Traktor/myenv/Lib/site-packages/torch/distributions/kumaraswamy.py

98 lines
3.4 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
import torch
from torch import nan
from torch.distributions import constraints
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AffineTransform, PowerTransform
from torch.distributions.uniform import Uniform
from torch.distributions.utils import broadcast_all, euler_constant
__all__ = ["Kumaraswamy"]
def _moments(a, b, n):
"""
Computes nth moment of Kumaraswamy using using torch.lgamma
"""
arg1 = 1 + n / a
log_value = torch.lgamma(arg1) + torch.lgamma(b) - torch.lgamma(arg1 + b)
return b * torch.exp(log_value)
class Kumaraswamy(TransformedDistribution):
r"""
Samples from a Kumaraswamy distribution.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = Kumaraswamy(torch.tensor([1.0]), torch.tensor([1.0]))
>>> m.sample() # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1
tensor([ 0.1729])
Args:
concentration1 (float or Tensor): 1st concentration parameter of the distribution
(often referred to as alpha)
concentration0 (float or Tensor): 2nd concentration parameter of the distribution
(often referred to as beta)
"""
arg_constraints = {
"concentration1": constraints.positive,
"concentration0": constraints.positive,
}
support = constraints.unit_interval
has_rsample = True
def __init__(self, concentration1, concentration0, validate_args=None):
self.concentration1, self.concentration0 = broadcast_all(
concentration1, concentration0
)
finfo = torch.finfo(self.concentration0.dtype)
base_dist = Uniform(
torch.full_like(self.concentration0, 0),
torch.full_like(self.concentration0, 1),
validate_args=validate_args,
)
transforms = [
PowerTransform(exponent=self.concentration0.reciprocal()),
AffineTransform(loc=1.0, scale=-1.0),
PowerTransform(exponent=self.concentration1.reciprocal()),
]
super().__init__(base_dist, transforms, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Kumaraswamy, _instance)
new.concentration1 = self.concentration1.expand(batch_shape)
new.concentration0 = self.concentration0.expand(batch_shape)
return super().expand(batch_shape, _instance=new)
@property
def mean(self):
return _moments(self.concentration1, self.concentration0, 1)
@property
def mode(self):
# Evaluate in log-space for numerical stability.
log_mode = (
self.concentration0.reciprocal() * (-self.concentration0).log1p()
- (-self.concentration0 * self.concentration1).log1p()
)
log_mode[(self.concentration0 < 1) | (self.concentration1 < 1)] = nan
return log_mode.exp()
@property
def variance(self):
return _moments(self.concentration1, self.concentration0, 2) - torch.pow(
self.mean, 2
)
def entropy(self):
t1 = 1 - self.concentration1.reciprocal()
t0 = 1 - self.concentration0.reciprocal()
H0 = torch.digamma(self.concentration0 + 1) + euler_constant
return (
t0
+ t1 * H0
- torch.log(self.concentration1)
- torch.log(self.concentration0)
)