134 lines
4.6 KiB
Python
134 lines
4.6 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.distribution import Distribution
|
||
|
from torch.distributions.utils import (
|
||
|
broadcast_all,
|
||
|
lazy_property,
|
||
|
logits_to_probs,
|
||
|
probs_to_logits,
|
||
|
)
|
||
|
|
||
|
__all__ = ["NegativeBinomial"]
|
||
|
|
||
|
|
||
|
class NegativeBinomial(Distribution):
|
||
|
r"""
|
||
|
Creates a Negative Binomial distribution, i.e. distribution
|
||
|
of the number of successful independent and identical Bernoulli trials
|
||
|
before :attr:`total_count` failures are achieved. The probability
|
||
|
of success of each Bernoulli trial is :attr:`probs`.
|
||
|
|
||
|
Args:
|
||
|
total_count (float or Tensor): non-negative number of negative Bernoulli
|
||
|
trials to stop, although the distribution is still valid for real
|
||
|
valued count
|
||
|
probs (Tensor): Event probabilities of success in the half open interval [0, 1)
|
||
|
logits (Tensor): Event log-odds for probabilities of success
|
||
|
"""
|
||
|
arg_constraints = {
|
||
|
"total_count": constraints.greater_than_eq(0),
|
||
|
"probs": constraints.half_open_interval(0.0, 1.0),
|
||
|
"logits": constraints.real,
|
||
|
}
|
||
|
support = constraints.nonnegative_integer
|
||
|
|
||
|
def __init__(self, total_count, probs=None, logits=None, validate_args=None):
|
||
|
if (probs is None) == (logits is None):
|
||
|
raise ValueError(
|
||
|
"Either `probs` or `logits` must be specified, but not both."
|
||
|
)
|
||
|
if probs is not None:
|
||
|
(
|
||
|
self.total_count,
|
||
|
self.probs,
|
||
|
) = broadcast_all(total_count, probs)
|
||
|
self.total_count = self.total_count.type_as(self.probs)
|
||
|
else:
|
||
|
(
|
||
|
self.total_count,
|
||
|
self.logits,
|
||
|
) = broadcast_all(total_count, logits)
|
||
|
self.total_count = self.total_count.type_as(self.logits)
|
||
|
|
||
|
self._param = self.probs if probs is not None else self.logits
|
||
|
batch_shape = self._param.size()
|
||
|
super().__init__(batch_shape, validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(NegativeBinomial, _instance)
|
||
|
batch_shape = torch.Size(batch_shape)
|
||
|
new.total_count = self.total_count.expand(batch_shape)
|
||
|
if "probs" in self.__dict__:
|
||
|
new.probs = self.probs.expand(batch_shape)
|
||
|
new._param = new.probs
|
||
|
if "logits" in self.__dict__:
|
||
|
new.logits = self.logits.expand(batch_shape)
|
||
|
new._param = new.logits
|
||
|
super(NegativeBinomial, new).__init__(batch_shape, validate_args=False)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
def _new(self, *args, **kwargs):
|
||
|
return self._param.new(*args, **kwargs)
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
return self.total_count * torch.exp(self.logits)
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
return ((self.total_count - 1) * self.logits.exp()).floor().clamp(min=0.0)
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
return self.mean / torch.sigmoid(-self.logits)
|
||
|
|
||
|
@lazy_property
|
||
|
def logits(self):
|
||
|
return probs_to_logits(self.probs, is_binary=True)
|
||
|
|
||
|
@lazy_property
|
||
|
def probs(self):
|
||
|
return logits_to_probs(self.logits, is_binary=True)
|
||
|
|
||
|
@property
|
||
|
def param_shape(self):
|
||
|
return self._param.size()
|
||
|
|
||
|
@lazy_property
|
||
|
def _gamma(self):
|
||
|
# Note we avoid validating because self.total_count can be zero.
|
||
|
return torch.distributions.Gamma(
|
||
|
concentration=self.total_count,
|
||
|
rate=torch.exp(-self.logits),
|
||
|
validate_args=False,
|
||
|
)
|
||
|
|
||
|
def sample(self, sample_shape=torch.Size()):
|
||
|
with torch.no_grad():
|
||
|
rate = self._gamma.sample(sample_shape=sample_shape)
|
||
|
return torch.poisson(rate)
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
|
||
|
log_unnormalized_prob = self.total_count * F.logsigmoid(
|
||
|
-self.logits
|
||
|
) + value * F.logsigmoid(self.logits)
|
||
|
|
||
|
log_normalization = (
|
||
|
-torch.lgamma(self.total_count + value)
|
||
|
+ torch.lgamma(1.0 + value)
|
||
|
+ torch.lgamma(self.total_count)
|
||
|
)
|
||
|
# The case self.total_count == 0 and value == 0 has probability 1 but
|
||
|
# lgamma(0) is infinite. Handle this case separately using a function
|
||
|
# that does not modify tensors in place to allow Jit compilation.
|
||
|
log_normalization = log_normalization.masked_fill(
|
||
|
self.total_count + value == 0.0, 0.0
|
||
|
)
|
||
|
|
||
|
return log_unnormalized_prob - log_normalization
|