192 lines
4.5 KiB
Python
192 lines
4.5 KiB
Python
|
# mypy: ignore-errors
|
||
|
|
||
|
"""Wrapper to mimic (parts of) np.random API surface.
|
||
|
|
||
|
NumPy has strict guarantees on reproducibility etc; here we don't give any.
|
||
|
|
||
|
Q: default dtype is float64 in numpy
|
||
|
|
||
|
"""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import functools
|
||
|
from math import sqrt
|
||
|
from typing import Optional
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from . import _dtypes_impl, _util
|
||
|
from ._normalizations import array_or_scalar, ArrayLike, normalizer
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"seed",
|
||
|
"random_sample",
|
||
|
"sample",
|
||
|
"random",
|
||
|
"rand",
|
||
|
"randn",
|
||
|
"normal",
|
||
|
"choice",
|
||
|
"randint",
|
||
|
"shuffle",
|
||
|
"uniform",
|
||
|
]
|
||
|
|
||
|
|
||
|
def use_numpy_random():
|
||
|
# local import to avoid ref cycles
|
||
|
import torch._dynamo.config as config
|
||
|
|
||
|
return config.use_numpy_random_stream
|
||
|
|
||
|
|
||
|
def deco_stream(func):
|
||
|
@functools.wraps(func)
|
||
|
def inner(*args, **kwds):
|
||
|
if not use_numpy_random():
|
||
|
return func(*args, **kwds)
|
||
|
else:
|
||
|
import numpy
|
||
|
|
||
|
from ._ndarray import ndarray
|
||
|
|
||
|
f = getattr(numpy.random, func.__name__)
|
||
|
|
||
|
# numpy funcs accept numpy ndarrays, unwrap
|
||
|
args = tuple(
|
||
|
arg.tensor.numpy() if isinstance(arg, ndarray) else arg for arg in args
|
||
|
)
|
||
|
kwds = {
|
||
|
key: val.tensor.numpy() if isinstance(val, ndarray) else val
|
||
|
for key, val in kwds.items()
|
||
|
}
|
||
|
|
||
|
value = f(*args, **kwds)
|
||
|
|
||
|
# `value` can be either numpy.ndarray or python scalar (or None)
|
||
|
if isinstance(value, numpy.ndarray):
|
||
|
value = ndarray(torch.as_tensor(value))
|
||
|
|
||
|
return value
|
||
|
|
||
|
return inner
|
||
|
|
||
|
|
||
|
@deco_stream
|
||
|
def seed(seed=None):
|
||
|
if seed is not None:
|
||
|
torch.random.manual_seed(seed)
|
||
|
|
||
|
|
||
|
@deco_stream
|
||
|
def random_sample(size=None):
|
||
|
if size is None:
|
||
|
size = ()
|
||
|
dtype = _dtypes_impl.default_dtypes().float_dtype
|
||
|
values = torch.empty(size, dtype=dtype).uniform_()
|
||
|
return array_or_scalar(values, return_scalar=size == ())
|
||
|
|
||
|
|
||
|
def rand(*size):
|
||
|
if size == ():
|
||
|
size = None
|
||
|
return random_sample(size)
|
||
|
|
||
|
|
||
|
sample = random_sample
|
||
|
random = random_sample
|
||
|
|
||
|
|
||
|
@deco_stream
|
||
|
def uniform(low=0.0, high=1.0, size=None):
|
||
|
if size is None:
|
||
|
size = ()
|
||
|
dtype = _dtypes_impl.default_dtypes().float_dtype
|
||
|
values = torch.empty(size, dtype=dtype).uniform_(low, high)
|
||
|
return array_or_scalar(values, return_scalar=size == ())
|
||
|
|
||
|
|
||
|
@deco_stream
|
||
|
def randn(*size):
|
||
|
dtype = _dtypes_impl.default_dtypes().float_dtype
|
||
|
values = torch.randn(size, dtype=dtype)
|
||
|
return array_or_scalar(values, return_scalar=size == ())
|
||
|
|
||
|
|
||
|
@deco_stream
|
||
|
def normal(loc=0.0, scale=1.0, size=None):
|
||
|
if size is None:
|
||
|
size = ()
|
||
|
dtype = _dtypes_impl.default_dtypes().float_dtype
|
||
|
values = torch.empty(size, dtype=dtype).normal_(loc, scale)
|
||
|
return array_or_scalar(values, return_scalar=size == ())
|
||
|
|
||
|
|
||
|
@deco_stream
|
||
|
def shuffle(x):
|
||
|
# no @normalizer because we do not cast e.g. lists to tensors
|
||
|
from ._ndarray import ndarray
|
||
|
|
||
|
if isinstance(x, torch.Tensor):
|
||
|
tensor = x
|
||
|
elif isinstance(x, ndarray):
|
||
|
tensor = x.tensor
|
||
|
else:
|
||
|
raise NotImplementedError("We do not random.shuffle lists in-place")
|
||
|
|
||
|
perm = torch.randperm(tensor.shape[0])
|
||
|
xp = tensor[perm]
|
||
|
tensor.copy_(xp)
|
||
|
|
||
|
|
||
|
@deco_stream
|
||
|
def randint(low, high=None, size=None):
|
||
|
if size is None:
|
||
|
size = ()
|
||
|
if not isinstance(size, (tuple, list)):
|
||
|
size = (size,)
|
||
|
if high is None:
|
||
|
low, high = 0, low
|
||
|
values = torch.randint(low, high, size=size)
|
||
|
return array_or_scalar(values, int, return_scalar=size == ())
|
||
|
|
||
|
|
||
|
@deco_stream
|
||
|
@normalizer
|
||
|
def choice(a: ArrayLike, size=None, replace=True, p: Optional[ArrayLike] = None):
|
||
|
# https://stackoverflow.com/questions/59461811/random-choice-with-pytorch
|
||
|
if a.numel() == 1:
|
||
|
a = torch.arange(a)
|
||
|
|
||
|
# TODO: check a.dtype is integer -- cf np.random.choice(3.4) which raises
|
||
|
|
||
|
# number of draws
|
||
|
if size is None:
|
||
|
num_el = 1
|
||
|
elif _util.is_sequence(size):
|
||
|
num_el = 1
|
||
|
for el in size:
|
||
|
num_el *= el
|
||
|
else:
|
||
|
num_el = size
|
||
|
|
||
|
# prepare the probabilities
|
||
|
if p is None:
|
||
|
p = torch.ones_like(a) / a.shape[0]
|
||
|
|
||
|
# cf https://github.com/numpy/numpy/blob/main/numpy/random/mtrand.pyx#L973
|
||
|
atol = sqrt(torch.finfo(p.dtype).eps)
|
||
|
if abs(p.sum() - 1.0) > atol:
|
||
|
raise ValueError("probabilities do not sum to 1.")
|
||
|
|
||
|
# actually sample
|
||
|
indices = torch.multinomial(p, num_el, replacement=replace)
|
||
|
|
||
|
if _util.is_sequence(size):
|
||
|
indices = indices.reshape(size)
|
||
|
|
||
|
samples = a[indices]
|
||
|
|
||
|
return samples
|