117 lines
3.8 KiB
Python
117 lines
3.8 KiB
Python
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch import inf, nan
|
||
|
from torch.distributions import Chi2, constraints
|
||
|
from torch.distributions.distribution import Distribution
|
||
|
from torch.distributions.utils import _standard_normal, broadcast_all
|
||
|
|
||
|
__all__ = ["StudentT"]
|
||
|
|
||
|
|
||
|
class StudentT(Distribution):
|
||
|
r"""
|
||
|
Creates a Student's t-distribution parameterized by degree of
|
||
|
freedom :attr:`df`, mean :attr:`loc` and scale :attr:`scale`.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = StudentT(torch.tensor([2.0]))
|
||
|
>>> m.sample() # Student's t-distributed with degrees of freedom=2
|
||
|
tensor([ 0.1046])
|
||
|
|
||
|
Args:
|
||
|
df (float or Tensor): degrees of freedom
|
||
|
loc (float or Tensor): mean of the distribution
|
||
|
scale (float or Tensor): scale of the distribution
|
||
|
"""
|
||
|
arg_constraints = {
|
||
|
"df": constraints.positive,
|
||
|
"loc": constraints.real,
|
||
|
"scale": constraints.positive,
|
||
|
}
|
||
|
support = constraints.real
|
||
|
has_rsample = True
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
m = self.loc.clone(memory_format=torch.contiguous_format)
|
||
|
m[self.df <= 1] = nan
|
||
|
return m
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
return self.loc
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
m = self.df.clone(memory_format=torch.contiguous_format)
|
||
|
m[self.df > 2] = (
|
||
|
self.scale[self.df > 2].pow(2)
|
||
|
* self.df[self.df > 2]
|
||
|
/ (self.df[self.df > 2] - 2)
|
||
|
)
|
||
|
m[(self.df <= 2) & (self.df > 1)] = inf
|
||
|
m[self.df <= 1] = nan
|
||
|
return m
|
||
|
|
||
|
def __init__(self, df, loc=0.0, scale=1.0, validate_args=None):
|
||
|
self.df, self.loc, self.scale = broadcast_all(df, loc, scale)
|
||
|
self._chi2 = Chi2(self.df)
|
||
|
batch_shape = self.df.size()
|
||
|
super().__init__(batch_shape, validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(StudentT, _instance)
|
||
|
batch_shape = torch.Size(batch_shape)
|
||
|
new.df = self.df.expand(batch_shape)
|
||
|
new.loc = self.loc.expand(batch_shape)
|
||
|
new.scale = self.scale.expand(batch_shape)
|
||
|
new._chi2 = self._chi2.expand(batch_shape)
|
||
|
super(StudentT, new).__init__(batch_shape, validate_args=False)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
def rsample(self, sample_shape=torch.Size()):
|
||
|
# NOTE: This does not agree with scipy implementation as much as other distributions.
|
||
|
# (see https://github.com/fritzo/notebooks/blob/master/debug-student-t.ipynb). Using DoubleTensor
|
||
|
# parameters seems to help.
|
||
|
|
||
|
# X ~ Normal(0, 1)
|
||
|
# Z ~ Chi2(df)
|
||
|
# Y = X / sqrt(Z / df) ~ StudentT(df)
|
||
|
shape = self._extended_shape(sample_shape)
|
||
|
X = _standard_normal(shape, dtype=self.df.dtype, device=self.df.device)
|
||
|
Z = self._chi2.rsample(sample_shape)
|
||
|
Y = X * torch.rsqrt(Z / self.df)
|
||
|
return self.loc + self.scale * Y
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
y = (value - self.loc) / self.scale
|
||
|
Z = (
|
||
|
self.scale.log()
|
||
|
+ 0.5 * self.df.log()
|
||
|
+ 0.5 * math.log(math.pi)
|
||
|
+ torch.lgamma(0.5 * self.df)
|
||
|
- torch.lgamma(0.5 * (self.df + 1.0))
|
||
|
)
|
||
|
return -0.5 * (self.df + 1.0) * torch.log1p(y**2.0 / self.df) - Z
|
||
|
|
||
|
def entropy(self):
|
||
|
lbeta = (
|
||
|
torch.lgamma(0.5 * self.df)
|
||
|
+ math.lgamma(0.5)
|
||
|
- torch.lgamma(0.5 * (self.df + 1))
|
||
|
)
|
||
|
return (
|
||
|
self.scale.log()
|
||
|
+ 0.5
|
||
|
* (self.df + 1)
|
||
|
* (torch.digamma(0.5 * (self.df + 1)) - torch.digamma(0.5 * self.df))
|
||
|
+ 0.5 * self.df.log()
|
||
|
+ lbeta
|
||
|
)
|