|
||
|
if m >= n:
|
||
|
V, S = (AH * A).diagonalize()
|
||
|
|
||
|
ranked = []
|
||
|
for i, x in enumerate(S.diagonal()):
|
||
|
if not x.is_zero:
|
||
|
ranked.append(i)
|
||
|
|
||
|
V = V[:, ranked]
|
||
|
|
||
|
Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
|
||
|
|
||
|
S = S.zeros(len(Singular_vals))
|
||
|
|
||
|
for i, sv in enumerate(Singular_vals):
|
||
|
S[i, i] = sv
|
||
|
|
||
|
V, _ = V.QRdecomposition()
|
||
|
U = A * V * S.inv()
|
||
|
else:
|
||
|
U, S = (A * AH).diagonalize()
|
||
|
|
||
|
ranked = []
|
||
|
for i, x in enumerate(S.diagonal()):
|
||
|
if not x.is_zero:
|
||
|
ranked.append(i)
|
||
|
|
||
|
U = U[:, ranked]
|
||
|
Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
|
||
|
|
||
|
S = S.zeros(len(Singular_vals))
|
||
|
|
||
|
for i, sv in enumerate(Singular_vals):
|
||
|
S[i, i] = sv
|
||
|
|
||
|
U, _ = U.QRdecomposition()
|
||
|
V = AH * U * S.inv()
|
||
|
|
||
|
return U, S, V
|
||
|
|
||
|
def _QRdecomposition_optional(M, normalize=True):
|
||
|
def dot(u, v):
|
||
|
return u.dot(v, hermitian=True)
|
||
|
|
||
|
dps = _get_intermediate_simp(expand_mul, expand_mul)
|
||
|
|
||
|
A = M.as_mutable()
|
||
|
ranked = []
|
||
|
|
||
|
Q = A
|
||
|
R = A.zeros(A.cols)
|
||
|
|
||
|
for j in range(A.cols):
|
||
|
for i in range(j):
|
||
|
if Q[:, i].is_zero_matrix:
|
||
|
continue
|
||
|
|
||
|
R[i, j] = dot(Q[:, i], Q[:, j]) / dot(Q[:, i], Q[:, i])
|
||
|
R[i, j] = dps(R[i, j])
|
||
|
Q[:, j] -= Q[:, i] * R[i, j]
|
||
|
|
||
|
Q[:, j] = dps(Q[:, j])
|
||
|
if Q[:, j].is_zero_matrix is not True:
|
||
|
ranked.append(j)
|
||
|
R[j, j] = M.one
|
||
|
|
||
|
Q = Q.extract(range(Q.rows), ranked)
|
||
|
R = R.extract(ranked, range(R.cols))
|
||
|
|
||
|
if normalize:
|
||
|
# Normalization
|
||
|
for i in range(Q.cols):
|
||
|
norm = Q[:, i].norm()
|
||
|
Q[:, i] /= norm
|
||
|
R[i, :] *= norm
|
||
|
|
||
|
return M.__class__(Q), M.__class__(R)
|
||
|
|
||
|
|
||
|
def _QRdecomposition(M):
|
||
|
r"""Returns a QR decomposition.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A QR decomposition is a decomposition in the form $A = Q R$
|
||
|
where
|
||
|
|
||
|
- $Q$ is a column orthogonal matrix.
|
||
|
- $R$ is a upper triangular (trapezoidal) matrix.
|
||
|
|
||
|
A column orthogonal matrix satisfies
|
||
|
$\mathbb{I} = Q^H Q$ while a full orthogonal matrix satisfies
|
||
|
relation $\mathbb{I} = Q Q^H = Q^H Q$ where $I$ is an identity
|
||
|
matrix with matching dimensions.
|
||
|
|
||
|
For matrices which are not square or are rank-deficient, it is
|
||
|
sufficient to return a column orthogonal matrix because augmenting
|
||
|
them may introduce redundant computations.
|
||
|
And an another advantage of this is that you can easily inspect the
|
||
|
matrix rank by counting the number of columns of $Q$.
|
||
|
|
||
|
If you want to augment the results to return a full orthogonal
|
||
|
decomposition, you should use the following procedures.
|
||
|
|
||
|
- Augment the $Q$ matrix with columns that are orthogonal to every
|
||
|
other columns and make it square.
|
||
|
- Augment the $R$ matrix with zero rows to make it have the same
|
||
|
shape as the original matrix.
|
||
|
|
||
|
The procedure will be illustrated in the examples section.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
A full rank matrix example:
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
|
||
|
>>> Q, R = A.QRdecomposition()
|
||
|
>>> Q
|
||
|
Matrix([
|
||
|
[ 6/7, -69/175, -58/175],
|
||
|
[ 3/7, 158/175, 6/175],
|
||
|
[-2/7, 6/35, -33/35]])
|
||
|
>>> R
|
||
|
Matrix([
|
||
|
[14, 21, -14],
|
||
|
[ 0, 175, -70],
|
||
|
[ 0, 0, 35]])
|
||
|
|
||
|
If the matrix is square and full rank, the $Q$ matrix becomes
|
||
|
orthogonal in both directions, and needs no augmentation.
|
||
|
|
||
|
>>> Q * Q.H
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
>>> Q.H * Q
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
|
||
|
>>> A == Q*R
|
||
|
True
|
||
|
|
||
|
A rank deficient matrix example:
|
||
|
|
||
|
>>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]])
|
||
|
>>> Q, R = A.QRdecomposition()
|
||
|
>>> Q
|
||
|
Matrix([
|
||
|
[ 6/7, -69/175],
|
||
|
[ 3/7, 158/175],
|
||
|
[-2/7, 6/35]])
|
||
|
>>> R
|
||
|
Matrix([
|
||
|
[14, 21, 0],
|
||
|
[ 0, 175, 0]])
|
||
|
|
||
|
QRdecomposition might return a matrix Q that is rectangular.
|
||
|
In this case the orthogonality condition might be satisfied as
|
||
|
$\mathbb{I} = Q.H*Q$ but not in the reversed product
|
||
|
$\mathbb{I} = Q * Q.H$.
|
||
|
|
||
|
>>> Q.H * Q
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[0, 1]])
|
||
|
>>> Q * Q.H
|
||
|
Matrix([
|
||
|
[27261/30625, 348/30625, -1914/6125],
|
||
|
[ 348/30625, 30589/30625, 198/6125],
|
||
|
[ -1914/6125, 198/6125, 136/1225]])
|
||
|
|
||
|
If you want to augment the results to be a full orthogonal
|
||
|
decomposition, you should augment $Q$ with an another orthogonal
|
||
|
column.
|
||
|
|
||
|
You are able to append an arbitrary standard basis that are linearly
|
||
|
independent to every other columns and you can run the Gram-Schmidt
|
||
|
process to make them augmented as orthogonal basis.
|
||
|
|
||
|
>>> Q_aug = Q.row_join(Matrix([0, 0, 1]))
|
||
|
>>> Q_aug = Q_aug.QRdecomposition()[0]
|
||
|
>>> Q_aug
|
||
|
Matrix([
|
||
|
[ 6/7, -69/175, 58/175],
|
||
|
[ 3/7, 158/175, -6/175],
|
||
|
[-2/7, 6/35, 33/35]])
|
||
|
>>> Q_aug.H * Q_aug
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
>>> Q_aug * Q_aug.H
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
|
||
|
Augmenting the $R$ matrix with zero row is straightforward.
|
||
|
|
||
|
>>> R_aug = R.col_join(Matrix([[0, 0, 0]]))
|
||
|
>>> R_aug
|
||
|
Matrix([
|
||
|
[14, 21, 0],
|
||
|
[ 0, 175, 0],
|
||
|
[ 0, 0, 0]])
|
||
|
>>> Q_aug * R_aug == A
|
||
|
True
|
||
|
|
||
|
A zero matrix example:
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> A = Matrix.zeros(3, 4)
|
||
|
>>> Q, R = A.QRdecomposition()
|
||
|
|
||
|
They may return matrices with zero rows and columns.
|
||
|
|
||
|
>>> Q
|
||
|
Matrix(3, 0, [])
|
||
|
>>> R
|
||
|
Matrix(0, 4, [])
|
||
|
>>> Q*R
|
||
|
Matrix([
|
||
|
[0, 0, 0, 0],
|
||
|
[0, 0, 0, 0],
|
||
|
[0, 0, 0, 0]])
|
||
|
|
||
|
As the same augmentation rule described above, $Q$ can be augmented
|
||
|
with columns of an identity matrix and $R$ can be augmented with
|
||
|
rows of a zero matrix.
|
||
|
|
||
|
>>> Q_aug = Q.row_join(Matrix.eye(3))
|
||
|
>>> R_aug = R.col_join(Matrix.zeros(3, 4))
|
||
|
>>> Q_aug * Q_aug.T
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
>>> R_aug
|
||
|
Matrix([
|
||
|
[0, 0, 0, 0],
|
||
|
[0, 0, 0, 0],
|
||
|
[0, 0, 0, 0]])
|
||
|
>>> Q_aug * R_aug == A
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.matrices.dense.DenseMatrix.cholesky
|
||
|
sympy.matrices.dense.DenseMatrix.LDLdecomposition
|
||
|
sympy.matrices.matrices.MatrixBase.LUdecomposition
|
||
|
QRsolve
|
||
|
"""
|
||
|
return _QRdecomposition_optional(M, normalize=True)
|
||
|
|
||
|
def _upper_hessenberg_decomposition(A):
|
||
|
"""Converts a matrix into Hessenberg matrix H.
|
||
|
|
||
|
Returns 2 matrices H, P s.t.
|
||
|
$P H P^{T} = A$, where H is an upper hessenberg matrix
|
||
|
and P is an orthogonal matrix
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> A = Matrix([
|
||
|
... [1,2,3],
|
||
|
... [-3,5,6],
|
||
|
... [4,-8,9],
|
||
|
... ])
|
||
|
>>> H, P = A.upper_hessenberg_decomposition()
|
||
|
>>> H
|
||
|
Matrix([
|
||
|
[1, 6/5, 17/5],
|
||
|
[5, 213/25, -134/25],
|
||
|
[0, 216/25, 137/25]])
|
||
|
>>> P
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, -3/5, 4/5],
|
||
|
[0, 4/5, 3/5]])
|
||
|
>>> P * H * P.H == A
|
||
|
True
|
||
|
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [#] https://mathworld.wolfram.com/HessenbergDecomposition.html
|
||
|
"""
|
||
|
|
||
|
M = A.as_mutable()
|
||
|
|
||
|
if not M.is_square:
|
||
|
raise NonSquareMatrixError("Matrix must be square.")
|
||
|
|
||
|
n = M.cols
|
||
|
P = M.eye(n)
|
||
|
H = M
|
||
|
|
||
|
for j in range(n - 2):
|
||
|
|
||
|
u = H[j + 1:, j]
|
||
|
|
||
|
if u[1:, :].is_zero_matrix:
|
||
|
continue
|
||
|
|
||
|
if sign(u[0]) != 0:
|
||
|
u[0] = u[0] + sign(u[0]) * u.norm()
|
||
|
else:
|
||
|
u[0] = u[0] + u.norm()
|
||
|
|
||
|
v = u / u.norm()
|
||
|
|
||
|
H[j + 1:, :] = H[j + 1:, :] - 2 * v * (v.H * H[j + 1:, :])
|
||
|
H[:, j + 1:] = H[:, j + 1:] - (H[:, j + 1:] * (2 * v)) * v.H
|
||
|
P[:, j + 1:] = P[:, j + 1:] - (P[:, j + 1:] * (2 * v)) * v.H
|
||
|
|
||
|
return H, P
|