1077 lines
42 KiB
Python
1077 lines
42 KiB
Python
|
import collections
|
||
|
import functools
|
||
|
import inspect
|
||
|
import sys
|
||
|
import textwrap
|
||
|
import types
|
||
|
import warnings
|
||
|
from typing import Dict, List, Set, Type
|
||
|
|
||
|
import torch
|
||
|
|
||
|
import torch._jit_internal as _jit_internal
|
||
|
from torch._sources import fake_range
|
||
|
from torch.jit._builtins import _find_builtin
|
||
|
from torch.jit._check import AttributeTypeIsSupportedChecker
|
||
|
from torch.jit._state import _add_script_class, _get_script_class, _python_cu
|
||
|
from torch.jit.frontend import (
|
||
|
get_class_properties,
|
||
|
get_default_args,
|
||
|
get_jit_class_def,
|
||
|
get_jit_def,
|
||
|
)
|
||
|
from torch.nn import Module
|
||
|
|
||
|
|
||
|
ScriptMethodStub = collections.namedtuple(
|
||
|
"ScriptMethodStub", ("resolution_callback", "def_", "original_method")
|
||
|
)
|
||
|
PropertyStub = collections.namedtuple("PropertyStub", ("resolution_callback", "def_"))
|
||
|
|
||
|
|
||
|
# TODO: there should be a more principled way of doing this.
|
||
|
ignored_attributes = [
|
||
|
"_version",
|
||
|
"_parameters",
|
||
|
"_buffers",
|
||
|
"_non_persistent_buffers_set",
|
||
|
"_backward_hooks",
|
||
|
"_backward_pre_hooks",
|
||
|
"_forward_hooks",
|
||
|
"_forward_hooks_with_kwargs",
|
||
|
"_forward_pre_hooks",
|
||
|
"_forward_pre_hooks_with_kwargs",
|
||
|
"_forward_hooks_always_called",
|
||
|
"_state_dict_hooks",
|
||
|
"_state_dict_pre_hooks",
|
||
|
"_load_state_dict_pre_hooks",
|
||
|
"_load_state_dict_post_hooks",
|
||
|
"_modules",
|
||
|
"_initializing",
|
||
|
"dump_patches",
|
||
|
]
|
||
|
|
||
|
|
||
|
def _compile_and_register_class(obj, rcb, qualified_name):
|
||
|
script_class = _get_script_class(obj)
|
||
|
|
||
|
if not script_class:
|
||
|
ast = get_jit_class_def(obj, obj.__name__)
|
||
|
defaults = torch.jit.frontend.get_default_args_for_class(obj)
|
||
|
script_class = torch._C._jit_script_class_compile(
|
||
|
qualified_name, ast, defaults, rcb
|
||
|
)
|
||
|
_add_script_class(obj, script_class)
|
||
|
|
||
|
return script_class
|
||
|
|
||
|
|
||
|
def make_stub(func, name):
|
||
|
rcb = _jit_internal.createResolutionCallbackFromClosure(func)
|
||
|
ast = get_jit_def(func, name, self_name="RecursiveScriptModule")
|
||
|
return ScriptMethodStub(rcb, ast, func)
|
||
|
|
||
|
|
||
|
def make_stub_from_method(nn_module, method_name):
|
||
|
func = getattr(nn_module, method_name)
|
||
|
if isinstance(func, ScriptMethodStub):
|
||
|
return func
|
||
|
# Make sure the name present in the resulting AST will match the name
|
||
|
# requested here. The only time they don't match is if you do something
|
||
|
# like:
|
||
|
# def _forward(self):
|
||
|
# pass
|
||
|
# forward = _forward
|
||
|
# In this case, the actual function object will have the name `_forward`,
|
||
|
# even though we requested a stub for `forward`.
|
||
|
return make_stub(func, method_name)
|
||
|
|
||
|
|
||
|
def make_stubs_from_exported_methods(mod):
|
||
|
stubs = []
|
||
|
for name in dir(mod):
|
||
|
item = getattr(mod, name, None)
|
||
|
if (
|
||
|
_jit_internal.get_torchscript_modifier(item)
|
||
|
is _jit_internal.FunctionModifiers.EXPORT
|
||
|
):
|
||
|
stubs.append(make_stub_from_method(mod, name))
|
||
|
|
||
|
return stubs
|
||
|
|
||
|
|
||
|
def jit_ignored_properties(module):
|
||
|
user_annotated_ignored_attributes = getattr(
|
||
|
module, "__jit_ignored_attributes__", list()
|
||
|
)
|
||
|
|
||
|
def get_properties_names(module):
|
||
|
return {k for k, v in vars(module).items() if isinstance(v, property)}
|
||
|
|
||
|
properties = get_properties_names(type(module))
|
||
|
user_annoted_ignored_properties = set()
|
||
|
|
||
|
for ignored_attr in user_annotated_ignored_attributes:
|
||
|
if ignored_attr in properties:
|
||
|
user_annoted_ignored_properties.add(ignored_attr)
|
||
|
return user_annoted_ignored_properties
|
||
|
|
||
|
|
||
|
# base types that can be constants
|
||
|
# in addition, tuples and lists of these base types are also considered constants
|
||
|
# If you edit this list, then you also need to edit the handlers in
|
||
|
# ConstantValue in jit/script/init.cpp
|
||
|
_constant_types = (
|
||
|
bool,
|
||
|
float,
|
||
|
int,
|
||
|
str,
|
||
|
type(None),
|
||
|
torch.device,
|
||
|
torch.layout,
|
||
|
torch.dtype,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _get_valid_constant(attr, v, owner_type):
|
||
|
if isinstance(v, _constant_types):
|
||
|
return v
|
||
|
elif isinstance(v, (tuple, list)):
|
||
|
return tuple(_get_valid_constant(attr, x, owner_type) for x in v)
|
||
|
constants = ", ".join(torch.typename(typ) for typ in _constant_types)
|
||
|
raise TypeError(
|
||
|
textwrap.dedent(
|
||
|
f"""
|
||
|
'{torch.typename(type(v))}' object in attribute '{owner_type}.{attr}' is not a valid constant.
|
||
|
Valid constants are:
|
||
|
1. a nn.ModuleList
|
||
|
2. a value of type {{{constants}}}
|
||
|
3. a list or tuple of (2)
|
||
|
"""
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
class SourceContext(torch._C._jit_tree_views.SourceRangeFactory):
|
||
|
def __init__(self, source, filename, file_lineno, leading_whitespace_len):
|
||
|
super().__init__(source, filename, file_lineno, leading_whitespace_len)
|
||
|
|
||
|
|
||
|
def get_annotations(obj):
|
||
|
if sys.version_info < (3, 10):
|
||
|
return getattr(obj, "__annotations__", {})
|
||
|
# In Python-3.10+ it is recommended to use inspect.get_annotations
|
||
|
# See https://docs.python.org/3.10/howto/annotations.html
|
||
|
# But also, in 3.10 annotations from base class are not inherited
|
||
|
# by unannotated derived one, so they must be manually extracted
|
||
|
annotations = inspect.get_annotations(obj)
|
||
|
if annotations:
|
||
|
return annotations
|
||
|
|
||
|
def get_cls_annotations(cls):
|
||
|
cls_annotations = inspect.get_annotations(cls)
|
||
|
if cls_annotations:
|
||
|
return cls_annotations
|
||
|
for base in cls.__bases__:
|
||
|
cls_annotations = get_cls_annotations(base)
|
||
|
if cls_annotations:
|
||
|
return cls_annotations
|
||
|
return {}
|
||
|
|
||
|
cls = obj if isinstance(obj, type) else type(obj)
|
||
|
return get_cls_annotations(cls)
|
||
|
|
||
|
|
||
|
def infer_concrete_type_builder(nn_module, share_types=True):
|
||
|
"""
|
||
|
Build a ConcreteModuleTypeBuilder from an nn.Module.
|
||
|
|
||
|
This ConcreteModuleType doesn't have a JIT type associated with it yet, it
|
||
|
must be filled in by the caller.
|
||
|
"""
|
||
|
concrete_type_builder = torch._C.ConcreteModuleTypeBuilder(type(nn_module))
|
||
|
if isinstance(nn_module, (torch.nn.ModuleDict)):
|
||
|
concrete_type_builder.set_module_dict()
|
||
|
if isinstance(nn_module, (torch.nn.ModuleList, torch.nn.Sequential)):
|
||
|
concrete_type_builder.set_module_list()
|
||
|
if isinstance(nn_module, (torch.nn.ParameterList)):
|
||
|
concrete_type_builder.set_parameter_list()
|
||
|
if isinstance(nn_module, (torch.nn.ParameterDict)):
|
||
|
concrete_type_builder.set_parameter_dict()
|
||
|
|
||
|
class_annotations = get_annotations(nn_module)
|
||
|
if isinstance(nn_module, (torch.ao.quantization.QuantWrapper)):
|
||
|
class_annotations = {}
|
||
|
|
||
|
# Get user-annotated ignored attributes.
|
||
|
user_annotated_ignored_attributes = getattr(
|
||
|
nn_module, "__jit_ignored_attributes__", list()
|
||
|
)
|
||
|
concrete_type_builder.add_ignored_attributes(user_annotated_ignored_attributes)
|
||
|
ignored_properties = jit_ignored_properties(nn_module)
|
||
|
|
||
|
# try to infer the type from type annotation or from the object itself
|
||
|
def infer_type(name, item):
|
||
|
# The forward function from Module is special; never use this annotations; we
|
||
|
# need to infer type directly using JIT. I originally wanted to write
|
||
|
# this test as isinstance(class_annotations[name], Callable) but
|
||
|
# isinstance on typing things doesn't seem to work: isinstance(list, Callable)
|
||
|
# is also true!
|
||
|
inferred = False
|
||
|
try:
|
||
|
if (
|
||
|
name in class_annotations
|
||
|
and class_annotations[name]
|
||
|
!= torch.nn.Module.__annotations__["forward"]
|
||
|
):
|
||
|
ann_to_type = torch.jit.annotations.ann_to_type(
|
||
|
class_annotations[name], fake_range()
|
||
|
)
|
||
|
attr_type = torch._C.InferredType(ann_to_type)
|
||
|
elif isinstance(item, torch.jit.Attribute):
|
||
|
ann_to_type = torch.jit.annotations.ann_to_type(item.type, fake_range())
|
||
|
attr_type = torch._C.InferredType(ann_to_type)
|
||
|
else:
|
||
|
attr_type = torch._C._jit_try_infer_type(item)
|
||
|
inferred = True
|
||
|
except RuntimeError as re:
|
||
|
raise RuntimeError(f"Error inferring type for {name}: {item}: {re}") from re
|
||
|
|
||
|
return attr_type, inferred
|
||
|
|
||
|
added_names = set()
|
||
|
|
||
|
for name, item in nn_module._parameters.items():
|
||
|
if name in user_annotated_ignored_attributes:
|
||
|
continue
|
||
|
|
||
|
assert item is None or isinstance(item, torch.Tensor)
|
||
|
attr_type, _ = infer_type(name, item)
|
||
|
# We currently have the invariant in various places in our code
|
||
|
# that parameters must be Tensors. However, the nn.Module API also
|
||
|
# allows NoneType parameters. These parameters are not returned as
|
||
|
# part of `parameters()` and its variants, but are available
|
||
|
# through direct attribute access.
|
||
|
concrete_type_builder.add_attribute(name, attr_type.type(), True, False)
|
||
|
added_names.add(name)
|
||
|
|
||
|
for name, item in nn_module._buffers.items():
|
||
|
if name in user_annotated_ignored_attributes:
|
||
|
continue
|
||
|
|
||
|
assert item is None or isinstance(item, torch.Tensor)
|
||
|
attr_type, _ = infer_type(name, item)
|
||
|
concrete_type_builder.add_attribute(name, attr_type.type(), False, True)
|
||
|
added_names.add(name)
|
||
|
|
||
|
for name, item in nn_module._modules.items():
|
||
|
if name in user_annotated_ignored_attributes:
|
||
|
continue
|
||
|
|
||
|
attr_type, _ = infer_type(name, item)
|
||
|
if item is None:
|
||
|
# Modules can be None. We don't have direct support for optional
|
||
|
# Modules, so the register it as an NoneType attribute instead.
|
||
|
concrete_type_builder.add_attribute(name, attr_type.type(), False, False)
|
||
|
continue
|
||
|
if attr_type.success():
|
||
|
assert attr_type.type().is_interface_type()
|
||
|
# if the type can be inferred, it should be a module interface type
|
||
|
sub_concrete_type = torch._C.ConcreteModuleType.from_jit_type(
|
||
|
attr_type.type()
|
||
|
)
|
||
|
else:
|
||
|
# otherwise we get the concrete module type for item and add it to concrete_type
|
||
|
sub_concrete_type = get_module_concrete_type(item, share_types)
|
||
|
concrete_type_builder.add_module(name, sub_concrete_type)
|
||
|
|
||
|
added_names.add(name)
|
||
|
|
||
|
# populate constants_set
|
||
|
constants_set = set(getattr(nn_module, "__constants__", ()))
|
||
|
|
||
|
# Constants annotated via `Final[T]` rather than being added to `__constants__`
|
||
|
for name, ann in class_annotations.items():
|
||
|
if torch._jit_internal.is_final(ann):
|
||
|
constants_set.add(name)
|
||
|
|
||
|
for name in constants_set:
|
||
|
if name in added_names:
|
||
|
# TODO: We should really error in this case, but its bc-breaking so
|
||
|
# we need to warn for at least one release
|
||
|
if name in nn_module._modules:
|
||
|
hint = "submodule"
|
||
|
elif name in nn_module._buffers:
|
||
|
hint = "buffer"
|
||
|
elif name in nn_module._parameters:
|
||
|
hint = "parameter"
|
||
|
else:
|
||
|
raise AssertionError(
|
||
|
"added_names must be submodule, parameter, or buffer"
|
||
|
)
|
||
|
|
||
|
warnings.warn(
|
||
|
f"'{name}' was found in ScriptModule constants, "
|
||
|
f" but it is a non-constant {hint}. Consider removing it."
|
||
|
)
|
||
|
continue
|
||
|
if not hasattr(nn_module, name):
|
||
|
# TODO: We should really error in this case, but its bc-breaking so
|
||
|
# we need to warn for at least one release
|
||
|
warnings.warn(
|
||
|
f"'{name}' was found in ScriptModule constants, "
|
||
|
"but was not actually set in __init__. "
|
||
|
"Consider removing it."
|
||
|
)
|
||
|
continue
|
||
|
value = getattr(nn_module, name)
|
||
|
concrete_type_builder.add_constant(
|
||
|
name, _get_valid_constant(name, value, type(nn_module).__name__)
|
||
|
)
|
||
|
added_names.add(name)
|
||
|
|
||
|
# populate overloads
|
||
|
overloads = getattr(nn_module, "__overloads__", {})
|
||
|
# update with any annotated overloads
|
||
|
overloads.update(
|
||
|
get_overload_name_mapping(
|
||
|
get_overload_annotations(nn_module, ignored_properties)
|
||
|
)
|
||
|
)
|
||
|
for name, overloaded_names in overloads.items():
|
||
|
concrete_type_builder.add_overload(name, overloaded_names)
|
||
|
|
||
|
for name, value in nn_module.__dict__.items():
|
||
|
if name in ignored_attributes or name.startswith("__"):
|
||
|
# Python objects have lots of random attributes attached to them;
|
||
|
# PyTorch adds a few more. Prevent these from getting compiled.
|
||
|
continue
|
||
|
|
||
|
if name in user_annotated_ignored_attributes:
|
||
|
continue
|
||
|
|
||
|
if name in added_names:
|
||
|
# Don't re-add anything we already added
|
||
|
continue
|
||
|
|
||
|
isoverloadpacket = isinstance(value, torch._ops.OpOverloadPacket)
|
||
|
if isoverloadpacket:
|
||
|
value = value.op
|
||
|
# Handle Python function attributes
|
||
|
if inspect.isfunction(value):
|
||
|
try:
|
||
|
scripted_fn = torch.jit.script(value)
|
||
|
concrete_type_builder.add_function_attribute(
|
||
|
name, torch._C._jit_try_infer_type(scripted_fn).type(), value
|
||
|
)
|
||
|
except Exception as e:
|
||
|
# If we fail to script the function, it isn't a hard error.
|
||
|
# Instead, we will add it to the list of attributes we failed
|
||
|
# to convert, with the compilation error.
|
||
|
hint = (
|
||
|
"(This function exists as an attribute on the Python module, "
|
||
|
"but we failed to compile it to a TorchScript function. "
|
||
|
f"\nThe error stack is reproduced here:\n{e}"
|
||
|
)
|
||
|
concrete_type_builder.add_failed_attribute(name, hint)
|
||
|
pass
|
||
|
|
||
|
continue
|
||
|
|
||
|
# Handle calls to builtin functions (either bespoke builtins from torch.jit._builtins or
|
||
|
# a call to an aten function like torch.add)
|
||
|
builtin_symbol_name = _find_builtin(value)
|
||
|
if builtin_symbol_name:
|
||
|
concrete_type_builder.add_builtin_function(name, builtin_symbol_name)
|
||
|
continue
|
||
|
|
||
|
# Handle Script function attributes
|
||
|
if isinstance(value, torch.jit.ScriptFunction):
|
||
|
concrete_type_builder.add_function_attribute(
|
||
|
name, torch._C._jit_try_infer_type(value).type(), value
|
||
|
)
|
||
|
continue
|
||
|
|
||
|
# If we got here, this is a regular "data" attribute, add it to the concrete type
|
||
|
attr_type, inferred = infer_type(name, value)
|
||
|
if attr_type.success():
|
||
|
concrete_type_builder.add_attribute(name, attr_type.type(), False, False)
|
||
|
else:
|
||
|
# TODO: could add more detail here. For example, what the user should do
|
||
|
# when the pytype is `list` or `NoneType`
|
||
|
inferred_msg = (
|
||
|
"Its type was inferred; try adding a type annotation for the attribute."
|
||
|
if inferred
|
||
|
else ""
|
||
|
)
|
||
|
additional_info = f"{attr_type.reason()}. {inferred_msg}"
|
||
|
hint = (
|
||
|
"(This attribute exists on the Python module, "
|
||
|
f"but we failed to convert Python type: '{torch.typename(type(value))}' "
|
||
|
f"to a TorchScript type. {additional_info})"
|
||
|
)
|
||
|
concrete_type_builder.add_failed_attribute(name, hint)
|
||
|
|
||
|
# add hooks to concrete type
|
||
|
for hook in nn_module._forward_hooks.values():
|
||
|
concrete_type_builder.add_forward_hook(hook)
|
||
|
for pre_hook in nn_module._forward_pre_hooks.values():
|
||
|
concrete_type_builder.add_forward_pre_hook(pre_hook)
|
||
|
|
||
|
return concrete_type_builder
|
||
|
|
||
|
|
||
|
class ConcreteTypeStore:
|
||
|
type_store: Dict[Type[Module], List[torch._C.ConcreteModuleType]]
|
||
|
methods_compiled: Set[torch._C.ConcreteModuleType]
|
||
|
|
||
|
def __init__(self):
|
||
|
# Python module type => List[ConcreteModuleType)]
|
||
|
self.type_store = {}
|
||
|
# ConcreteTypes that have had their methods already compiled
|
||
|
self.methods_compiled = set()
|
||
|
|
||
|
def get_or_create_concrete_type(self, nn_module):
|
||
|
"""Infer a ConcreteType from this `nn.Module` instance. Underlying JIT types are re-used if possible."""
|
||
|
concrete_type_builder = infer_concrete_type_builder(nn_module)
|
||
|
|
||
|
nn_module_type = type(nn_module)
|
||
|
if nn_module_type not in self.type_store:
|
||
|
self.type_store[nn_module_type] = []
|
||
|
|
||
|
# Search the type store for an already-available JIT type
|
||
|
known_types = self.type_store[nn_module_type]
|
||
|
for known_type in known_types:
|
||
|
if known_type.equals(concrete_type_builder):
|
||
|
return known_type
|
||
|
|
||
|
# We didn't find anything; generate a new JIT type from this concrete type
|
||
|
concrete_type = concrete_type_builder.build()
|
||
|
self.type_store[nn_module_type].append(concrete_type)
|
||
|
return concrete_type
|
||
|
|
||
|
|
||
|
concrete_type_store = ConcreteTypeStore()
|
||
|
|
||
|
|
||
|
def create_methods_and_properties_from_stubs(
|
||
|
concrete_type, method_stubs, property_stubs
|
||
|
):
|
||
|
method_defs = [m.def_ for m in method_stubs]
|
||
|
method_rcbs = [m.resolution_callback for m in method_stubs]
|
||
|
method_defaults = [get_default_args(m.original_method) for m in method_stubs]
|
||
|
|
||
|
property_defs = [p.def_ for p in property_stubs]
|
||
|
property_rcbs = [p.resolution_callback for p in property_stubs]
|
||
|
|
||
|
concrete_type._create_methods_and_properties(
|
||
|
property_defs, property_rcbs, method_defs, method_rcbs, method_defaults
|
||
|
)
|
||
|
|
||
|
|
||
|
def create_hooks_from_stubs(concrete_type, hook_stubs, pre_hook_stubs):
|
||
|
hook_defs = [h.def_ for h in hook_stubs]
|
||
|
hook_rcbs = [h.resolution_callback for h in hook_stubs]
|
||
|
|
||
|
pre_hook_defs = [h.def_ for h in pre_hook_stubs]
|
||
|
pre_hook_rcbs = [h.resolution_callback for h in pre_hook_stubs]
|
||
|
|
||
|
concrete_type._create_hooks(hook_defs, hook_rcbs, pre_hook_defs, pre_hook_rcbs)
|
||
|
|
||
|
|
||
|
def get_module_concrete_type(nn_module, share_types=True):
|
||
|
"""
|
||
|
Get a concrete type for nn_modules.
|
||
|
|
||
|
If share_types is True, the concrete type is fetched from concrete_type_store.
|
||
|
If it is False, a new concrete type is created without first searching concrete_type_store.
|
||
|
|
||
|
Args:
|
||
|
nn_module: The original Python nn.Module that we are creating a ScriptModule for.
|
||
|
share_types = Whether to share underlying JIT types between modules (if possible).
|
||
|
|
||
|
Returns:
|
||
|
A concrete type for nn_module.
|
||
|
"""
|
||
|
assert isinstance(nn_module, Module)
|
||
|
if isinstance(nn_module, torch.jit.ScriptModule) and hasattr(
|
||
|
nn_module, "_concrete_type"
|
||
|
):
|
||
|
return nn_module._concrete_type
|
||
|
|
||
|
if share_types:
|
||
|
# Look into the store of cached JIT types
|
||
|
concrete_type = concrete_type_store.get_or_create_concrete_type(nn_module)
|
||
|
else:
|
||
|
# Get a concrete type directly, without trying to re-use an existing JIT
|
||
|
# type from the type store.
|
||
|
concrete_type_builder = infer_concrete_type_builder(nn_module, share_types)
|
||
|
concrete_type_builder.set_poisoned()
|
||
|
concrete_type = concrete_type_builder.build()
|
||
|
|
||
|
return concrete_type
|
||
|
|
||
|
|
||
|
def create_script_class(obj):
|
||
|
"""
|
||
|
Create and return a RecursiveScriptClass instance from a Python object.
|
||
|
|
||
|
Arguments:
|
||
|
obj: A Python object.
|
||
|
"""
|
||
|
qualified_class_name = _jit_internal._qualified_name(type(obj))
|
||
|
rcb = _jit_internal.createResolutionCallbackForClassMethods(type(obj))
|
||
|
# Script the type of obj if it hasn't already been scripted.
|
||
|
_compile_and_register_class(type(obj), rcb, qualified_class_name)
|
||
|
class_ty = _python_cu.get_class(qualified_class_name)
|
||
|
# Create an empty torch._C.ScriptObject with the scripted type.
|
||
|
cpp_object = torch._C._create_object_with_type(class_ty)
|
||
|
# Copy all of the attributes over to the torch._C.ScriptObject.
|
||
|
for name, value in obj.__dict__.items():
|
||
|
cpp_object.setattr(name, value)
|
||
|
|
||
|
# Wrap the torch._C.ScriptObject in a RecursiveScriptClass instance.
|
||
|
return wrap_cpp_class(cpp_object)
|
||
|
|
||
|
|
||
|
def create_script_module(nn_module, stubs_fn, share_types=True, is_tracing=False):
|
||
|
"""
|
||
|
Create a new ScriptModule from an nn.Module.
|
||
|
|
||
|
Args:
|
||
|
nn_module: The original Python nn.Module that we are creating a ScriptModule for.
|
||
|
stubs_fn: Lambda that takes an nn.Module and generates a list of ScriptMethodStubs to compile.
|
||
|
share_types: Whether to share underlying JIT types between modules (if possible).
|
||
|
NOTE: Only set to False this when we cannot guarantee type sharing will work
|
||
|
correctly. This only happens today for traced modules, where the same
|
||
|
module can produce different traced methods depending on the inputs.
|
||
|
is_tracing: Whether this function is called during tracing or scripting. If tracing,
|
||
|
we don't need to do AttributeTypeIsSupportedChecker because all the unsupported
|
||
|
attributes will be baked as constant in the tracing graph. In addition,
|
||
|
this check significantly slows down the traced modules when the module size is big.
|
||
|
"""
|
||
|
assert not isinstance(nn_module, torch.jit.RecursiveScriptModule)
|
||
|
check_module_initialized(nn_module)
|
||
|
concrete_type = get_module_concrete_type(nn_module, share_types)
|
||
|
if not is_tracing:
|
||
|
AttributeTypeIsSupportedChecker().check(nn_module)
|
||
|
return create_script_module_impl(nn_module, concrete_type, stubs_fn)
|
||
|
|
||
|
|
||
|
def create_script_module_impl(nn_module, concrete_type, stubs_fn):
|
||
|
"""
|
||
|
Convert an nn.Module to a RecursiveScriptModule.
|
||
|
|
||
|
Args:
|
||
|
nn_module: The original Python nn.Module that we are creating a ScriptModule for.
|
||
|
concrete_type: The fully initialized ConcreteType of the module.
|
||
|
stubs_fn: Lambda that takes an nn.Module and generates a list of ScriptMethodStubs to compile.
|
||
|
"""
|
||
|
cpp_module = torch._C._create_module_with_type(concrete_type.jit_type)
|
||
|
method_stubs = stubs_fn(nn_module)
|
||
|
property_stubs = get_property_stubs(nn_module)
|
||
|
hook_stubs, pre_hook_stubs = get_hook_stubs(nn_module)
|
||
|
|
||
|
user_annotated_ignored_attributes = getattr(
|
||
|
nn_module, "__jit_ignored_attributes__", list()
|
||
|
)
|
||
|
ignored_properties = jit_ignored_properties(nn_module)
|
||
|
|
||
|
def init_fn(script_module):
|
||
|
# Initialize the ScriptModule:
|
||
|
# 1. Copy the attributes/parameters/buffers from the original `nn_module` to the new ScriptModule.
|
||
|
for name in concrete_type.get_attributes().keys():
|
||
|
orig_value = getattr(nn_module, name)
|
||
|
orig_value = (
|
||
|
orig_value.value
|
||
|
if isinstance(orig_value, torch.jit.Attribute)
|
||
|
else orig_value
|
||
|
)
|
||
|
cpp_module.setattr(name, orig_value)
|
||
|
|
||
|
# 2. Copy the submodules from the original `nn_module` to the new ScriptModule,
|
||
|
# recursively scripting them.
|
||
|
for name, sub_concrete_type in concrete_type.get_modules():
|
||
|
orig_value = getattr(nn_module, name)
|
||
|
assert isinstance(
|
||
|
orig_value, Module
|
||
|
), f"Expected Module but got {type(orig_value)}"
|
||
|
module_type = sub_concrete_type.jit_type
|
||
|
if isinstance(module_type, torch._C.InterfaceType):
|
||
|
# use the interface inference rule to compile the module
|
||
|
scripted = interface_script(module_type, orig_value)
|
||
|
elif isinstance(orig_value, torch.jit.ScriptModule):
|
||
|
scripted = orig_value
|
||
|
else:
|
||
|
# always reuse the provided stubs_fn to infer the methods to compile
|
||
|
scripted = create_script_module_impl(
|
||
|
orig_value, sub_concrete_type, stubs_fn
|
||
|
)
|
||
|
|
||
|
cpp_module.setattr(name, scripted)
|
||
|
script_module._modules[name] = scripted
|
||
|
|
||
|
# 3. Copy @ignored/@unused methods and attrs from the original `nn_module` to the new ScriptModule.
|
||
|
# This ensures we can access these Python methods on the ScriptModule.
|
||
|
for name in dir(nn_module):
|
||
|
if name in ignored_properties:
|
||
|
continue
|
||
|
item = getattr(nn_module, name, None)
|
||
|
if inspect.ismethod(item) and _jit_internal.is_ignored_fn(item):
|
||
|
unbound_function = getattr(nn_module, name).__func__
|
||
|
bound_method = unbound_function.__get__(script_module)
|
||
|
setattr(script_module, name, bound_method)
|
||
|
elif concrete_type.is_ignored_attribute(name):
|
||
|
setattr(script_module, name, item)
|
||
|
|
||
|
# For convenience, attach the concrete type to the new ScriptModule
|
||
|
script_module._concrete_type = concrete_type
|
||
|
|
||
|
# Actually create the ScriptModule, initializing it with the function we just defined
|
||
|
script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn)
|
||
|
|
||
|
# Compile methods if necessary
|
||
|
if concrete_type not in concrete_type_store.methods_compiled:
|
||
|
create_methods_and_properties_from_stubs(
|
||
|
concrete_type, method_stubs, property_stubs
|
||
|
)
|
||
|
# Create hooks after methods to ensure no name collisions between hooks and methods.
|
||
|
# If done before, hooks can overshadow methods that aren't exported.
|
||
|
create_hooks_from_stubs(concrete_type, hook_stubs, pre_hook_stubs)
|
||
|
torch._C._run_emit_module_hook(cpp_module)
|
||
|
concrete_type_store.methods_compiled.add(concrete_type)
|
||
|
|
||
|
# Copy the forward hooks and pre-hooks to the new ScriptModule
|
||
|
# to allow the hooks to be run from eager as ScriptFunctions
|
||
|
for idx, fn in enumerate(script_module._c._get_forward_pre_hooks()):
|
||
|
script_module._forward_pre_hooks[idx] = fn
|
||
|
for idx, fn in enumerate(script_module._c._get_forward_hooks()):
|
||
|
script_module._forward_hooks[idx] = fn
|
||
|
|
||
|
# Special handling so methods like __len__ work in script methods on classes derived from containers
|
||
|
if (
|
||
|
isinstance(
|
||
|
nn_module, (torch.nn.ModuleList, torch.nn.Sequential, torch.nn.ModuleDict)
|
||
|
)
|
||
|
and "__len__" not in cpp_module._method_names()
|
||
|
):
|
||
|
script_module.define(f"def __len__(self):\n return {len(nn_module)}\n")
|
||
|
if (
|
||
|
isinstance(nn_module, torch.nn.ModuleDict)
|
||
|
and "__contains__" not in cpp_module._method_names()
|
||
|
):
|
||
|
if len(nn_module.keys()):
|
||
|
keys = repr(list(nn_module.keys()))
|
||
|
script_module.define(
|
||
|
f"def __contains__(self, key: str):\n return key in {keys}\n"
|
||
|
)
|
||
|
else:
|
||
|
script_module.define("def __contains__(self, key: str):\n return False\n")
|
||
|
|
||
|
# Make the compiled methods available to the Python ScriptModule class.
|
||
|
for method_stub in method_stubs:
|
||
|
if method_stub.original_method is None:
|
||
|
# define()'d methods don't have an Python original_method, so we
|
||
|
# don't need to do any Python re-wrapping stuff
|
||
|
continue
|
||
|
|
||
|
name = method_stub.original_method.__name__
|
||
|
if name != method_stub.def_.name().name:
|
||
|
# TODO: Why skip this? Because @torch.jit._overload_method will
|
||
|
# mangle the name of the function.
|
||
|
continue
|
||
|
script_method = cpp_module._get_method(name)
|
||
|
|
||
|
# Wrap the original to propagate docstrings and such.
|
||
|
# TODO: we don't currently do this functions that are recursively
|
||
|
# compiled, we should.
|
||
|
wrapped_script_method = functools.wraps(method_stub.original_method)(
|
||
|
script_method
|
||
|
)
|
||
|
|
||
|
# Add the methods to the script_module directly. This ensures they will
|
||
|
# be found first when `name` is looked up (as opposed to the stubs or
|
||
|
# nn.Module.forward)
|
||
|
script_module.__dict__[name] = wrapped_script_method
|
||
|
|
||
|
# Make module properties available on the Python ScriptModule class.
|
||
|
for property_stub in property_stubs:
|
||
|
property_name = property_stub.def_.name().name
|
||
|
fget = cpp_module._get_method(property_stub.def_.getter_name().name)
|
||
|
# Setter is optional, so it may not exist.
|
||
|
setter_name = property_stub.def_.setter_name()
|
||
|
fset = cpp_module._get_method(setter_name.name) if setter_name else None
|
||
|
script_module.__dict__[property_name] = property(property_name, fget, fset) # type: ignore[arg-type]
|
||
|
|
||
|
# copy over python methods to script module if they aren't defined on the script module
|
||
|
# this is currently an internal api used only on module containers
|
||
|
for name in dir(nn_module):
|
||
|
if name in ignored_properties:
|
||
|
continue
|
||
|
item = getattr(nn_module, name, None)
|
||
|
if (
|
||
|
_jit_internal.get_torchscript_modifier(item)
|
||
|
is _jit_internal.FunctionModifiers.COPY_TO_SCRIPT_WRAPPER
|
||
|
):
|
||
|
add_python_attr_to_scripted_model(script_module, nn_module, name)
|
||
|
|
||
|
return script_module
|
||
|
|
||
|
|
||
|
# We define shims of certain attributes on the RecursiveScriptModule to support
|
||
|
# magic methods. To check if a script model defines an attribute we need
|
||
|
# to also check that the attribute is not the shim
|
||
|
def script_model_defines_attr(script_model, attr):
|
||
|
script_attr = getattr(script_model, attr, None)
|
||
|
if script_attr is None:
|
||
|
return False
|
||
|
default_attr = getattr(torch.jit.RecursiveScriptModule, attr, None)
|
||
|
if default_attr is None:
|
||
|
return False
|
||
|
return script_attr != default_attr
|
||
|
|
||
|
|
||
|
def add_python_attr_to_scripted_model(script_model, orig, attr):
|
||
|
if hasattr(orig, attr) and script_model_defines_attr(script_model, attr):
|
||
|
setattr(script_model, attr, getattr(orig, attr))
|
||
|
|
||
|
|
||
|
def get_overload_annotations(mod, jit_ignored_properties):
|
||
|
# original function => [(mangled overload name, overload function)]
|
||
|
overloads = {}
|
||
|
|
||
|
for name in dir(type(mod)):
|
||
|
if name in jit_ignored_properties:
|
||
|
continue
|
||
|
item = getattr(mod, name, None)
|
||
|
if not callable(item):
|
||
|
continue
|
||
|
|
||
|
# builtin functions like repr() in python 2 do not have __module__ defined
|
||
|
if hasattr(item, "__module__") and item.__module__ is not None:
|
||
|
method_overloads = _jit_internal._get_overloaded_methods(
|
||
|
item, mod.__class__
|
||
|
)
|
||
|
if method_overloads is None:
|
||
|
continue
|
||
|
|
||
|
if item.__func__ in method_overloads:
|
||
|
raise RuntimeError(
|
||
|
_jit_internal.get_overload_no_implementation_error_message(
|
||
|
"method", item.__func__
|
||
|
)
|
||
|
)
|
||
|
|
||
|
names = [name + "__" + str(i) for i in range(len(method_overloads))]
|
||
|
overloads[item] = list(zip(names, method_overloads))
|
||
|
|
||
|
return overloads
|
||
|
|
||
|
|
||
|
def get_overload_name_mapping(overload_info):
|
||
|
# Same format as __overloads__
|
||
|
# original function => [overload names]
|
||
|
overload_name_mappings: Dict[str, List[str]] = {}
|
||
|
for orig_fn, overloads in overload_info.items():
|
||
|
original_name = orig_fn.__name__
|
||
|
if original_name not in overload_name_mappings:
|
||
|
overload_name_mappings[original_name] = []
|
||
|
|
||
|
for overload_name, _ in overloads:
|
||
|
overload_name_mappings[original_name].append(overload_name)
|
||
|
return overload_name_mappings
|
||
|
|
||
|
|
||
|
def _check_no_signature(func):
|
||
|
signature = torch.jit.annotations.get_signature(
|
||
|
func, None, fake_range(), inspect.ismethod(func)
|
||
|
)
|
||
|
if signature is None:
|
||
|
qual_name = _jit_internal._qualified_name(func)
|
||
|
raise RuntimeError(
|
||
|
f"Must explicitly add type annotations to overloaded functions: {qual_name}"
|
||
|
)
|
||
|
|
||
|
|
||
|
def make_stubs_for_overloads(overload_info):
|
||
|
overload_stubs = []
|
||
|
for orig_fn, overloads in overload_info.items():
|
||
|
orig_ast = get_jit_def(
|
||
|
orig_fn, orig_fn.__name__, self_name="RecursiveScriptModule"
|
||
|
)
|
||
|
for overload_name, overload_fn in overloads:
|
||
|
_check_no_signature(overload_fn)
|
||
|
over_ast = get_jit_def(
|
||
|
overload_fn, overload_fn.__name__, self_name="RecursiveScriptModule"
|
||
|
)
|
||
|
new_ast = torch._C._replace_overloaded_method_decl(
|
||
|
over_ast.decl(), orig_ast, overload_name
|
||
|
)
|
||
|
_rcb = _jit_internal.createResolutionCallbackFromClosure(orig_fn)
|
||
|
overload_stubs.append(ScriptMethodStub(_rcb, new_ast, overload_fn))
|
||
|
return overload_stubs
|
||
|
|
||
|
|
||
|
def check_module_initialized(mod):
|
||
|
assert isinstance(mod, torch.nn.Module)
|
||
|
if not hasattr(mod, "_parameters"):
|
||
|
raise RuntimeError(
|
||
|
f"'{torch.typename(type(mod))}' has not been initialized, did you forget to call 'super()'?"
|
||
|
)
|
||
|
|
||
|
# This is to avoid importing torch.distributed.nn
|
||
|
if not hasattr(mod, "remote_parameters"):
|
||
|
for name, param in mod._parameters.items():
|
||
|
if param is not None and torch.nn.parameter.is_lazy(param):
|
||
|
raise RuntimeError(
|
||
|
"'{}' has uninitialized parameters {}. Did you forget to run a forward pass?".format(
|
||
|
torch.typename(type(mod)), name
|
||
|
)
|
||
|
)
|
||
|
for name, buf in mod._buffers.items():
|
||
|
if buf is not None and torch.nn.parameter.is_lazy(buf):
|
||
|
raise RuntimeError(
|
||
|
"'{}' has uninitialized buffers {}. Did you forget to run a forward pass?".format(
|
||
|
torch.typename(type(mod)), name
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
def infer_methods_to_compile(nn_module):
|
||
|
"""Implement the default rules for which methods should act as starting points for compilation.
|
||
|
|
||
|
(TODO add a link when the rules are published).
|
||
|
"""
|
||
|
check_module_initialized(nn_module)
|
||
|
user_annotated_ignored_attributes = getattr(
|
||
|
nn_module, "__jit_ignored_attributes__", list()
|
||
|
)
|
||
|
ignored_properties = jit_ignored_properties(nn_module)
|
||
|
|
||
|
methods: List[str] = []
|
||
|
if hasattr(nn_module, "forward") and not _jit_internal.is_ignored_fn(
|
||
|
nn_module.forward
|
||
|
):
|
||
|
forward_func = getattr(nn_module.forward, "__func__", None)
|
||
|
module_forward = getattr(torch.nn.Module, "forward", None)
|
||
|
if forward_func != module_forward:
|
||
|
methods = ["forward"]
|
||
|
|
||
|
exported = []
|
||
|
for name in dir(nn_module):
|
||
|
if name in ignored_properties:
|
||
|
continue
|
||
|
item = getattr(nn_module, name, None)
|
||
|
if (
|
||
|
_jit_internal.get_torchscript_modifier(item)
|
||
|
is _jit_internal.FunctionModifiers.EXPORT
|
||
|
):
|
||
|
exported.append(name)
|
||
|
|
||
|
methods = methods + exported
|
||
|
|
||
|
overload_name_mappings = dict(getattr(nn_module, "__overloads__", {}))
|
||
|
overload_info = get_overload_annotations(nn_module, ignored_properties)
|
||
|
overload_name_mappings.update(get_overload_name_mapping(overload_info))
|
||
|
overload_stubs = make_stubs_for_overloads(overload_info)
|
||
|
|
||
|
nn_module.__overloads__ = overload_name_mappings
|
||
|
|
||
|
# we shouldn't directly compile overloaded methods, just its overloads
|
||
|
def ignore_overloaded(method_name):
|
||
|
return method_name not in overload_name_mappings
|
||
|
|
||
|
filtered_methods = filter(ignore_overloaded, methods)
|
||
|
|
||
|
# Unique the methods. We don't want to use a set to store the methods because it
|
||
|
# introduces non-determinism to compile order.
|
||
|
uniquer: Set[str] = set()
|
||
|
uniqued_methods = []
|
||
|
for name in filtered_methods:
|
||
|
if name in uniquer:
|
||
|
continue
|
||
|
uniqued_methods.append(name)
|
||
|
uniquer.add(name)
|
||
|
|
||
|
stubs = []
|
||
|
for method in uniqued_methods:
|
||
|
stubs.append(make_stub_from_method(nn_module, method))
|
||
|
return overload_stubs + stubs
|
||
|
|
||
|
|
||
|
def get_hook_stubs(nn_module):
|
||
|
"""Return forward hook and pre_hook ScriptModuleStubs."""
|
||
|
check_module_initialized(nn_module)
|
||
|
hook_map: Dict = {}
|
||
|
|
||
|
hook_stubs = []
|
||
|
for hook in nn_module._forward_hooks.values():
|
||
|
if hook.__name__ in hook_map:
|
||
|
if id(hook) != id(hook_map[hook.__name__]):
|
||
|
raise RuntimeError(
|
||
|
f"Hook '{hook.__name__}' on {type(nn_module).__name__} "
|
||
|
"has at least two different python definitions."
|
||
|
" Please use unique names for all hooks."
|
||
|
)
|
||
|
else:
|
||
|
hook_map[hook.__name__] = hook
|
||
|
hook_stubs.append(make_stub(hook, hook.__name__))
|
||
|
|
||
|
pre_hook_stubs = []
|
||
|
for pre_hook in nn_module._forward_pre_hooks.values():
|
||
|
if pre_hook.__name__ in hook_map:
|
||
|
if id(pre_hook) != id(hook_map[pre_hook.__name__]):
|
||
|
raise RuntimeError(
|
||
|
f"Pre-hook '{pre_hook.__name__}' on {type(nn_module).__name__} "
|
||
|
"has at least two different python definitions."
|
||
|
" Please use unique names for all hooks."
|
||
|
)
|
||
|
else:
|
||
|
hook_map[pre_hook.__name__] = pre_hook
|
||
|
pre_hook_stubs.append(make_stub(pre_hook, pre_hook.__name__))
|
||
|
|
||
|
return hook_stubs, pre_hook_stubs
|
||
|
|
||
|
|
||
|
def get_property_stubs(nn_module):
|
||
|
"""Create property stubs for the properties of the module by creating method stubs for the getter and setter."""
|
||
|
module_ty = type(nn_module)
|
||
|
properties_asts = get_class_properties(module_ty, self_name="RecursiveScriptModule")
|
||
|
rcbs = {}
|
||
|
|
||
|
for name in dir(module_ty):
|
||
|
item = getattr(module_ty, name, None)
|
||
|
if isinstance(item, property):
|
||
|
if not item.fget:
|
||
|
raise RuntimeError(
|
||
|
f"Property {name} of {nn_module.__name__} must have a getter"
|
||
|
)
|
||
|
|
||
|
rcbs[name] = _jit_internal.createResolutionCallbackFromClosure(item.fget)
|
||
|
|
||
|
stubs = [PropertyStub(rcbs[ast.name().name], ast) for ast in properties_asts]
|
||
|
return stubs
|
||
|
|
||
|
|
||
|
def interface_script(mod_interface, nn_module):
|
||
|
"""
|
||
|
Make a ScriptModule from an nn.Module, using the interface methods rule for determining which methods to compile.
|
||
|
|
||
|
Args:
|
||
|
mod_interface: the interface type that the module have
|
||
|
nn_module: The original Python nn.Module that we are creating a ScriptModule for.
|
||
|
"""
|
||
|
if isinstance(nn_module, torch.jit.ScriptModule):
|
||
|
return nn_module
|
||
|
|
||
|
check_module_initialized(nn_module)
|
||
|
|
||
|
def infer_interface_methods_to_compile(nn_module):
|
||
|
"""Rule to infer the methods from the interface type.
|
||
|
|
||
|
It is used to know which methods need to act as starting points for compilation.
|
||
|
"""
|
||
|
stubs = []
|
||
|
for method in mod_interface.getMethodNames():
|
||
|
stubs.append(make_stub_from_method(nn_module, method))
|
||
|
return stubs
|
||
|
|
||
|
return create_script_module(nn_module, infer_interface_methods_to_compile)
|
||
|
|
||
|
|
||
|
def try_compile_fn(fn, loc):
|
||
|
if _jit_internal.is_ignored_fn(fn):
|
||
|
# Don't do anything for @ignore'd functions
|
||
|
return None
|
||
|
|
||
|
if isinstance(fn, torch.nn.Module):
|
||
|
# Since modules are callable pybind recognizes them as functions, but
|
||
|
# don't do anything for them
|
||
|
return None
|
||
|
|
||
|
if not inspect.isfunction(fn) and not inspect.ismethod(fn):
|
||
|
raise RuntimeError(
|
||
|
f"`{fn}` is not a function. Recursive scripting only supports "
|
||
|
"Python functions or methods currently.\n"
|
||
|
f"Consider manually annotating `{fn}` with @torch.jit.script."
|
||
|
)
|
||
|
|
||
|
# The object returned by __prepare_scriptable__ might have a different closure.
|
||
|
# Resolve it here to get the right resolution callback.
|
||
|
fn = fn.__prepare_scriptable__() if hasattr(fn, "__prepare_scriptable__") else fn # type: ignore[operator]
|
||
|
|
||
|
# We don't have the actual scope where the function was defined, but we can
|
||
|
# extract the necessary info from the closed over variables on the function
|
||
|
# object
|
||
|
rcb = _jit_internal.createResolutionCallbackFromClosure(fn)
|
||
|
return torch.jit.script(fn, _rcb=rcb)
|
||
|
|
||
|
|
||
|
def wrap_cpp_class(cpp_class):
|
||
|
"""Wrap this torch._C.Object in a Python RecursiveScriptClass."""
|
||
|
return torch.jit.RecursiveScriptClass(cpp_class)
|
||
|
|
||
|
|
||
|
def wrap_cpp_module(cpp_module):
|
||
|
"""Wrap this torch._C.ScriptModule in a Python ScriptModule, recursively for all submodules."""
|
||
|
|
||
|
def init_fn(script_module):
|
||
|
for name, cpp_module in torch._C.ModuleDict(script_module._c).items():
|
||
|
setattr(script_module, name, wrap_cpp_module(cpp_module))
|
||
|
script_module._concrete_type = torch._C.ConcreteModuleType.from_jit_type(
|
||
|
script_module._c._type()
|
||
|
)
|
||
|
|
||
|
for idx, fn in enumerate(script_module._c._get_forward_pre_hooks()):
|
||
|
script_module._forward_pre_hooks[idx] = fn
|
||
|
for idx, fn in enumerate(script_module._c._get_forward_hooks()):
|
||
|
script_module._forward_hooks[idx] = fn
|
||
|
|
||
|
return torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn)
|
||
|
|
||
|
|
||
|
def compile_unbound_method(concrete_type, fn):
|
||
|
if _jit_internal.is_ignored_fn(fn):
|
||
|
return None
|
||
|
stub = make_stub(fn, fn.__name__)
|
||
|
with torch._jit_internal._disable_emit_hooks():
|
||
|
# We don't want to call the hooks here since the graph that is calling
|
||
|
# this function is not yet complete
|
||
|
create_methods_and_properties_from_stubs(concrete_type, (stub,), ())
|
||
|
return stub
|
||
|
|
||
|
|
||
|
def lazy_bind(concrete_type, unbound_method):
|
||
|
"""
|
||
|
Return a function that lazily binds `unbound_method` to a provided Module IValue, then invokes the method.
|
||
|
|
||
|
We do this so that any Python shenanigans that
|
||
|
will poison type sharing are impossible at compile time.
|
||
|
"""
|
||
|
|
||
|
def lazy_binding_method(cpp_module, *args):
|
||
|
def init_fn(script_module):
|
||
|
orig_class = concrete_type.py_class
|
||
|
|
||
|
# Copy @ignored/@unused methods from the original module to the new one.
|
||
|
# This ensures they are available during execution.
|
||
|
for name in dir(orig_class):
|
||
|
item = getattr(orig_class, name, None)
|
||
|
if _jit_internal.is_ignored_fn(item):
|
||
|
setattr(script_module, name, item)
|
||
|
|
||
|
# Copy constants over so they are available during execution.
|
||
|
for name, value in concrete_type.get_constants().items():
|
||
|
setattr(script_module, name, value)
|
||
|
|
||
|
script_module = torch.jit.RecursiveScriptModule._construct(cpp_module, init_fn)
|
||
|
method = types.MethodType(unbound_method, script_module)
|
||
|
return method(*args)
|
||
|
|
||
|
# make the lazy binding method "look like" the original method
|
||
|
lazy_binding_method.original_fn = unbound_method # type: ignore[attr-defined]
|
||
|
lazy_binding_method.__name__ = unbound_method.__name__
|
||
|
torch._jit_internal.copy_torchscript_modifier(unbound_method, lazy_binding_method)
|
||
|
|
||
|
return lazy_binding_method
|