Traktor/myenv/Lib/site-packages/torch/_vmap_internals.py

238 lines
9.2 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
import functools
import warnings
from typing import Any, Callable, List, Optional, Tuple, Union
import torch
from torch import Tensor
from torch.utils._pytree import _broadcast_to_and_flatten, tree_flatten, tree_unflatten
in_dims_t = Union[int, Tuple]
out_dims_t = Union[int, Tuple[int, ...]]
# Checks that all args-to-be-batched have the same batch dim size
def _validate_and_get_batch_size(
flat_in_dims: List[Optional[int]], flat_args: List
) -> int:
batch_sizes = [
arg.size(in_dim)
for in_dim, arg in zip(flat_in_dims, flat_args)
if in_dim is not None
]
if batch_sizes and any(size != batch_sizes[0] for size in batch_sizes):
raise ValueError(
f"vmap: Expected all tensors to have the same size in the mapped "
f"dimension, got sizes {batch_sizes} for the mapped dimension"
)
return batch_sizes[0]
def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
if isinstance(batched_outputs, tuple):
return len(batched_outputs)
return 1
# If value is a tuple, check it has length `num_elements`.
# If value is not a tuple, make a tuple with `value` repeated `num_elements` times
def _as_tuple(
value: Any, num_elements: int, error_message_lambda: Callable[[], str]
) -> Tuple:
if not isinstance(value, tuple):
return (value,) * num_elements
if len(value) != num_elements:
raise ValueError(error_message_lambda())
return value
# Creates BatchedTensors for every Tensor in arg that should be batched.
# Returns the (potentially) batched arguments and the batch_size.
def _create_batched_inputs(
in_dims: in_dims_t, args: Tuple, vmap_level: int, func: Callable
) -> Tuple[Tuple, int]:
if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"expected `in_dims` to be int or a (potentially nested) tuple "
f"matching the structure of inputs, got: {type(in_dims)}."
)
if len(args) == 0:
raise ValueError(
f"vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add "
f"inputs, or you are trying to vmap over a function with no inputs. "
f"The latter is unsupported."
)
flat_args, args_spec = tree_flatten(args)
flat_in_dims = _broadcast_to_and_flatten(in_dims, args_spec)
if flat_in_dims is None:
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"in_dims is not compatible with the structure of `inputs`. "
f"in_dims has structure {tree_flatten(in_dims)[1]} but inputs "
f"has structure {args_spec}."
)
for arg, in_dim in zip(flat_args, flat_in_dims):
if not isinstance(in_dim, int) and in_dim is not None:
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"Got in_dim={in_dim} for an input but in_dim must be either "
f"an integer dimension or None."
)
if isinstance(in_dim, int) and not isinstance(arg, Tensor):
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"Got in_dim={in_dim} for an input but the input is of type "
f"{type(arg)}. We cannot vmap over non-Tensor arguments, "
f"please use None as the respective in_dim"
)
if in_dim is not None and (in_dim < 0 or in_dim >= arg.dim()):
raise ValueError(
f"vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): "
f"Got in_dim={in_dim} for some input, but that input is a Tensor "
f"of dimensionality {arg.dim()} so expected in_dim to satisfy "
f"0 <= in_dim < {arg.dim()}."
)
batch_size = _validate_and_get_batch_size(flat_in_dims, flat_args)
# See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
batched_inputs = [
arg if in_dim is None else torch._add_batch_dim(arg, in_dim, vmap_level)
for in_dim, arg in zip(flat_in_dims, flat_args)
]
return tree_unflatten(batched_inputs, args_spec), batch_size
# Undos the batching (and any batch dimensions) associated with the `vmap_level`.
def _unwrap_batched(
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
out_dims: out_dims_t,
vmap_level: int,
batch_size: int,
func: Callable,
allow_none_pass_through: bool = False,
) -> Tuple:
num_outputs = _num_outputs(batched_outputs)
out_dims_as_tuple = _as_tuple(
out_dims,
num_outputs,
lambda: f"vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must "
f"have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.",
)
# NOTE [Ignored _remove_batch_dim, _add_batch_dim]
# There is something wrong with our type bindings for functions that begin
# with '_', see #40397.
if isinstance(batched_outputs, Tensor):
out_dim = out_dims_as_tuple[0]
return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore[return-value]
if allow_none_pass_through:
return tuple(
(
torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
if out is not None
else None
)
for out, out_dim in zip(batched_outputs, out_dims_as_tuple)
)
else:
return tuple(
torch._remove_batch_dim(out, vmap_level, batch_size, out_dim)
for out, out_dim in zip(batched_outputs, out_dims_as_tuple)
)
# Checks that `fn` returned one or more Tensors and nothing else.
# NB: A python function that return multiple arguments returns a single tuple,
# so we are effectively checking that `outputs` is a single Tensor or a tuple of
# Tensors.
def _validate_outputs(outputs: Any, func: Callable) -> None:
if isinstance(outputs, Tensor):
return
if not isinstance(outputs, tuple):
raise ValueError(
f"vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return "
f"Tensors, got type {type(outputs)} as the return."
)
for idx, output in enumerate(outputs):
if isinstance(output, Tensor):
continue
raise ValueError(
f"vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return "
f"Tensors, got type {type(output)} for return {idx}."
)
def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
if isinstance(out_dims, int):
return
if not isinstance(out_dims, tuple) or not all(
isinstance(out_dim, int) for out_dim in out_dims
):
raise ValueError(
f"vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be "
f"an int or a tuple of int representing where in the outputs the "
f"vmapped dimension should appear."
)
def _get_name(func: Callable):
if hasattr(func, "__name__"):
return func.__name__
# Not all callables have __name__, in fact, only static functions/methods do.
# A callable created via functools.partial or an nn.Module, to name some
# examples, don't have a __name__.
return repr(func)
# vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
# sends those into func, and then unwraps the output BatchedTensors. Operations
# on BatchedTensors perform the batched operations that the user is asking for.
def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
"""
Please use torch.vmap instead of this API.
"""
warnings.warn(
"Please use torch.vmap instead of torch._vmap_internals.vmap. ",
stacklevel=2,
)
return _vmap(func, in_dims, out_dims)
# A version of vmap but without the initial "experimental prototype" warning
def _vmap(
func: Callable,
in_dims: in_dims_t = 0,
out_dims: out_dims_t = 0,
allow_none_pass_through: bool = False,
) -> Callable:
# The `allow_none_pass_through` argument is a temporary workaround may be removed.
# Currently it enables us to wrap the call in `autograd.grad` to the autograd engine,
# which may return None if any of the inputs are unused. See the issue discussing this:
# https://github.com/facebookresearch/functorch/issues/159.
@functools.wraps(func)
def wrapped(*args):
_check_out_dims_is_int_or_int_tuple(out_dims, func)
vmap_level = torch._C._vmapmode_increment_nesting()
try:
batched_inputs, batch_size = _create_batched_inputs(
in_dims, args, vmap_level, func
)
batched_outputs = func(*batched_inputs)
if not allow_none_pass_through:
_validate_outputs(batched_outputs, func)
return _unwrap_batched(
batched_outputs,
out_dims,
vmap_level,
batch_size,
func,
allow_none_pass_through=allow_none_pass_through,
)
finally:
torch._C._vmapmode_decrement_nesting()
return wrapped