58 lines
1.4 KiB
Python
58 lines
1.4 KiB
Python
|
from .module import Module
|
||
|
from .. import functional as F
|
||
|
|
||
|
from torch import Tensor
|
||
|
|
||
|
__all__ = ['ChannelShuffle']
|
||
|
|
||
|
class ChannelShuffle(Module):
|
||
|
r"""Divides and rearranges the channels in a tensor.
|
||
|
|
||
|
This operation divides the channels in a tensor of shape :math:`(*, C , H, W)`
|
||
|
into g groups and rearranges them as :math:`(*, \frac{C}{g}, g, H, W)`,
|
||
|
while keeping the original tensor shape.
|
||
|
|
||
|
Args:
|
||
|
groups (int): number of groups to divide channels in.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("FIXME: incorrect want")
|
||
|
>>> channel_shuffle = nn.ChannelShuffle(2)
|
||
|
>>> input = torch.randn(1, 4, 2, 2)
|
||
|
>>> print(input)
|
||
|
[[[[1, 2],
|
||
|
[3, 4]],
|
||
|
[[5, 6],
|
||
|
[7, 8]],
|
||
|
[[9, 10],
|
||
|
[11, 12]],
|
||
|
[[13, 14],
|
||
|
[15, 16]],
|
||
|
]]
|
||
|
>>> output = channel_shuffle(input)
|
||
|
>>> print(output)
|
||
|
[[[[1, 2],
|
||
|
[3, 4]],
|
||
|
[[9, 10],
|
||
|
[11, 12]],
|
||
|
[[5, 6],
|
||
|
[7, 8]],
|
||
|
[[13, 14],
|
||
|
[15, 16]],
|
||
|
]]
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['groups']
|
||
|
groups: int
|
||
|
|
||
|
def __init__(self, groups: int) -> None:
|
||
|
super().__init__()
|
||
|
self.groups = groups
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.channel_shuffle(input, self.groups)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'groups={self.groups}'
|