84 lines
3.0 KiB
Python
84 lines
3.0 KiB
Python
|
import torch
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.exponential import Exponential
|
||
|
from torch.distributions.gumbel import euler_constant
|
||
|
from torch.distributions.transformed_distribution import TransformedDistribution
|
||
|
from torch.distributions.transforms import AffineTransform, PowerTransform
|
||
|
from torch.distributions.utils import broadcast_all
|
||
|
|
||
|
__all__ = ["Weibull"]
|
||
|
|
||
|
|
||
|
class Weibull(TransformedDistribution):
|
||
|
r"""
|
||
|
Samples from a two-parameter Weibull distribution.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0]))
|
||
|
>>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1
|
||
|
tensor([ 0.4784])
|
||
|
|
||
|
Args:
|
||
|
scale (float or Tensor): Scale parameter of distribution (lambda).
|
||
|
concentration (float or Tensor): Concentration parameter of distribution (k/shape).
|
||
|
"""
|
||
|
arg_constraints = {
|
||
|
"scale": constraints.positive,
|
||
|
"concentration": constraints.positive,
|
||
|
}
|
||
|
support = constraints.positive
|
||
|
|
||
|
def __init__(self, scale, concentration, validate_args=None):
|
||
|
self.scale, self.concentration = broadcast_all(scale, concentration)
|
||
|
self.concentration_reciprocal = self.concentration.reciprocal()
|
||
|
base_dist = Exponential(
|
||
|
torch.ones_like(self.scale), validate_args=validate_args
|
||
|
)
|
||
|
transforms = [
|
||
|
PowerTransform(exponent=self.concentration_reciprocal),
|
||
|
AffineTransform(loc=0, scale=self.scale),
|
||
|
]
|
||
|
super().__init__(base_dist, transforms, validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(Weibull, _instance)
|
||
|
new.scale = self.scale.expand(batch_shape)
|
||
|
new.concentration = self.concentration.expand(batch_shape)
|
||
|
new.concentration_reciprocal = new.concentration.reciprocal()
|
||
|
base_dist = self.base_dist.expand(batch_shape)
|
||
|
transforms = [
|
||
|
PowerTransform(exponent=new.concentration_reciprocal),
|
||
|
AffineTransform(loc=0, scale=new.scale),
|
||
|
]
|
||
|
super(Weibull, new).__init__(base_dist, transforms, validate_args=False)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal))
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
return (
|
||
|
self.scale
|
||
|
* ((self.concentration - 1) / self.concentration)
|
||
|
** self.concentration.reciprocal()
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
return self.scale.pow(2) * (
|
||
|
torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal))
|
||
|
- torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal))
|
||
|
)
|
||
|
|
||
|
def entropy(self):
|
||
|
return (
|
||
|
euler_constant * (1 - self.concentration_reciprocal)
|
||
|
+ torch.log(self.scale * self.concentration_reciprocal)
|
||
|
+ 1
|
||
|
)
|