126 lines
4.5 KiB
Python
126 lines
4.5 KiB
Python
|
from typing import Dict
|
||
|
|
||
|
import torch
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.distribution import Distribution
|
||
|
from torch.distributions.utils import _sum_rightmost
|
||
|
|
||
|
__all__ = ["Independent"]
|
||
|
|
||
|
|
||
|
class Independent(Distribution):
|
||
|
r"""
|
||
|
Reinterprets some of the batch dims of a distribution as event dims.
|
||
|
|
||
|
This is mainly useful for changing the shape of the result of
|
||
|
:meth:`log_prob`. For example to create a diagonal Normal distribution with
|
||
|
the same shape as a Multivariate Normal distribution (so they are
|
||
|
interchangeable), you can::
|
||
|
|
||
|
>>> from torch.distributions.multivariate_normal import MultivariateNormal
|
||
|
>>> from torch.distributions.normal import Normal
|
||
|
>>> loc = torch.zeros(3)
|
||
|
>>> scale = torch.ones(3)
|
||
|
>>> mvn = MultivariateNormal(loc, scale_tril=torch.diag(scale))
|
||
|
>>> [mvn.batch_shape, mvn.event_shape]
|
||
|
[torch.Size([]), torch.Size([3])]
|
||
|
>>> normal = Normal(loc, scale)
|
||
|
>>> [normal.batch_shape, normal.event_shape]
|
||
|
[torch.Size([3]), torch.Size([])]
|
||
|
>>> diagn = Independent(normal, 1)
|
||
|
>>> [diagn.batch_shape, diagn.event_shape]
|
||
|
[torch.Size([]), torch.Size([3])]
|
||
|
|
||
|
Args:
|
||
|
base_distribution (torch.distributions.distribution.Distribution): a
|
||
|
base distribution
|
||
|
reinterpreted_batch_ndims (int): the number of batch dims to
|
||
|
reinterpret as event dims
|
||
|
"""
|
||
|
arg_constraints: Dict[str, constraints.Constraint] = {}
|
||
|
|
||
|
def __init__(
|
||
|
self, base_distribution, reinterpreted_batch_ndims, validate_args=None
|
||
|
):
|
||
|
if reinterpreted_batch_ndims > len(base_distribution.batch_shape):
|
||
|
raise ValueError(
|
||
|
"Expected reinterpreted_batch_ndims <= len(base_distribution.batch_shape), "
|
||
|
f"actual {reinterpreted_batch_ndims} vs {len(base_distribution.batch_shape)}"
|
||
|
)
|
||
|
shape = base_distribution.batch_shape + base_distribution.event_shape
|
||
|
event_dim = reinterpreted_batch_ndims + len(base_distribution.event_shape)
|
||
|
batch_shape = shape[: len(shape) - event_dim]
|
||
|
event_shape = shape[len(shape) - event_dim :]
|
||
|
self.base_dist = base_distribution
|
||
|
self.reinterpreted_batch_ndims = reinterpreted_batch_ndims
|
||
|
super().__init__(batch_shape, event_shape, validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(Independent, _instance)
|
||
|
batch_shape = torch.Size(batch_shape)
|
||
|
new.base_dist = self.base_dist.expand(
|
||
|
batch_shape + self.event_shape[: self.reinterpreted_batch_ndims]
|
||
|
)
|
||
|
new.reinterpreted_batch_ndims = self.reinterpreted_batch_ndims
|
||
|
super(Independent, new).__init__(
|
||
|
batch_shape, self.event_shape, validate_args=False
|
||
|
)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
@property
|
||
|
def has_rsample(self):
|
||
|
return self.base_dist.has_rsample
|
||
|
|
||
|
@property
|
||
|
def has_enumerate_support(self):
|
||
|
if self.reinterpreted_batch_ndims > 0:
|
||
|
return False
|
||
|
return self.base_dist.has_enumerate_support
|
||
|
|
||
|
@constraints.dependent_property
|
||
|
def support(self):
|
||
|
result = self.base_dist.support
|
||
|
if self.reinterpreted_batch_ndims:
|
||
|
result = constraints.independent(result, self.reinterpreted_batch_ndims)
|
||
|
return result
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
return self.base_dist.mean
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
return self.base_dist.mode
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
return self.base_dist.variance
|
||
|
|
||
|
def sample(self, sample_shape=torch.Size()):
|
||
|
return self.base_dist.sample(sample_shape)
|
||
|
|
||
|
def rsample(self, sample_shape=torch.Size()):
|
||
|
return self.base_dist.rsample(sample_shape)
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
log_prob = self.base_dist.log_prob(value)
|
||
|
return _sum_rightmost(log_prob, self.reinterpreted_batch_ndims)
|
||
|
|
||
|
def entropy(self):
|
||
|
entropy = self.base_dist.entropy()
|
||
|
return _sum_rightmost(entropy, self.reinterpreted_batch_ndims)
|
||
|
|
||
|
def enumerate_support(self, expand=True):
|
||
|
if self.reinterpreted_batch_ndims > 0:
|
||
|
raise NotImplementedError(
|
||
|
"Enumeration over cartesian product is not implemented"
|
||
|
)
|
||
|
return self.base_dist.enumerate_support(expand=expand)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (
|
||
|
self.__class__.__name__
|
||
|
+ f"({self.base_dist}, {self.reinterpreted_batch_ndims})"
|
||
|
)
|