139 lines
3.5 KiB
C
139 lines
3.5 KiB
C
|
#pragma once
|
||
|
|
||
|
#include <ATen/EmptyTensor.h>
|
||
|
#include <ATen/Formatting.h>
|
||
|
#include <ATen/core/ATenGeneral.h>
|
||
|
#include <ATen/core/Generator.h>
|
||
|
#include <c10/core/ScalarType.h>
|
||
|
#include <c10/core/StorageImpl.h>
|
||
|
#include <c10/core/UndefinedTensorImpl.h>
|
||
|
#include <c10/util/ArrayRef.h>
|
||
|
#include <c10/util/Exception.h>
|
||
|
#include <c10/util/accumulate.h>
|
||
|
#include <c10/util/irange.h>
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <memory>
|
||
|
#include <numeric>
|
||
|
#include <sstream>
|
||
|
#include <typeinfo>
|
||
|
|
||
|
#define AT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
|
||
|
TypeName(const TypeName&) = delete; \
|
||
|
void operator=(const TypeName&) = delete
|
||
|
|
||
|
namespace at {
|
||
|
|
||
|
TORCH_API int _crash_if_asan(int);
|
||
|
|
||
|
// Converts a TensorList (i.e. ArrayRef<Tensor> to vector of TensorImpl*)
|
||
|
// NB: This is ONLY used by legacy TH bindings, and ONLY used by cat.
|
||
|
// Once cat is ported entirely to ATen this can be deleted!
|
||
|
static inline std::vector<TensorImpl*> checked_dense_tensor_list_unwrap(
|
||
|
ArrayRef<Tensor> tensors,
|
||
|
const char* name,
|
||
|
int pos,
|
||
|
c10::DeviceType device_type,
|
||
|
ScalarType scalar_type) {
|
||
|
std::vector<TensorImpl*> unwrapped;
|
||
|
unwrapped.reserve(tensors.size());
|
||
|
for (const auto i : c10::irange(tensors.size())) {
|
||
|
const auto& expr = tensors[i];
|
||
|
if (expr.layout() != Layout::Strided) {
|
||
|
AT_ERROR(
|
||
|
"Expected dense tensor but got ",
|
||
|
expr.layout(),
|
||
|
" for sequence element ",
|
||
|
i,
|
||
|
" in sequence argument at position #",
|
||
|
pos,
|
||
|
" '",
|
||
|
name,
|
||
|
"'");
|
||
|
}
|
||
|
if (expr.device().type() != device_type) {
|
||
|
AT_ERROR(
|
||
|
"Expected object of device type ",
|
||
|
device_type,
|
||
|
" but got device type ",
|
||
|
expr.device().type(),
|
||
|
" for sequence element ",
|
||
|
i,
|
||
|
" in sequence argument at position #",
|
||
|
pos,
|
||
|
" '",
|
||
|
name,
|
||
|
"'");
|
||
|
}
|
||
|
if (expr.scalar_type() != scalar_type) {
|
||
|
AT_ERROR(
|
||
|
"Expected object of scalar type ",
|
||
|
scalar_type,
|
||
|
" but got scalar type ",
|
||
|
expr.scalar_type(),
|
||
|
" for sequence element ",
|
||
|
i,
|
||
|
" in sequence argument at position #",
|
||
|
pos,
|
||
|
" '",
|
||
|
name,
|
||
|
"'");
|
||
|
}
|
||
|
unwrapped.emplace_back(expr.unsafeGetTensorImpl());
|
||
|
}
|
||
|
return unwrapped;
|
||
|
}
|
||
|
|
||
|
template <size_t N>
|
||
|
std::array<int64_t, N> check_intlist(
|
||
|
ArrayRef<int64_t> list,
|
||
|
const char* name,
|
||
|
int pos) {
|
||
|
if (list.empty()) {
|
||
|
// TODO: is this necessary? We used to treat nullptr-vs-not in IntList
|
||
|
// differently with strides as a way of faking optional.
|
||
|
list = {};
|
||
|
}
|
||
|
auto res = std::array<int64_t, N>();
|
||
|
if (list.size() == 1 && N > 1) {
|
||
|
res.fill(list[0]);
|
||
|
return res;
|
||
|
}
|
||
|
if (list.size() != N) {
|
||
|
AT_ERROR(
|
||
|
"Expected a list of ",
|
||
|
N,
|
||
|
" ints but got ",
|
||
|
list.size(),
|
||
|
" for argument #",
|
||
|
pos,
|
||
|
" '",
|
||
|
name,
|
||
|
"'");
|
||
|
}
|
||
|
std::copy_n(list.begin(), N, res.begin());
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
using at::detail::check_size_nonnegative;
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
template <typename T>
|
||
|
TORCH_API Tensor tensor_cpu(ArrayRef<T> values, const TensorOptions& options);
|
||
|
|
||
|
template <typename T>
|
||
|
TORCH_API Tensor
|
||
|
tensor_backend(ArrayRef<T> values, const TensorOptions& options);
|
||
|
|
||
|
template <typename T>
|
||
|
TORCH_API Tensor
|
||
|
tensor_complex_cpu(ArrayRef<T> values, const TensorOptions& options);
|
||
|
|
||
|
template <typename T>
|
||
|
TORCH_API Tensor
|
||
|
tensor_complex_backend(ArrayRef<T> values, const TensorOptions& options);
|
||
|
} // namespace detail
|
||
|
|
||
|
} // namespace at
|