1625 lines
55 KiB
Python
1625 lines
55 KiB
Python
|
import warnings
|
||
|
from typing import Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
from torch import Tensor
|
||
|
from .linear import NonDynamicallyQuantizableLinear
|
||
|
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
||
|
from torch.nn.parameter import Parameter
|
||
|
from .module import Module
|
||
|
from .. import functional as F
|
||
|
|
||
|
__all__ = ['Threshold', 'ReLU', 'RReLU', 'Hardtanh', 'ReLU6', 'Sigmoid', 'Hardsigmoid', 'Tanh',
|
||
|
'SiLU', 'Mish', 'Hardswish', 'ELU', 'CELU', 'SELU', 'GLU', 'GELU', 'Hardshrink', 'LeakyReLU',
|
||
|
'LogSigmoid', 'Softplus', 'Softshrink', 'MultiheadAttention', 'PReLU', 'Softsign', 'Tanhshrink',
|
||
|
'Softmin', 'Softmax', 'Softmax2d', 'LogSoftmax']
|
||
|
|
||
|
|
||
|
class Threshold(Module):
|
||
|
r"""Thresholds each element of the input Tensor.
|
||
|
|
||
|
Threshold is defined as:
|
||
|
|
||
|
.. math::
|
||
|
y =
|
||
|
\begin{cases}
|
||
|
x, &\text{ if } x > \text{threshold} \\
|
||
|
\text{value}, &\text{ otherwise }
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
threshold: The value to threshold at
|
||
|
value: The value to replace with
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Threshold(0.1, 20)
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['threshold', 'value', 'inplace']
|
||
|
|
||
|
threshold: float
|
||
|
value: float
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, threshold: float, value: float, inplace: bool = False) -> None:
|
||
|
super().__init__()
|
||
|
self.threshold = threshold
|
||
|
self.value = value
|
||
|
self.inplace = inplace
|
||
|
# TODO: check in THNN (if inplace == True, then assert value <= threshold)
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.threshold(input, self.threshold, self.value, self.inplace)
|
||
|
|
||
|
def extra_repr(self):
|
||
|
inplace_str = ', inplace=True' if self.inplace else ''
|
||
|
return f'threshold={self.threshold}, value={self.value}{inplace_str}'
|
||
|
|
||
|
|
||
|
class ReLU(Module):
|
||
|
r"""Applies the rectified linear unit function element-wise.
|
||
|
|
||
|
:math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`
|
||
|
|
||
|
Args:
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/ReLU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.ReLU()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
|
||
|
An implementation of CReLU - https://arxiv.org/abs/1603.05201
|
||
|
|
||
|
>>> m = nn.ReLU()
|
||
|
>>> input = torch.randn(2).unsqueeze(0)
|
||
|
>>> output = torch.cat((m(input), m(-input)))
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['inplace']
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, inplace: bool = False):
|
||
|
super().__init__()
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.relu(input, inplace=self.inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = 'inplace=True' if self.inplace else ''
|
||
|
return inplace_str
|
||
|
|
||
|
|
||
|
class RReLU(Module):
|
||
|
r"""Applies the randomized leaky rectified linear unit function, element-wise.
|
||
|
|
||
|
Method described in the paper:
|
||
|
`Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_.
|
||
|
|
||
|
The function is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{RReLU}(x) =
|
||
|
\begin{cases}
|
||
|
x & \text{if } x \geq 0 \\
|
||
|
ax & \text{ otherwise }
|
||
|
\end{cases}
|
||
|
|
||
|
where :math:`a` is randomly sampled from uniform distribution
|
||
|
:math:`\mathcal{U}(\text{lower}, \text{upper})` during training while during
|
||
|
evaluation :math:`a` is fixed with :math:`a = \frac{\text{lower} + \text{upper}}{2}`.
|
||
|
|
||
|
Args:
|
||
|
lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}`
|
||
|
upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}`
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/RReLU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.RReLU(0.1, 0.3)
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['lower', 'upper', 'inplace']
|
||
|
|
||
|
lower: float
|
||
|
upper: float
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
lower: float = 1. / 8,
|
||
|
upper: float = 1. / 3,
|
||
|
inplace: bool = False
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.lower = lower
|
||
|
self.upper = upper
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.rrelu(input, self.lower, self.upper, self.training, self.inplace)
|
||
|
|
||
|
def extra_repr(self):
|
||
|
inplace_str = ', inplace=True' if self.inplace else ''
|
||
|
return f'lower={self.lower}, upper={self.upper}{inplace_str}'
|
||
|
|
||
|
|
||
|
class Hardtanh(Module):
|
||
|
r"""Applies the HardTanh function element-wise.
|
||
|
|
||
|
HardTanh is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{HardTanh}(x) = \begin{cases}
|
||
|
\text{max\_val} & \text{ if } x > \text{ max\_val } \\
|
||
|
\text{min\_val} & \text{ if } x < \text{ min\_val } \\
|
||
|
x & \text{ otherwise } \\
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
min_val: minimum value of the linear region range. Default: -1
|
||
|
max_val: maximum value of the linear region range. Default: 1
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Keyword arguments :attr:`min_value` and :attr:`max_value`
|
||
|
have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Hardtanh.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Hardtanh(-2, 2)
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['min_val', 'max_val', 'inplace']
|
||
|
|
||
|
min_val: float
|
||
|
max_val: float
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
min_val: float = -1.,
|
||
|
max_val: float = 1.,
|
||
|
inplace: bool = False,
|
||
|
min_value: Optional[float] = None,
|
||
|
max_value: Optional[float] = None
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
if min_value is not None:
|
||
|
warnings.warn("keyword argument min_value is deprecated and rename to min_val")
|
||
|
min_val = min_value
|
||
|
if max_value is not None:
|
||
|
warnings.warn("keyword argument max_value is deprecated and rename to max_val")
|
||
|
max_val = max_value
|
||
|
|
||
|
self.min_val = min_val
|
||
|
self.max_val = max_val
|
||
|
self.inplace = inplace
|
||
|
assert self.max_val > self.min_val
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.hardtanh(input, self.min_val, self.max_val, self.inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = ', inplace=True' if self.inplace else ''
|
||
|
return f'min_val={self.min_val}, max_val={self.max_val}{inplace_str}'
|
||
|
|
||
|
|
||
|
class ReLU6(Hardtanh):
|
||
|
r"""Applies the ReLU6 function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{ReLU6}(x) = \min(\max(0,x), 6)
|
||
|
|
||
|
Args:
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/ReLU6.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.ReLU6()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, inplace: bool = False):
|
||
|
super().__init__(0., 6., inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = 'inplace=True' if self.inplace else ''
|
||
|
return inplace_str
|
||
|
|
||
|
|
||
|
class Sigmoid(Module):
|
||
|
r"""Applies the Sigmoid function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
|
||
|
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Sigmoid.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Sigmoid()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return torch.sigmoid(input)
|
||
|
|
||
|
|
||
|
class Hardsigmoid(Module):
|
||
|
r"""Applies the Hardsigmoid function element-wise.
|
||
|
|
||
|
Hardsigmoid is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{Hardsigmoid}(x) = \begin{cases}
|
||
|
0 & \text{if~} x \le -3, \\
|
||
|
1 & \text{if~} x \ge +3, \\
|
||
|
x / 6 + 1 / 2 & \text{otherwise}
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Hardsigmoid.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Hardsigmoid()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['inplace']
|
||
|
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, inplace : bool = False) -> None:
|
||
|
super().__init__()
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.hardsigmoid(input, self.inplace)
|
||
|
|
||
|
|
||
|
class Tanh(Module):
|
||
|
r"""Applies the Hyperbolic Tangent (Tanh) function element-wise.
|
||
|
|
||
|
Tanh is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Tanh.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Tanh()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return torch.tanh(input)
|
||
|
|
||
|
class SiLU(Module):
|
||
|
r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise.
|
||
|
|
||
|
The SiLU function is also known as the swish function.
|
||
|
|
||
|
.. math::
|
||
|
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}
|
||
|
|
||
|
.. note::
|
||
|
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
|
||
|
where the SiLU (Sigmoid Linear Unit) was originally coined, and see
|
||
|
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation
|
||
|
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
|
||
|
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
|
||
|
where the SiLU was experimented with later.
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/SiLU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.SiLU()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['inplace']
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, inplace: bool = False):
|
||
|
super().__init__()
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.silu(input, inplace=self.inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = 'inplace=True' if self.inplace else ''
|
||
|
return inplace_str
|
||
|
|
||
|
class Mish(Module):
|
||
|
r"""Applies the Mish function, element-wise.
|
||
|
|
||
|
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
|
||
|
|
||
|
.. math::
|
||
|
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))
|
||
|
|
||
|
.. note::
|
||
|
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Mish.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Mish()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['inplace']
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, inplace: bool = False):
|
||
|
super().__init__()
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.mish(input, inplace=self.inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = 'inplace=True' if self.inplace else ''
|
||
|
return inplace_str
|
||
|
|
||
|
class Hardswish(Module):
|
||
|
r"""Applies the Hardswish function, element-wise.
|
||
|
|
||
|
Method described in the paper: `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_.
|
||
|
|
||
|
Hardswish is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{Hardswish}(x) = \begin{cases}
|
||
|
0 & \text{if~} x \le -3, \\
|
||
|
x & \text{if~} x \ge +3, \\
|
||
|
x \cdot (x + 3) /6 & \text{otherwise}
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Hardswish.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Hardswish()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['inplace']
|
||
|
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, inplace : bool = False) -> None:
|
||
|
super().__init__()
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.hardswish(input, self.inplace)
|
||
|
|
||
|
|
||
|
class ELU(Module):
|
||
|
r"""Applies the Exponential Linear Unit (ELU) function, element-wise.
|
||
|
|
||
|
Method described in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear
|
||
|
Units (ELUs) <https://arxiv.org/abs/1511.07289>`__.
|
||
|
|
||
|
ELU is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{ELU}(x) = \begin{cases}
|
||
|
x, & \text{ if } x > 0\\
|
||
|
\alpha * (\exp(x) - 1), & \text{ if } x \leq 0
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/ELU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.ELU()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['alpha', 'inplace']
|
||
|
alpha: float
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
|
||
|
super().__init__()
|
||
|
self.alpha = alpha
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.elu(input, self.alpha, self.inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = ', inplace=True' if self.inplace else ''
|
||
|
return f'alpha={self.alpha}{inplace_str}'
|
||
|
|
||
|
|
||
|
class CELU(Module):
|
||
|
r"""Applies the CELU function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
|
||
|
|
||
|
More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ .
|
||
|
|
||
|
Args:
|
||
|
alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/CELU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.CELU()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
.. _`Continuously Differentiable Exponential Linear Units`:
|
||
|
https://arxiv.org/abs/1704.07483
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['alpha', 'inplace']
|
||
|
alpha: float
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
|
||
|
super().__init__()
|
||
|
self.alpha = alpha
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.celu(input, self.alpha, self.inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = ', inplace=True' if self.inplace else ''
|
||
|
return f'alpha={self.alpha}{inplace_str}'
|
||
|
|
||
|
|
||
|
class SELU(Module):
|
||
|
r"""Applies the SELU function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))
|
||
|
|
||
|
with :math:`\alpha = 1.6732632423543772848170429916717` and
|
||
|
:math:`\text{scale} = 1.0507009873554804934193349852946`.
|
||
|
|
||
|
.. warning::
|
||
|
When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation,
|
||
|
``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'``
|
||
|
in order to get `Self-Normalizing Neural Networks`_.
|
||
|
See :func:`torch.nn.init.calculate_gain` for more information.
|
||
|
|
||
|
More details can be found in the paper `Self-Normalizing Neural Networks`_ .
|
||
|
|
||
|
Args:
|
||
|
inplace (bool, optional): can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/SELU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.SELU()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['inplace']
|
||
|
inplace: bool
|
||
|
|
||
|
def __init__(self, inplace: bool = False) -> None:
|
||
|
super().__init__()
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.selu(input, self.inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = 'inplace=True' if self.inplace else ''
|
||
|
return inplace_str
|
||
|
|
||
|
|
||
|
class GLU(Module):
|
||
|
r"""Applies the gated linear unit function.
|
||
|
|
||
|
:math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half
|
||
|
of the input matrices and :math:`b` is the second half.
|
||
|
|
||
|
Args:
|
||
|
dim (int): the dimension on which to split the input. Default: -1
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional
|
||
|
dimensions
|
||
|
- Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.GLU()
|
||
|
>>> input = torch.randn(4, 2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['dim']
|
||
|
dim: int
|
||
|
|
||
|
def __init__(self, dim: int = -1) -> None:
|
||
|
super().__init__()
|
||
|
self.dim = dim
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.glu(input, self.dim)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'dim={self.dim}'
|
||
|
|
||
|
|
||
|
class GELU(Module):
|
||
|
r"""Applies the Gaussian Error Linear Units function.
|
||
|
|
||
|
.. math:: \text{GELU}(x) = x * \Phi(x)
|
||
|
|
||
|
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
|
||
|
|
||
|
When the approximate argument is 'tanh', Gelu is estimated with:
|
||
|
|
||
|
.. math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
|
||
|
|
||
|
Args:
|
||
|
approximate (str, optional): the gelu approximation algorithm to use:
|
||
|
``'none'`` | ``'tanh'``. Default: ``'none'``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/GELU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.GELU()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['approximate']
|
||
|
approximate: str
|
||
|
|
||
|
def __init__(self, approximate: str = 'none') -> None:
|
||
|
super().__init__()
|
||
|
self.approximate = approximate
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.gelu(input, approximate=self.approximate)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'approximate={repr(self.approximate)}'
|
||
|
|
||
|
|
||
|
class Hardshrink(Module):
|
||
|
r"""Applies the Hard Shrinkage (Hardshrink) function element-wise.
|
||
|
|
||
|
Hardshrink is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{HardShrink}(x) =
|
||
|
\begin{cases}
|
||
|
x, & \text{ if } x > \lambda \\
|
||
|
x, & \text{ if } x < -\lambda \\
|
||
|
0, & \text{ otherwise }
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Hardshrink.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Hardshrink()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['lambd']
|
||
|
lambd: float
|
||
|
|
||
|
def __init__(self, lambd: float = 0.5) -> None:
|
||
|
super().__init__()
|
||
|
self.lambd = lambd
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.hardshrink(input, self.lambd)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'{self.lambd}'
|
||
|
|
||
|
|
||
|
class LeakyReLU(Module):
|
||
|
r"""Applies the LeakyReLU function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)
|
||
|
|
||
|
|
||
|
or
|
||
|
|
||
|
.. math::
|
||
|
\text{LeakyReLU}(x) =
|
||
|
\begin{cases}
|
||
|
x, & \text{ if } x \geq 0 \\
|
||
|
\text{negative\_slope} \times x, & \text{ otherwise }
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
negative_slope: Controls the angle of the negative slope (which is used for
|
||
|
negative input values). Default: 1e-2
|
||
|
inplace: can optionally do the operation in-place. Default: ``False``
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)` where `*` means, any number of additional
|
||
|
dimensions
|
||
|
- Output: :math:`(*)`, same shape as the input
|
||
|
|
||
|
.. image:: ../scripts/activation_images/LeakyReLU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.LeakyReLU(0.1)
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['inplace', 'negative_slope']
|
||
|
inplace: bool
|
||
|
negative_slope: float
|
||
|
|
||
|
def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None:
|
||
|
super().__init__()
|
||
|
self.negative_slope = negative_slope
|
||
|
self.inplace = inplace
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.leaky_relu(input, self.negative_slope, self.inplace)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
inplace_str = ', inplace=True' if self.inplace else ''
|
||
|
return f'negative_slope={self.negative_slope}{inplace_str}'
|
||
|
|
||
|
|
||
|
class LogSigmoid(Module):
|
||
|
r"""Applies the Logsigmoid function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/LogSigmoid.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.LogSigmoid()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.logsigmoid(input)
|
||
|
|
||
|
|
||
|
class Softplus(Module):
|
||
|
r"""Applies the Softplus function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))
|
||
|
|
||
|
SoftPlus is a smooth approximation to the ReLU function and can be used
|
||
|
to constrain the output of a machine to always be positive.
|
||
|
|
||
|
For numerical stability the implementation reverts to the linear function
|
||
|
when :math:`input \times \beta > threshold`.
|
||
|
|
||
|
Args:
|
||
|
beta: the :math:`\beta` value for the Softplus formulation. Default: 1
|
||
|
threshold: values above this revert to a linear function. Default: 20
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Softplus.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Softplus()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['beta', 'threshold']
|
||
|
beta: float
|
||
|
threshold: float
|
||
|
|
||
|
def __init__(self, beta: float = 1.0, threshold: float = 20.0) -> None:
|
||
|
super().__init__()
|
||
|
self.beta = beta
|
||
|
self.threshold = threshold
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.softplus(input, self.beta, self.threshold)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'beta={self.beta}, threshold={self.threshold}'
|
||
|
|
||
|
|
||
|
class Softshrink(Module):
|
||
|
r"""Applies the soft shrinkage function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{SoftShrinkage}(x) =
|
||
|
\begin{cases}
|
||
|
x - \lambda, & \text{ if } x > \lambda \\
|
||
|
x + \lambda, & \text{ if } x < -\lambda \\
|
||
|
0, & \text{ otherwise }
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Softshrink.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Softshrink()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['lambd']
|
||
|
lambd: float
|
||
|
|
||
|
def __init__(self, lambd: float = 0.5) -> None:
|
||
|
super().__init__()
|
||
|
self.lambd = lambd
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.softshrink(input, self.lambd)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return str(self.lambd)
|
||
|
|
||
|
|
||
|
def _check_arg_device(x: Optional[torch.Tensor]) -> bool:
|
||
|
if x is not None:
|
||
|
return x.device.type in ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _arg_requires_grad(x: Optional[torch.Tensor]) -> bool:
|
||
|
if x is not None:
|
||
|
return x.requires_grad
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _is_make_fx_tracing():
|
||
|
if not torch.jit.is_scripting():
|
||
|
torch_dispatch_mode_stack = torch.utils._python_dispatch._get_current_dispatch_mode_stack()
|
||
|
return any(type(x) == torch.fx.experimental.proxy_tensor.ProxyTorchDispatchMode for x in torch_dispatch_mode_stack)
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
class MultiheadAttention(Module):
|
||
|
r"""Allows the model to jointly attend to information from different representation subspaces.
|
||
|
|
||
|
Method described in the paper:
|
||
|
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
||
|
|
||
|
Multi-Head Attention is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
||
|
|
||
|
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
||
|
|
||
|
``nn.MultiHeadAttention`` will use the optimized implementations of
|
||
|
``scaled_dot_product_attention()`` when possible.
|
||
|
|
||
|
In addition to support for the new ``scaled_dot_product_attention()``
|
||
|
function, for speeding up Inference, MHA will use
|
||
|
fastpath inference with support for Nested Tensors, iff:
|
||
|
|
||
|
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor).
|
||
|
- inputs are batched (3D) with ``batch_first==True``
|
||
|
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
||
|
- training is disabled (using ``.eval()``)
|
||
|
- ``add_bias_kv`` is ``False``
|
||
|
- ``add_zero_attn`` is ``False``
|
||
|
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
||
|
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
||
|
nor ``attn_mask`` is passed
|
||
|
- autocast is disabled
|
||
|
|
||
|
If the optimized inference fastpath implementation is in use, a
|
||
|
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
||
|
``query``/``key``/``value`` to represent padding more efficiently than using a
|
||
|
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
||
|
will be returned, and an additional speedup proportional to the fraction of the input
|
||
|
that is padding can be expected.
|
||
|
|
||
|
Args:
|
||
|
embed_dim: Total dimension of the model.
|
||
|
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
||
|
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
||
|
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
||
|
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
||
|
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
||
|
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
||
|
Default: ``False``.
|
||
|
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
||
|
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
||
|
batch_first: If ``True``, then the input and output tensors are provided
|
||
|
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
||
|
|
||
|
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
|
||
|
https://arxiv.org/abs/2205.14135
|
||
|
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['batch_first']
|
||
|
bias_k: Optional[torch.Tensor]
|
||
|
bias_v: Optional[torch.Tensor]
|
||
|
|
||
|
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
|
||
|
kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
|
||
|
if embed_dim <= 0 or num_heads <= 0:
|
||
|
raise ValueError(
|
||
|
f"embed_dim and num_heads must be greater than 0,"
|
||
|
f" got embed_dim={embed_dim} and num_heads={num_heads} instead"
|
||
|
)
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.kdim = kdim if kdim is not None else embed_dim
|
||
|
self.vdim = vdim if vdim is not None else embed_dim
|
||
|
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||
|
|
||
|
self.num_heads = num_heads
|
||
|
self.dropout = dropout
|
||
|
self.batch_first = batch_first
|
||
|
self.head_dim = embed_dim // num_heads
|
||
|
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
||
|
|
||
|
if not self._qkv_same_embed_dim:
|
||
|
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
|
||
|
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
|
||
|
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
|
||
|
self.register_parameter('in_proj_weight', None)
|
||
|
else:
|
||
|
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
|
||
|
self.register_parameter('q_proj_weight', None)
|
||
|
self.register_parameter('k_proj_weight', None)
|
||
|
self.register_parameter('v_proj_weight', None)
|
||
|
|
||
|
if bias:
|
||
|
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
|
||
|
else:
|
||
|
self.register_parameter('in_proj_bias', None)
|
||
|
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
||
|
|
||
|
if add_bias_kv:
|
||
|
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||
|
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||
|
else:
|
||
|
self.bias_k = self.bias_v = None
|
||
|
|
||
|
self.add_zero_attn = add_zero_attn
|
||
|
|
||
|
self._reset_parameters()
|
||
|
|
||
|
def _reset_parameters(self):
|
||
|
if self._qkv_same_embed_dim:
|
||
|
xavier_uniform_(self.in_proj_weight)
|
||
|
else:
|
||
|
xavier_uniform_(self.q_proj_weight)
|
||
|
xavier_uniform_(self.k_proj_weight)
|
||
|
xavier_uniform_(self.v_proj_weight)
|
||
|
|
||
|
if self.in_proj_bias is not None:
|
||
|
constant_(self.in_proj_bias, 0.)
|
||
|
constant_(self.out_proj.bias, 0.)
|
||
|
if self.bias_k is not None:
|
||
|
xavier_normal_(self.bias_k)
|
||
|
if self.bias_v is not None:
|
||
|
xavier_normal_(self.bias_v)
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
||
|
if '_qkv_same_embed_dim' not in state:
|
||
|
state['_qkv_same_embed_dim'] = True
|
||
|
|
||
|
super().__setstate__(state)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
query: Tensor,
|
||
|
key: Tensor,
|
||
|
value: Tensor,
|
||
|
key_padding_mask: Optional[Tensor] = None,
|
||
|
need_weights: bool = True,
|
||
|
attn_mask: Optional[Tensor] = None,
|
||
|
average_attn_weights: bool = True,
|
||
|
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
|
||
|
r"""Compute attention outputs using query, key, and value embeddings.
|
||
|
|
||
|
Supports optional parameters for padding, masks and attention weights.
|
||
|
|
||
|
Args:
|
||
|
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
||
|
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
||
|
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
||
|
Queries are compared against key-value pairs to produce the output.
|
||
|
See "Attention Is All You Need" for more details.
|
||
|
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
||
|
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
||
|
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
||
|
See "Attention Is All You Need" for more details.
|
||
|
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
||
|
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
||
|
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
||
|
See "Attention Is All You Need" for more details.
|
||
|
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
||
|
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
||
|
Binary and float masks are supported.
|
||
|
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
||
|
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
||
|
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
||
|
Set ``need_weights=False`` to use the optimized ``scaled_dot_product_attention``
|
||
|
and achieve the best performance for MHA.
|
||
|
Default: ``True``.
|
||
|
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
||
|
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
||
|
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
||
|
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
||
|
Binary and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
||
|
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
||
|
the attention weight.
|
||
|
If both attn_mask and key_padding_mask are supplied, their types should match.
|
||
|
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
||
|
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
||
|
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
||
|
is_causal: If specified, applies a causal mask as attention mask.
|
||
|
Default: ``False``.
|
||
|
Warning:
|
||
|
``is_causal`` provides a hint that ``attn_mask`` is the
|
||
|
causal mask. Providing incorrect hints can result in
|
||
|
incorrect execution, including forward and backward
|
||
|
compatibility.
|
||
|
|
||
|
Outputs:
|
||
|
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
||
|
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
||
|
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
||
|
embedding dimension ``embed_dim``.
|
||
|
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
||
|
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
||
|
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
||
|
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||
|
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
||
|
|
||
|
.. note::
|
||
|
`batch_first` argument is ignored for unbatched inputs.
|
||
|
"""
|
||
|
why_not_fast_path = ''
|
||
|
if ((attn_mask is not None and torch.is_floating_point(attn_mask))
|
||
|
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
|
||
|
why_not_fast_path = "floating-point masks are not supported for fast path."
|
||
|
|
||
|
is_batched = query.dim() == 3
|
||
|
|
||
|
key_padding_mask = F._canonical_mask(
|
||
|
mask=key_padding_mask,
|
||
|
mask_name="key_padding_mask",
|
||
|
other_type=F._none_or_dtype(attn_mask),
|
||
|
other_name="attn_mask",
|
||
|
target_type=query.dtype
|
||
|
)
|
||
|
|
||
|
attn_mask = F._canonical_mask(
|
||
|
mask=attn_mask,
|
||
|
mask_name="attn_mask",
|
||
|
other_type=None,
|
||
|
other_name="",
|
||
|
target_type=query.dtype,
|
||
|
check_other=False,
|
||
|
)
|
||
|
|
||
|
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
|
||
|
|
||
|
if not is_fastpath_enabled:
|
||
|
why_not_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
|
||
|
elif not is_batched:
|
||
|
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
||
|
elif query is not key or key is not value:
|
||
|
# When lifting this restriction, don't forget to either
|
||
|
# enforce that the dtypes all match or test cases where
|
||
|
# they don't!
|
||
|
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
||
|
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
||
|
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
||
|
elif self.in_proj_weight is None:
|
||
|
why_not_fast_path = "in_proj_weight was None"
|
||
|
elif query.dtype != self.in_proj_weight.dtype:
|
||
|
# this case will fail anyway, but at least they'll get a useful error message.
|
||
|
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
||
|
elif self.training:
|
||
|
why_not_fast_path = "training is enabled"
|
||
|
elif (self.num_heads % 2) != 0:
|
||
|
why_not_fast_path = "self.num_heads is not even"
|
||
|
elif not self.batch_first:
|
||
|
why_not_fast_path = "batch_first was not True"
|
||
|
elif self.bias_k is not None:
|
||
|
why_not_fast_path = "self.bias_k was not None"
|
||
|
elif self.bias_v is not None:
|
||
|
why_not_fast_path = "self.bias_v was not None"
|
||
|
elif self.add_zero_attn:
|
||
|
why_not_fast_path = "add_zero_attn was enabled"
|
||
|
elif not self._qkv_same_embed_dim:
|
||
|
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
||
|
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
|
||
|
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
|
||
|
is not supported with NestedTensor input"
|
||
|
elif torch.is_autocast_enabled():
|
||
|
why_not_fast_path = "autocast is enabled"
|
||
|
|
||
|
if not why_not_fast_path:
|
||
|
tensor_args = (
|
||
|
query,
|
||
|
key,
|
||
|
value,
|
||
|
self.in_proj_weight,
|
||
|
self.in_proj_bias,
|
||
|
self.out_proj.weight,
|
||
|
self.out_proj.bias,
|
||
|
)
|
||
|
# We have to use list comprehensions below because TorchScript does not support
|
||
|
# generator expressions.
|
||
|
if torch.overrides.has_torch_function(tensor_args):
|
||
|
why_not_fast_path = "some Tensor argument has_torch_function"
|
||
|
elif _is_make_fx_tracing():
|
||
|
why_not_fast_path = "we are running make_fx tracing"
|
||
|
elif not all(_check_arg_device(x) for x in tensor_args):
|
||
|
why_not_fast_path = ("some Tensor argument's device is neither one of "
|
||
|
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
|
||
|
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
|
||
|
why_not_fast_path = ("grad is enabled and at least one of query or the "
|
||
|
"input/output projection weights or biases requires_grad")
|
||
|
if not why_not_fast_path:
|
||
|
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
|
||
|
|
||
|
if self.in_proj_bias is not None and self.in_proj_weight is not None:
|
||
|
return torch._native_multi_head_attention(
|
||
|
query,
|
||
|
key,
|
||
|
value,
|
||
|
self.embed_dim,
|
||
|
self.num_heads,
|
||
|
self.in_proj_weight,
|
||
|
self.in_proj_bias,
|
||
|
self.out_proj.weight,
|
||
|
self.out_proj.bias,
|
||
|
merged_mask,
|
||
|
need_weights,
|
||
|
average_attn_weights,
|
||
|
mask_type)
|
||
|
|
||
|
any_nested = query.is_nested or key.is_nested or value.is_nested
|
||
|
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
|
||
|
f"The fast path was not hit because {why_not_fast_path}")
|
||
|
|
||
|
if self.batch_first and is_batched:
|
||
|
# make sure that the transpose op does not affect the "is" property
|
||
|
if key is value:
|
||
|
if query is key:
|
||
|
query = key = value = query.transpose(1, 0)
|
||
|
else:
|
||
|
query, key = (x.transpose(1, 0) for x in (query, key))
|
||
|
value = key
|
||
|
else:
|
||
|
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
|
||
|
|
||
|
if not self._qkv_same_embed_dim:
|
||
|
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||
|
query, key, value, self.embed_dim, self.num_heads,
|
||
|
self.in_proj_weight, self.in_proj_bias,
|
||
|
self.bias_k, self.bias_v, self.add_zero_attn,
|
||
|
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
||
|
training=self.training,
|
||
|
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
||
|
attn_mask=attn_mask,
|
||
|
use_separate_proj_weight=True,
|
||
|
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
||
|
v_proj_weight=self.v_proj_weight,
|
||
|
average_attn_weights=average_attn_weights,
|
||
|
is_causal=is_causal)
|
||
|
else:
|
||
|
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||
|
query, key, value, self.embed_dim, self.num_heads,
|
||
|
self.in_proj_weight, self.in_proj_bias,
|
||
|
self.bias_k, self.bias_v, self.add_zero_attn,
|
||
|
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
||
|
training=self.training,
|
||
|
key_padding_mask=key_padding_mask,
|
||
|
need_weights=need_weights,
|
||
|
attn_mask=attn_mask,
|
||
|
average_attn_weights=average_attn_weights,
|
||
|
is_causal=is_causal)
|
||
|
if self.batch_first and is_batched:
|
||
|
return attn_output.transpose(1, 0), attn_output_weights
|
||
|
else:
|
||
|
return attn_output, attn_output_weights
|
||
|
|
||
|
def merge_masks(self, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor],
|
||
|
query: Tensor) -> Tuple[Optional[Tensor], Optional[int]]:
|
||
|
r"""Determine mask type and combine masks if necessary.
|
||
|
|
||
|
If only one mask is provided, that mask
|
||
|
and the corresponding mask type will be returned. If both masks are provided, they will be both
|
||
|
expanded to shape ``(batch_size, num_heads, seq_len, seq_len)``, combined with logical ``or``
|
||
|
and mask type 2 will be returned
|
||
|
Args:
|
||
|
attn_mask: attention mask of shape ``(seq_len, seq_len)``, mask type 0
|
||
|
key_padding_mask: padding mask of shape ``(batch_size, seq_len)``, mask type 1
|
||
|
query: query embeddings of shape ``(batch_size, seq_len, embed_dim)``
|
||
|
Returns:
|
||
|
merged_mask: merged mask
|
||
|
mask_type: merged mask type (0, 1, or 2)
|
||
|
"""
|
||
|
mask_type: Optional[int] = None
|
||
|
merged_mask: Optional[Tensor] = None
|
||
|
|
||
|
if key_padding_mask is not None:
|
||
|
mask_type = 1
|
||
|
merged_mask = key_padding_mask
|
||
|
|
||
|
if attn_mask is not None:
|
||
|
# In this branch query can't be a nested tensor, so it has a shape
|
||
|
batch_size, seq_len, _ = query.shape
|
||
|
mask_type = 2
|
||
|
|
||
|
# Always expands attn_mask to 4D
|
||
|
if attn_mask.dim() == 3:
|
||
|
attn_mask_expanded = attn_mask.view(batch_size, -1, seq_len, seq_len)
|
||
|
else: # attn_mask.dim() == 2:
|
||
|
attn_mask_expanded = attn_mask.view(1, 1, seq_len, seq_len).expand(batch_size, self.num_heads, -1, -1)
|
||
|
merged_mask = attn_mask_expanded
|
||
|
|
||
|
if key_padding_mask is not None:
|
||
|
key_padding_mask_expanded = key_padding_mask.view(batch_size, 1, 1, seq_len).expand(-1, self.num_heads, -1, -1)
|
||
|
merged_mask = attn_mask_expanded + key_padding_mask_expanded
|
||
|
|
||
|
# no attn_mask and no key_padding_mask, returns None, None
|
||
|
return merged_mask, mask_type
|
||
|
|
||
|
|
||
|
class PReLU(Module):
|
||
|
r"""Applies the element-wise PReLU function.
|
||
|
|
||
|
.. math::
|
||
|
\text{PReLU}(x) = \max(0,x) + a * \min(0,x)
|
||
|
|
||
|
or
|
||
|
|
||
|
.. math::
|
||
|
\text{PReLU}(x) =
|
||
|
\begin{cases}
|
||
|
x, & \text{ if } x \geq 0 \\
|
||
|
ax, & \text{ otherwise }
|
||
|
\end{cases}
|
||
|
|
||
|
Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single
|
||
|
parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`,
|
||
|
a separate :math:`a` is used for each input channel.
|
||
|
|
||
|
|
||
|
.. note::
|
||
|
weight decay should not be used when learning :math:`a` for good performance.
|
||
|
|
||
|
.. note::
|
||
|
Channel dim is the 2nd dim of input. When input has dims < 2, then there is
|
||
|
no channel dim and the number of channels = 1.
|
||
|
|
||
|
Args:
|
||
|
num_parameters (int): number of :math:`a` to learn.
|
||
|
Although it takes an int as input, there is only two values are legitimate:
|
||
|
1, or the number of channels at input. Default: 1
|
||
|
init (float): the initial value of :math:`a`. Default: 0.25
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`( *)` where `*` means, any number of additional
|
||
|
dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
Attributes:
|
||
|
weight (Tensor): the learnable weights of shape (:attr:`num_parameters`).
|
||
|
|
||
|
.. image:: ../scripts/activation_images/PReLU.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.PReLU()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['num_parameters']
|
||
|
num_parameters: int
|
||
|
|
||
|
def __init__(self, num_parameters: int = 1, init: float = 0.25,
|
||
|
device=None, dtype=None) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
self.num_parameters = num_parameters
|
||
|
super().__init__()
|
||
|
self.init = init
|
||
|
self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs))
|
||
|
self.reset_parameters()
|
||
|
|
||
|
def reset_parameters(self):
|
||
|
torch.nn.init.constant_(self.weight, self.init)
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.prelu(input, self.weight)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'num_parameters={self.num_parameters}'
|
||
|
|
||
|
|
||
|
class Softsign(Module):
|
||
|
r"""Applies the element-wise Softsign function.
|
||
|
|
||
|
.. math::
|
||
|
\text{SoftSign}(x) = \frac{x}{ 1 + |x|}
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Softsign.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Softsign()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.softsign(input)
|
||
|
|
||
|
|
||
|
class Tanhshrink(Module):
|
||
|
r"""Applies the element-wise Tanhshrink function.
|
||
|
|
||
|
.. math::
|
||
|
\text{Tanhshrink}(x) = x - \tanh(x)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
||
|
- Output: :math:`(*)`, same shape as the input.
|
||
|
|
||
|
.. image:: ../scripts/activation_images/Tanhshrink.png
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Tanhshrink()
|
||
|
>>> input = torch.randn(2)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.tanhshrink(input)
|
||
|
|
||
|
|
||
|
class Softmin(Module):
|
||
|
r"""Applies the Softmin function to an n-dimensional input Tensor.
|
||
|
|
||
|
Rescales them so that the elements of the n-dimensional output Tensor
|
||
|
lie in the range `[0, 1]` and sum to 1.
|
||
|
|
||
|
Softmin is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)` where `*` means, any number of additional
|
||
|
dimensions
|
||
|
- Output: :math:`(*)`, same shape as the input
|
||
|
|
||
|
Args:
|
||
|
dim (int): A dimension along which Softmin will be computed (so every slice
|
||
|
along dim will sum to 1).
|
||
|
|
||
|
Returns:
|
||
|
a Tensor of the same dimension and shape as the input, with
|
||
|
values in the range [0, 1]
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Softmin(dim=1)
|
||
|
>>> input = torch.randn(2, 3)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['dim']
|
||
|
dim: Optional[int]
|
||
|
|
||
|
def __init__(self, dim: Optional[int] = None) -> None:
|
||
|
super().__init__()
|
||
|
self.dim = dim
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
super().__setstate__(state)
|
||
|
if not hasattr(self, 'dim'):
|
||
|
self.dim = None
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.softmin(input, self.dim, _stacklevel=5)
|
||
|
|
||
|
def extra_repr(self):
|
||
|
return f'dim={self.dim}'
|
||
|
|
||
|
class Softmax(Module):
|
||
|
r"""Applies the Softmax function to an n-dimensional input Tensor.
|
||
|
|
||
|
Rescales them so that the elements of the n-dimensional output Tensor
|
||
|
lie in the range [0,1] and sum to 1.
|
||
|
|
||
|
Softmax is defined as:
|
||
|
|
||
|
.. math::
|
||
|
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
||
|
|
||
|
When the input Tensor is a sparse tensor then the unspecified
|
||
|
values are treated as ``-inf``.
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)` where `*` means, any number of additional
|
||
|
dimensions
|
||
|
- Output: :math:`(*)`, same shape as the input
|
||
|
|
||
|
Returns:
|
||
|
a Tensor of the same dimension and shape as the input with
|
||
|
values in the range [0, 1]
|
||
|
|
||
|
Args:
|
||
|
dim (int): A dimension along which Softmax will be computed (so every slice
|
||
|
along dim will sum to 1).
|
||
|
|
||
|
.. note::
|
||
|
This module doesn't work directly with NLLLoss,
|
||
|
which expects the Log to be computed between the Softmax and itself.
|
||
|
Use `LogSoftmax` instead (it's faster and has better numerical properties).
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Softmax(dim=1)
|
||
|
>>> input = torch.randn(2, 3)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['dim']
|
||
|
dim: Optional[int]
|
||
|
|
||
|
def __init__(self, dim: Optional[int] = None) -> None:
|
||
|
super().__init__()
|
||
|
self.dim = dim
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
super().__setstate__(state)
|
||
|
if not hasattr(self, 'dim'):
|
||
|
self.dim = None
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.softmax(input, self.dim, _stacklevel=5)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'dim={self.dim}'
|
||
|
|
||
|
|
||
|
class Softmax2d(Module):
|
||
|
r"""Applies SoftMax over features to each spatial location.
|
||
|
|
||
|
When given an image of ``Channels x Height x Width``, it will
|
||
|
apply `Softmax` to each location :math:`(Channels, h_i, w_j)`
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`.
|
||
|
- Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
|
||
|
|
||
|
Returns:
|
||
|
a Tensor of the same dimension and shape as the input with
|
||
|
values in the range [0, 1]
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Softmax2d()
|
||
|
>>> # you softmax over the 2nd dimension
|
||
|
>>> input = torch.randn(2, 3, 12, 13)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
if input.dim() not in (3, 4):
|
||
|
raise ValueError(
|
||
|
f"Softmax2d: expected input to be 3D or 4D, got {input.dim()}D instead"
|
||
|
)
|
||
|
return F.softmax(input, -3, _stacklevel=5)
|
||
|
|
||
|
|
||
|
class LogSoftmax(Module):
|
||
|
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional input Tensor.
|
||
|
|
||
|
The LogSoftmax formulation can be simplified as:
|
||
|
|
||
|
.. math::
|
||
|
\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(*)` where `*` means, any number of additional
|
||
|
dimensions
|
||
|
- Output: :math:`(*)`, same shape as the input
|
||
|
|
||
|
Args:
|
||
|
dim (int): A dimension along which LogSoftmax will be computed.
|
||
|
|
||
|
Returns:
|
||
|
a Tensor of the same dimension and shape as the input with
|
||
|
values in the range [-inf, 0)
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.LogSoftmax(dim=1)
|
||
|
>>> input = torch.randn(2, 3)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['dim']
|
||
|
dim: Optional[int]
|
||
|
|
||
|
def __init__(self, dim: Optional[int] = None) -> None:
|
||
|
super().__init__()
|
||
|
self.dim = dim
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
super().__setstate__(state)
|
||
|
if not hasattr(self, 'dim'):
|
||
|
self.dim = None
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.log_softmax(input, self.dim, _stacklevel=5)
|
||
|
|
||
|
def extra_repr(self):
|
||
|
return f'dim={self.dim}'
|