98 lines
3.4 KiB
Python
98 lines
3.4 KiB
Python
|
import torch
|
||
|
from torch import nan
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.transformed_distribution import TransformedDistribution
|
||
|
from torch.distributions.transforms import AffineTransform, PowerTransform
|
||
|
from torch.distributions.uniform import Uniform
|
||
|
from torch.distributions.utils import broadcast_all, euler_constant
|
||
|
|
||
|
__all__ = ["Kumaraswamy"]
|
||
|
|
||
|
|
||
|
def _moments(a, b, n):
|
||
|
"""
|
||
|
Computes nth moment of Kumaraswamy using using torch.lgamma
|
||
|
"""
|
||
|
arg1 = 1 + n / a
|
||
|
log_value = torch.lgamma(arg1) + torch.lgamma(b) - torch.lgamma(arg1 + b)
|
||
|
return b * torch.exp(log_value)
|
||
|
|
||
|
|
||
|
class Kumaraswamy(TransformedDistribution):
|
||
|
r"""
|
||
|
Samples from a Kumaraswamy distribution.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = Kumaraswamy(torch.tensor([1.0]), torch.tensor([1.0]))
|
||
|
>>> m.sample() # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1
|
||
|
tensor([ 0.1729])
|
||
|
|
||
|
Args:
|
||
|
concentration1 (float or Tensor): 1st concentration parameter of the distribution
|
||
|
(often referred to as alpha)
|
||
|
concentration0 (float or Tensor): 2nd concentration parameter of the distribution
|
||
|
(often referred to as beta)
|
||
|
"""
|
||
|
arg_constraints = {
|
||
|
"concentration1": constraints.positive,
|
||
|
"concentration0": constraints.positive,
|
||
|
}
|
||
|
support = constraints.unit_interval
|
||
|
has_rsample = True
|
||
|
|
||
|
def __init__(self, concentration1, concentration0, validate_args=None):
|
||
|
self.concentration1, self.concentration0 = broadcast_all(
|
||
|
concentration1, concentration0
|
||
|
)
|
||
|
finfo = torch.finfo(self.concentration0.dtype)
|
||
|
base_dist = Uniform(
|
||
|
torch.full_like(self.concentration0, 0),
|
||
|
torch.full_like(self.concentration0, 1),
|
||
|
validate_args=validate_args,
|
||
|
)
|
||
|
transforms = [
|
||
|
PowerTransform(exponent=self.concentration0.reciprocal()),
|
||
|
AffineTransform(loc=1.0, scale=-1.0),
|
||
|
PowerTransform(exponent=self.concentration1.reciprocal()),
|
||
|
]
|
||
|
super().__init__(base_dist, transforms, validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(Kumaraswamy, _instance)
|
||
|
new.concentration1 = self.concentration1.expand(batch_shape)
|
||
|
new.concentration0 = self.concentration0.expand(batch_shape)
|
||
|
return super().expand(batch_shape, _instance=new)
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
return _moments(self.concentration1, self.concentration0, 1)
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
# Evaluate in log-space for numerical stability.
|
||
|
log_mode = (
|
||
|
self.concentration0.reciprocal() * (-self.concentration0).log1p()
|
||
|
- (-self.concentration0 * self.concentration1).log1p()
|
||
|
)
|
||
|
log_mode[(self.concentration0 < 1) | (self.concentration1 < 1)] = nan
|
||
|
return log_mode.exp()
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
return _moments(self.concentration1, self.concentration0, 2) - torch.pow(
|
||
|
self.mean, 2
|
||
|
)
|
||
|
|
||
|
def entropy(self):
|
||
|
t1 = 1 - self.concentration1.reciprocal()
|
||
|
t0 = 1 - self.concentration0.reciprocal()
|
||
|
H0 = torch.digamma(self.concentration0 + 1) + euler_constant
|
||
|
return (
|
||
|
t0
|
||
|
+ t1 * H0
|
||
|
- torch.log(self.concentration1)
|
||
|
- torch.log(self.concentration0)
|
||
|
)
|