1807 lines
76 KiB
Python
1807 lines
76 KiB
Python
|
import types
|
||
|
import math
|
||
|
from torch import inf
|
||
|
from functools import wraps, partial
|
||
|
import warnings
|
||
|
import weakref
|
||
|
from collections import Counter
|
||
|
from bisect import bisect_right
|
||
|
|
||
|
from .optimizer import Optimizer
|
||
|
|
||
|
__all__ = ['LambdaLR', 'MultiplicativeLR', 'StepLR', 'MultiStepLR', 'ConstantLR', 'LinearLR',
|
||
|
'ExponentialLR', 'SequentialLR', 'CosineAnnealingLR', 'ChainedScheduler', 'ReduceLROnPlateau',
|
||
|
'CyclicLR', 'CosineAnnealingWarmRestarts', 'OneCycleLR', 'PolynomialLR', 'LRScheduler']
|
||
|
|
||
|
EPOCH_DEPRECATION_WARNING = (
|
||
|
"The epoch parameter in `scheduler.step()` was not necessary and is being "
|
||
|
"deprecated where possible. Please use `scheduler.step()` to step the "
|
||
|
"scheduler. During the deprecation, if epoch is different from None, the "
|
||
|
"closed form is used instead of the new chainable form, where available. "
|
||
|
"Please open an issue if you are unable to replicate your use case: "
|
||
|
"https://github.com/pytorch/pytorch/issues/new/choose."
|
||
|
)
|
||
|
|
||
|
def _check_verbose_deprecated_warning(verbose):
|
||
|
"""Raises a warning when verbose is not the default value."""
|
||
|
if verbose != "deprecated":
|
||
|
warnings.warn("The verbose parameter is deprecated. Please use get_last_lr() "
|
||
|
"to access the learning rate.", UserWarning)
|
||
|
return verbose
|
||
|
return False
|
||
|
|
||
|
class LRScheduler:
|
||
|
|
||
|
def __init__(self, optimizer, last_epoch=-1, verbose="deprecated"):
|
||
|
|
||
|
# Attach optimizer
|
||
|
if not isinstance(optimizer, Optimizer):
|
||
|
raise TypeError(f'{type(optimizer).__name__} is not an Optimizer')
|
||
|
self.optimizer = optimizer
|
||
|
|
||
|
# Initialize epoch and base learning rates
|
||
|
if last_epoch == -1:
|
||
|
for group in optimizer.param_groups:
|
||
|
group.setdefault('initial_lr', group['lr'])
|
||
|
else:
|
||
|
for i, group in enumerate(optimizer.param_groups):
|
||
|
if 'initial_lr' not in group:
|
||
|
raise KeyError("param 'initial_lr' is not specified "
|
||
|
f"in param_groups[{i}] when resuming an optimizer")
|
||
|
self.base_lrs = [group['initial_lr'] for group in optimizer.param_groups]
|
||
|
self.last_epoch = last_epoch
|
||
|
|
||
|
# Following https://github.com/pytorch/pytorch/issues/20124
|
||
|
# We would like to ensure that `lr_scheduler.step()` is called after
|
||
|
# `optimizer.step()`
|
||
|
def with_counter(method):
|
||
|
if getattr(method, '_with_counter', False):
|
||
|
# `optimizer.step()` has already been replaced, return.
|
||
|
return method
|
||
|
|
||
|
# Keep a weak reference to the optimizer instance to prevent
|
||
|
# cyclic references.
|
||
|
instance_ref = weakref.ref(method.__self__)
|
||
|
# Get the unbound method for the same purpose.
|
||
|
func = method.__func__
|
||
|
cls = instance_ref().__class__
|
||
|
del method
|
||
|
|
||
|
@wraps(func)
|
||
|
def wrapper(*args, **kwargs):
|
||
|
instance = instance_ref()
|
||
|
instance._step_count += 1
|
||
|
wrapped = func.__get__(instance, cls)
|
||
|
return wrapped(*args, **kwargs)
|
||
|
|
||
|
# Note that the returned function here is no longer a bound method,
|
||
|
# so attributes like `__func__` and `__self__` no longer exist.
|
||
|
wrapper._with_counter = True
|
||
|
return wrapper
|
||
|
|
||
|
self.optimizer.step = with_counter(self.optimizer.step)
|
||
|
self.verbose = _check_verbose_deprecated_warning(verbose)
|
||
|
|
||
|
self._initial_step()
|
||
|
|
||
|
def _initial_step(self):
|
||
|
"""Initialize step counts and performs a step"""
|
||
|
self.optimizer._step_count = 0
|
||
|
self._step_count = 0
|
||
|
self.step()
|
||
|
|
||
|
def state_dict(self):
|
||
|
"""Returns the state of the scheduler as a :class:`dict`.
|
||
|
|
||
|
It contains an entry for every variable in self.__dict__ which
|
||
|
is not the optimizer.
|
||
|
"""
|
||
|
return {key: value for key, value in self.__dict__.items() if key != 'optimizer'}
|
||
|
|
||
|
def load_state_dict(self, state_dict):
|
||
|
"""Loads the schedulers state.
|
||
|
|
||
|
Args:
|
||
|
state_dict (dict): scheduler state. Should be an object returned
|
||
|
from a call to :meth:`state_dict`.
|
||
|
"""
|
||
|
self.__dict__.update(state_dict)
|
||
|
|
||
|
def get_last_lr(self):
|
||
|
""" Return last computed learning rate by current scheduler.
|
||
|
"""
|
||
|
return self._last_lr
|
||
|
|
||
|
def get_lr(self):
|
||
|
# Compute learning rate using chainable form of the scheduler
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def print_lr(self, is_verbose, group, lr, epoch=None):
|
||
|
"""Display the current learning rate.
|
||
|
"""
|
||
|
if is_verbose:
|
||
|
if epoch is None:
|
||
|
print(f'Adjusting learning rate of group {group} to {lr:.4e}.')
|
||
|
else:
|
||
|
epoch_str = ("%.2f" if isinstance(epoch, float) else
|
||
|
"%.5d") % epoch
|
||
|
print(f'Epoch {epoch_str}: adjusting learning rate of group {group} to {lr:.4e}.')
|
||
|
|
||
|
|
||
|
def step(self, epoch=None):
|
||
|
# Raise a warning if old pattern is detected
|
||
|
# https://github.com/pytorch/pytorch/issues/20124
|
||
|
if self._step_count == 1:
|
||
|
if not hasattr(self.optimizer.step, "_with_counter"):
|
||
|
warnings.warn("Seems like `optimizer.step()` has been overridden after learning rate scheduler "
|
||
|
"initialization. Please, make sure to call `optimizer.step()` before "
|
||
|
"`lr_scheduler.step()`. See more details at "
|
||
|
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
|
||
|
|
||
|
# Just check if there were two first lr_scheduler.step() calls before optimizer.step()
|
||
|
elif self.optimizer._step_count < 1:
|
||
|
warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
|
||
|
"In PyTorch 1.1.0 and later, you should call them in the opposite order: "
|
||
|
"`optimizer.step()` before `lr_scheduler.step()`. Failure to do this "
|
||
|
"will result in PyTorch skipping the first value of the learning rate schedule. "
|
||
|
"See more details at "
|
||
|
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
|
||
|
self._step_count += 1
|
||
|
|
||
|
with _enable_get_lr_call(self):
|
||
|
if epoch is None:
|
||
|
self.last_epoch += 1
|
||
|
values = self.get_lr()
|
||
|
else:
|
||
|
warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
|
||
|
self.last_epoch = epoch
|
||
|
if hasattr(self, "_get_closed_form_lr"):
|
||
|
values = self._get_closed_form_lr()
|
||
|
else:
|
||
|
values = self.get_lr()
|
||
|
|
||
|
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
|
||
|
param_group, lr = data
|
||
|
param_group['lr'] = lr
|
||
|
|
||
|
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
|
||
|
|
||
|
|
||
|
# Including _LRScheduler for backwards compatibility
|
||
|
# Subclass instead of assign because we want __name__ of _LRScheduler to be _LRScheduler (assigning would make it LRScheduler).
|
||
|
class _LRScheduler(LRScheduler):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class _enable_get_lr_call:
|
||
|
|
||
|
def __init__(self, o):
|
||
|
self.o = o
|
||
|
|
||
|
def __enter__(self):
|
||
|
self.o._get_lr_called_within_step = True
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, type, value, traceback):
|
||
|
self.o._get_lr_called_within_step = False
|
||
|
|
||
|
|
||
|
class LambdaLR(LRScheduler):
|
||
|
"""Sets the learning rate of each parameter group to the initial lr
|
||
|
times a given function. When last_epoch=-1, sets initial lr as lr.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
lr_lambda (function or list): A function which computes a multiplicative
|
||
|
factor given an integer parameter epoch, or a list of such
|
||
|
functions, one for each group in optimizer.param_groups.
|
||
|
last_epoch (int): The index of last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> # Assuming optimizer has two groups.
|
||
|
>>> lambda1 = lambda epoch: epoch // 30
|
||
|
>>> lambda2 = lambda epoch: 0.95 ** epoch
|
||
|
>>> scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, lr_lambda, last_epoch=-1, verbose="deprecated"):
|
||
|
self.optimizer = optimizer
|
||
|
|
||
|
if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
|
||
|
self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
|
||
|
else:
|
||
|
if len(lr_lambda) != len(optimizer.param_groups):
|
||
|
raise ValueError(f"Expected {len(optimizer.param_groups)} lr_lambdas, but got {len(lr_lambda)}")
|
||
|
self.lr_lambdas = list(lr_lambda)
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def state_dict(self):
|
||
|
"""Returns the state of the scheduler as a :class:`dict`.
|
||
|
|
||
|
It contains an entry for every variable in self.__dict__ which
|
||
|
is not the optimizer.
|
||
|
The learning rate lambda functions will only be saved if they are callable objects
|
||
|
and not if they are functions or lambdas.
|
||
|
|
||
|
When saving or loading the scheduler, please make sure to also save or load the state of the optimizer.
|
||
|
"""
|
||
|
|
||
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in ('optimizer', 'lr_lambdas')}
|
||
|
state_dict['lr_lambdas'] = [None] * len(self.lr_lambdas)
|
||
|
|
||
|
for idx, fn in enumerate(self.lr_lambdas):
|
||
|
if not isinstance(fn, types.FunctionType):
|
||
|
state_dict['lr_lambdas'][idx] = fn.__dict__.copy()
|
||
|
|
||
|
return state_dict
|
||
|
|
||
|
def load_state_dict(self, state_dict):
|
||
|
"""Loads the schedulers state.
|
||
|
|
||
|
When saving or loading the scheduler, please make sure to also save or load the state of the optimizer.
|
||
|
|
||
|
Args:
|
||
|
state_dict (dict): scheduler state. Should be an object returned
|
||
|
from a call to :meth:`state_dict`.
|
||
|
"""
|
||
|
|
||
|
lr_lambdas = state_dict.pop('lr_lambdas')
|
||
|
self.__dict__.update(state_dict)
|
||
|
# Restore state_dict keys in order to prevent side effects
|
||
|
# https://github.com/pytorch/pytorch/issues/32756
|
||
|
state_dict['lr_lambdas'] = lr_lambdas
|
||
|
|
||
|
for idx, fn in enumerate(lr_lambdas):
|
||
|
if fn is not None:
|
||
|
self.lr_lambdas[idx].__dict__.update(fn)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.")
|
||
|
|
||
|
return [base_lr * lmbda(self.last_epoch)
|
||
|
for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs)]
|
||
|
|
||
|
|
||
|
class MultiplicativeLR(LRScheduler):
|
||
|
"""Multiply the learning rate of each parameter group by the factor given
|
||
|
in the specified function. When last_epoch=-1, sets initial lr as lr.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
lr_lambda (function or list): A function which computes a multiplicative
|
||
|
factor given an integer parameter epoch, or a list of such
|
||
|
functions, one for each group in optimizer.param_groups.
|
||
|
last_epoch (int): The index of last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> lmbda = lambda epoch: 0.95
|
||
|
>>> scheduler = MultiplicativeLR(optimizer, lr_lambda=lmbda)
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, lr_lambda, last_epoch=-1, verbose="deprecated"):
|
||
|
self.optimizer = optimizer
|
||
|
|
||
|
if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple):
|
||
|
self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups)
|
||
|
else:
|
||
|
if len(lr_lambda) != len(optimizer.param_groups):
|
||
|
raise ValueError(f"Expected {len(optimizer.param_groups)} lr_lambdas, but got {len(lr_lambda)}")
|
||
|
self.lr_lambdas = list(lr_lambda)
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def state_dict(self):
|
||
|
"""Returns the state of the scheduler as a :class:`dict`.
|
||
|
|
||
|
It contains an entry for every variable in self.__dict__ which
|
||
|
is not the optimizer.
|
||
|
The learning rate lambda functions will only be saved if they are callable objects
|
||
|
and not if they are functions or lambdas.
|
||
|
"""
|
||
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in ('optimizer', 'lr_lambdas')}
|
||
|
state_dict['lr_lambdas'] = [None] * len(self.lr_lambdas)
|
||
|
|
||
|
for idx, fn in enumerate(self.lr_lambdas):
|
||
|
if not isinstance(fn, types.FunctionType):
|
||
|
state_dict['lr_lambdas'][idx] = fn.__dict__.copy()
|
||
|
|
||
|
return state_dict
|
||
|
|
||
|
def load_state_dict(self, state_dict):
|
||
|
"""Loads the schedulers state.
|
||
|
|
||
|
Args:
|
||
|
state_dict (dict): scheduler state. Should be an object returned
|
||
|
from a call to :meth:`state_dict`.
|
||
|
"""
|
||
|
lr_lambdas = state_dict.pop('lr_lambdas')
|
||
|
self.__dict__.update(state_dict)
|
||
|
# Restore state_dict keys in order to prevent side effects
|
||
|
# https://github.com/pytorch/pytorch/issues/32756
|
||
|
state_dict['lr_lambdas'] = lr_lambdas
|
||
|
|
||
|
for idx, fn in enumerate(lr_lambdas):
|
||
|
if fn is not None:
|
||
|
self.lr_lambdas[idx].__dict__.update(fn)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
if self.last_epoch > 0:
|
||
|
return [group['lr'] * lmbda(self.last_epoch)
|
||
|
for lmbda, group in zip(self.lr_lambdas, self.optimizer.param_groups)]
|
||
|
else:
|
||
|
return [group['lr'] for group in self.optimizer.param_groups]
|
||
|
|
||
|
|
||
|
class StepLR(LRScheduler):
|
||
|
"""Decays the learning rate of each parameter group by gamma every
|
||
|
step_size epochs. Notice that such decay can happen simultaneously with
|
||
|
other changes to the learning rate from outside this scheduler. When
|
||
|
last_epoch=-1, sets initial lr as lr.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
step_size (int): Period of learning rate decay.
|
||
|
gamma (float): Multiplicative factor of learning rate decay.
|
||
|
Default: 0.1.
|
||
|
last_epoch (int): The index of last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> # Assuming optimizer uses lr = 0.05 for all groups
|
||
|
>>> # lr = 0.05 if epoch < 30
|
||
|
>>> # lr = 0.005 if 30 <= epoch < 60
|
||
|
>>> # lr = 0.0005 if 60 <= epoch < 90
|
||
|
>>> # ...
|
||
|
>>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, step_size, gamma=0.1, last_epoch=-1, verbose="deprecated"):
|
||
|
self.step_size = step_size
|
||
|
self.gamma = gamma
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
if (self.last_epoch == 0) or (self.last_epoch % self.step_size != 0):
|
||
|
return [group['lr'] for group in self.optimizer.param_groups]
|
||
|
return [group['lr'] * self.gamma
|
||
|
for group in self.optimizer.param_groups]
|
||
|
|
||
|
def _get_closed_form_lr(self):
|
||
|
return [base_lr * self.gamma ** (self.last_epoch // self.step_size)
|
||
|
for base_lr in self.base_lrs]
|
||
|
|
||
|
|
||
|
class MultiStepLR(LRScheduler):
|
||
|
"""Decays the learning rate of each parameter group by gamma once the
|
||
|
number of epoch reaches one of the milestones. Notice that such decay can
|
||
|
happen simultaneously with other changes to the learning rate from outside
|
||
|
this scheduler. When last_epoch=-1, sets initial lr as lr.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
milestones (list): List of epoch indices. Must be increasing.
|
||
|
gamma (float): Multiplicative factor of learning rate decay.
|
||
|
Default: 0.1.
|
||
|
last_epoch (int): The index of last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> # Assuming optimizer uses lr = 0.05 for all groups
|
||
|
>>> # lr = 0.05 if epoch < 30
|
||
|
>>> # lr = 0.005 if 30 <= epoch < 80
|
||
|
>>> # lr = 0.0005 if epoch >= 80
|
||
|
>>> scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1)
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, milestones, gamma=0.1, last_epoch=-1, verbose="deprecated"):
|
||
|
self.milestones = Counter(milestones)
|
||
|
self.gamma = gamma
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
if self.last_epoch not in self.milestones:
|
||
|
return [group['lr'] for group in self.optimizer.param_groups]
|
||
|
return [group['lr'] * self.gamma ** self.milestones[self.last_epoch]
|
||
|
for group in self.optimizer.param_groups]
|
||
|
|
||
|
def _get_closed_form_lr(self):
|
||
|
milestones = sorted(self.milestones.elements())
|
||
|
return [base_lr * self.gamma ** bisect_right(milestones, self.last_epoch)
|
||
|
for base_lr in self.base_lrs]
|
||
|
|
||
|
|
||
|
class ConstantLR(LRScheduler):
|
||
|
"""Multiply the learning rate of each parameter group by a small constant factor until the
|
||
|
number of epoch reaches a pre-defined milestone: total_iters.
|
||
|
Notice that such multiplication of the small constant factor can
|
||
|
happen simultaneously with other changes to the learning rate from outside this scheduler.
|
||
|
When last_epoch=-1, sets initial lr as lr.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
factor (float): The number we multiply learning rate until the milestone. Default: 1./3.
|
||
|
total_iters (int): The number of steps that the scheduler multiplies the learning rate by the factor.
|
||
|
Default: 5.
|
||
|
last_epoch (int): The index of the last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> # Assuming optimizer uses lr = 0.05 for all groups
|
||
|
>>> # lr = 0.025 if epoch == 0
|
||
|
>>> # lr = 0.025 if epoch == 1
|
||
|
>>> # lr = 0.025 if epoch == 2
|
||
|
>>> # lr = 0.025 if epoch == 3
|
||
|
>>> # lr = 0.05 if epoch >= 4
|
||
|
>>> scheduler = ConstantLR(optimizer, factor=0.5, total_iters=4)
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, factor=1.0 / 3, total_iters=5, last_epoch=-1, verbose="deprecated"):
|
||
|
if factor > 1.0 or factor < 0:
|
||
|
raise ValueError('Constant multiplicative factor expected to be between 0 and 1.')
|
||
|
|
||
|
self.factor = factor
|
||
|
self.total_iters = total_iters
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
if self.last_epoch == 0:
|
||
|
return [group['lr'] * self.factor for group in self.optimizer.param_groups]
|
||
|
|
||
|
if self.last_epoch != self.total_iters:
|
||
|
return [group['lr'] for group in self.optimizer.param_groups]
|
||
|
|
||
|
return [group['lr'] * (1.0 / self.factor) for group in self.optimizer.param_groups]
|
||
|
|
||
|
def _get_closed_form_lr(self):
|
||
|
return [base_lr * (self.factor + (self.last_epoch >= self.total_iters) * (1 - self.factor))
|
||
|
for base_lr in self.base_lrs]
|
||
|
|
||
|
|
||
|
class LinearLR(LRScheduler):
|
||
|
"""Decays the learning rate of each parameter group by linearly changing small
|
||
|
multiplicative factor until the number of epoch reaches a pre-defined milestone: total_iters.
|
||
|
Notice that such decay can happen simultaneously with other changes to the learning rate
|
||
|
from outside this scheduler. When last_epoch=-1, sets initial lr as lr.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
start_factor (float): The number we multiply learning rate in the first epoch.
|
||
|
The multiplication factor changes towards end_factor in the following epochs.
|
||
|
Default: 1./3.
|
||
|
end_factor (float): The number we multiply learning rate at the end of linear changing
|
||
|
process. Default: 1.0.
|
||
|
total_iters (int): The number of iterations that multiplicative factor reaches to 1.
|
||
|
Default: 5.
|
||
|
last_epoch (int): The index of the last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> # Assuming optimizer uses lr = 0.05 for all groups
|
||
|
>>> # lr = 0.025 if epoch == 0
|
||
|
>>> # lr = 0.03125 if epoch == 1
|
||
|
>>> # lr = 0.0375 if epoch == 2
|
||
|
>>> # lr = 0.04375 if epoch == 3
|
||
|
>>> # lr = 0.05 if epoch >= 4
|
||
|
>>> scheduler = LinearLR(optimizer, start_factor=0.5, total_iters=4)
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, start_factor=1.0 / 3, end_factor=1.0, total_iters=5, last_epoch=-1,
|
||
|
verbose="deprecated"):
|
||
|
if start_factor > 1.0 or start_factor <= 0:
|
||
|
raise ValueError('Starting multiplicative factor expected to be greater than 0 and less or equal to 1.')
|
||
|
|
||
|
if end_factor > 1.0 or end_factor < 0:
|
||
|
raise ValueError('Ending multiplicative factor expected to be between 0 and 1.')
|
||
|
|
||
|
self.start_factor = start_factor
|
||
|
self.end_factor = end_factor
|
||
|
self.total_iters = total_iters
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
if self.last_epoch == 0:
|
||
|
return [group['lr'] * self.start_factor for group in self.optimizer.param_groups]
|
||
|
|
||
|
if self.last_epoch > self.total_iters:
|
||
|
return [group['lr'] for group in self.optimizer.param_groups]
|
||
|
|
||
|
return [group['lr'] * (1. + (self.end_factor - self.start_factor) /
|
||
|
(self.total_iters * self.start_factor + (self.last_epoch - 1) * (self.end_factor - self.start_factor)))
|
||
|
for group in self.optimizer.param_groups]
|
||
|
|
||
|
def _get_closed_form_lr(self):
|
||
|
return [base_lr * (self.start_factor +
|
||
|
(self.end_factor - self.start_factor) * min(self.total_iters, self.last_epoch) / self.total_iters)
|
||
|
for base_lr in self.base_lrs]
|
||
|
|
||
|
|
||
|
class ExponentialLR(LRScheduler):
|
||
|
"""Decays the learning rate of each parameter group by gamma every epoch.
|
||
|
When last_epoch=-1, sets initial lr as lr.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
gamma (float): Multiplicative factor of learning rate decay.
|
||
|
last_epoch (int): The index of last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, gamma, last_epoch=-1, verbose="deprecated"):
|
||
|
self.gamma = gamma
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
if self.last_epoch == 0:
|
||
|
return [group['lr'] for group in self.optimizer.param_groups]
|
||
|
return [group['lr'] * self.gamma
|
||
|
for group in self.optimizer.param_groups]
|
||
|
|
||
|
def _get_closed_form_lr(self):
|
||
|
return [base_lr * self.gamma ** self.last_epoch
|
||
|
for base_lr in self.base_lrs]
|
||
|
|
||
|
|
||
|
class SequentialLR(LRScheduler):
|
||
|
"""Receives the list of schedulers that is expected to be called sequentially during
|
||
|
optimization process and milestone points that provides exact intervals to reflect
|
||
|
which scheduler is supposed to be called at a given epoch.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
schedulers (list): List of chained schedulers.
|
||
|
milestones (list): List of integers that reflects milestone points.
|
||
|
last_epoch (int): The index of last epoch. Default: -1.
|
||
|
verbose (bool): Does nothing.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> # Assuming optimizer uses lr = 1. for all groups
|
||
|
>>> # lr = 0.1 if epoch == 0
|
||
|
>>> # lr = 0.1 if epoch == 1
|
||
|
>>> # lr = 0.9 if epoch == 2
|
||
|
>>> # lr = 0.81 if epoch == 3
|
||
|
>>> # lr = 0.729 if epoch == 4
|
||
|
>>> scheduler1 = ConstantLR(optimizer, factor=0.1, total_iters=2)
|
||
|
>>> scheduler2 = ExponentialLR(optimizer, gamma=0.9)
|
||
|
>>> scheduler = SequentialLR(optimizer, schedulers=[scheduler1, scheduler2], milestones=[2])
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, schedulers, milestones, last_epoch=-1, verbose="deprecated"):
|
||
|
for scheduler_idx in range(len(schedulers)):
|
||
|
if schedulers[scheduler_idx].optimizer != optimizer:
|
||
|
raise ValueError(
|
||
|
"Sequential Schedulers expects all schedulers to belong to the same optimizer, but "
|
||
|
f"got schedulers at index {scheduler_idx} to be different than the optimizer passed in."
|
||
|
)
|
||
|
|
||
|
if (schedulers[scheduler_idx].optimizer != schedulers[0].optimizer):
|
||
|
raise ValueError(
|
||
|
"Sequential Schedulers expects all schedulers to belong to the same optimizer, but "
|
||
|
f"got schedulers at index {0} and {scheduler_idx} to be different."
|
||
|
)
|
||
|
if (len(milestones) != len(schedulers) - 1):
|
||
|
raise ValueError(
|
||
|
"Sequential Schedulers expects number of schedulers provided to be one more "
|
||
|
f"than the number of milestone points, but got number of schedulers {len(schedulers)} and the "
|
||
|
f"number of milestones to be equal to {len(milestones)}"
|
||
|
)
|
||
|
_check_verbose_deprecated_warning(verbose)
|
||
|
self._schedulers = schedulers
|
||
|
self._milestones = milestones
|
||
|
self.last_epoch = last_epoch + 1
|
||
|
self.optimizer = optimizer
|
||
|
|
||
|
# Reset learning rates back to initial values
|
||
|
for group in self.optimizer.param_groups:
|
||
|
group["lr"] = group["initial_lr"]
|
||
|
|
||
|
# "Undo" the step performed by other schedulers
|
||
|
for scheduler in self._schedulers:
|
||
|
scheduler.last_epoch -= 1
|
||
|
|
||
|
# Perform the initial step for only the first scheduler
|
||
|
self._schedulers[0]._initial_step()
|
||
|
|
||
|
self._last_lr = schedulers[0].get_last_lr()
|
||
|
|
||
|
def step(self):
|
||
|
self.last_epoch += 1
|
||
|
idx = bisect_right(self._milestones, self.last_epoch)
|
||
|
scheduler = self._schedulers[idx]
|
||
|
if idx > 0 and self._milestones[idx - 1] == self.last_epoch:
|
||
|
scheduler.step(0)
|
||
|
else:
|
||
|
scheduler.step()
|
||
|
|
||
|
self._last_lr = scheduler.get_last_lr()
|
||
|
|
||
|
def state_dict(self):
|
||
|
"""Returns the state of the scheduler as a :class:`dict`.
|
||
|
|
||
|
It contains an entry for every variable in self.__dict__ which
|
||
|
is not the optimizer.
|
||
|
The wrapped scheduler states will also be saved.
|
||
|
"""
|
||
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in ('optimizer', '_schedulers')}
|
||
|
state_dict['_schedulers'] = [None] * len(self._schedulers)
|
||
|
|
||
|
for idx, s in enumerate(self._schedulers):
|
||
|
state_dict['_schedulers'][idx] = s.state_dict()
|
||
|
|
||
|
return state_dict
|
||
|
|
||
|
def load_state_dict(self, state_dict):
|
||
|
"""Loads the schedulers state.
|
||
|
|
||
|
Args:
|
||
|
state_dict (dict): scheduler state. Should be an object returned
|
||
|
from a call to :meth:`state_dict`.
|
||
|
"""
|
||
|
_schedulers = state_dict.pop('_schedulers')
|
||
|
self.__dict__.update(state_dict)
|
||
|
# Restore state_dict keys in order to prevent side effects
|
||
|
# https://github.com/pytorch/pytorch/issues/32756
|
||
|
state_dict['_schedulers'] = _schedulers
|
||
|
|
||
|
for idx, s in enumerate(_schedulers):
|
||
|
self._schedulers[idx].load_state_dict(s)
|
||
|
|
||
|
|
||
|
class PolynomialLR(LRScheduler):
|
||
|
"""Decays the learning rate of each parameter group using a polynomial function
|
||
|
in the given total_iters. When last_epoch=-1, sets initial lr as lr.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
total_iters (int): The number of steps that the scheduler decays the learning rate. Default: 5.
|
||
|
power (float): The power of the polynomial. Default: 1.0.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("undefined vars")
|
||
|
>>> # Assuming optimizer uses lr = 0.001 for all groups
|
||
|
>>> # lr = 0.001 if epoch == 0
|
||
|
>>> # lr = 0.00075 if epoch == 1
|
||
|
>>> # lr = 0.00050 if epoch == 2
|
||
|
>>> # lr = 0.00025 if epoch == 3
|
||
|
>>> # lr = 0.0 if epoch >= 4
|
||
|
>>> scheduler = PolynomialLR(optimizer, total_iters=4, power=1.0)
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
def __init__(self, optimizer, total_iters=5, power=1.0, last_epoch=-1, verbose="deprecated"):
|
||
|
self.total_iters = total_iters
|
||
|
self.power = power
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
if self.last_epoch == 0 or self.last_epoch > self.total_iters:
|
||
|
return [group["lr"] for group in self.optimizer.param_groups]
|
||
|
|
||
|
decay_factor = ((1.0 - self.last_epoch / self.total_iters) / (1.0 - (self.last_epoch - 1) / self.total_iters)) ** self.power
|
||
|
return [group["lr"] * decay_factor for group in self.optimizer.param_groups]
|
||
|
|
||
|
def _get_closed_form_lr(self):
|
||
|
return [
|
||
|
(
|
||
|
base_lr * (1.0 - min(self.total_iters, self.last_epoch) / self.total_iters) ** self.power
|
||
|
)
|
||
|
for base_lr in self.base_lrs
|
||
|
]
|
||
|
|
||
|
|
||
|
class CosineAnnealingLR(LRScheduler):
|
||
|
r"""Set the learning rate of each parameter group using a cosine annealing
|
||
|
schedule, where :math:`\eta_{max}` is set to the initial lr and
|
||
|
:math:`T_{cur}` is the number of epochs since the last restart in SGDR:
|
||
|
|
||
|
.. math::
|
||
|
\begin{aligned}
|
||
|
\eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
|
||
|
+ \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
|
||
|
& T_{cur} \neq (2k+1)T_{max}; \\
|
||
|
\eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
|
||
|
\left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
|
||
|
& T_{cur} = (2k+1)T_{max}.
|
||
|
\end{aligned}
|
||
|
|
||
|
When last_epoch=-1, sets initial lr as lr. Notice that because the schedule
|
||
|
is defined recursively, the learning rate can be simultaneously modified
|
||
|
outside this scheduler by other operators. If the learning rate is set
|
||
|
solely by this scheduler, the learning rate at each step becomes:
|
||
|
|
||
|
.. math::
|
||
|
\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 +
|
||
|
\cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right)
|
||
|
|
||
|
It has been proposed in
|
||
|
`SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only
|
||
|
implements the cosine annealing part of SGDR, and not the restarts.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
T_max (int): Maximum number of iterations.
|
||
|
eta_min (float): Minimum learning rate. Default: 0.
|
||
|
last_epoch (int): The index of last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
.. _SGDR\: Stochastic Gradient Descent with Warm Restarts:
|
||
|
https://arxiv.org/abs/1608.03983
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1, verbose="deprecated"):
|
||
|
self.T_max = T_max
|
||
|
self.eta_min = eta_min
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
if self.last_epoch == 0:
|
||
|
return [group['lr'] for group in self.optimizer.param_groups]
|
||
|
elif self._step_count == 1 and self.last_epoch > 0:
|
||
|
return [self.eta_min + (base_lr - self.eta_min) *
|
||
|
(1 + math.cos((self.last_epoch) * math.pi / self.T_max)) / 2
|
||
|
for base_lr, group in
|
||
|
zip(self.base_lrs, self.optimizer.param_groups)]
|
||
|
elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
|
||
|
return [group['lr'] + (base_lr - self.eta_min) *
|
||
|
(1 - math.cos(math.pi / self.T_max)) / 2
|
||
|
for base_lr, group in
|
||
|
zip(self.base_lrs, self.optimizer.param_groups)]
|
||
|
return [(1 + math.cos(math.pi * self.last_epoch / self.T_max)) /
|
||
|
(1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) *
|
||
|
(group['lr'] - self.eta_min) + self.eta_min
|
||
|
for group in self.optimizer.param_groups]
|
||
|
|
||
|
def _get_closed_form_lr(self):
|
||
|
return [self.eta_min + (base_lr - self.eta_min) *
|
||
|
(1 + math.cos(math.pi * self.last_epoch / self.T_max)) / 2
|
||
|
for base_lr in self.base_lrs]
|
||
|
|
||
|
|
||
|
class ChainedScheduler(LRScheduler):
|
||
|
"""Chains list of learning rate schedulers. It takes a list of chainable learning
|
||
|
rate schedulers and performs consecutive step() functions belonging to them by just
|
||
|
one call.
|
||
|
|
||
|
Args:
|
||
|
schedulers (list): List of chained schedulers.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> # Assuming optimizer uses lr = 1. for all groups
|
||
|
>>> # lr = 0.09 if epoch == 0
|
||
|
>>> # lr = 0.081 if epoch == 1
|
||
|
>>> # lr = 0.729 if epoch == 2
|
||
|
>>> # lr = 0.6561 if epoch == 3
|
||
|
>>> # lr = 0.59049 if epoch >= 4
|
||
|
>>> scheduler1 = ConstantLR(optimizer, factor=0.1, total_iters=2)
|
||
|
>>> scheduler2 = ExponentialLR(optimizer, gamma=0.9)
|
||
|
>>> scheduler = ChainedScheduler([scheduler1, scheduler2])
|
||
|
>>> for epoch in range(100):
|
||
|
>>> train(...)
|
||
|
>>> validate(...)
|
||
|
>>> scheduler.step()
|
||
|
"""
|
||
|
|
||
|
def __init__(self, schedulers):
|
||
|
for scheduler_idx in range(1, len(schedulers)):
|
||
|
if (schedulers[scheduler_idx].optimizer != schedulers[0].optimizer):
|
||
|
raise ValueError(
|
||
|
"ChainedScheduler expects all schedulers to belong to the same optimizer, but "
|
||
|
f"got schedulers at index {0} and {scheduler_idx} to be different"
|
||
|
)
|
||
|
self._schedulers = list(schedulers)
|
||
|
self.optimizer = schedulers[0].optimizer
|
||
|
self._last_lr = [group['lr'] for group in self._schedulers[-1].optimizer.param_groups]
|
||
|
|
||
|
def step(self):
|
||
|
for scheduler in self._schedulers:
|
||
|
scheduler.step()
|
||
|
self._last_lr = [group['lr'] for group in self._schedulers[-1].optimizer.param_groups]
|
||
|
|
||
|
def state_dict(self):
|
||
|
"""Returns the state of the scheduler as a :class:`dict`.
|
||
|
|
||
|
It contains an entry for every variable in self.__dict__ which
|
||
|
is not the optimizer.
|
||
|
The wrapped scheduler states will also be saved.
|
||
|
"""
|
||
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in ('optimizer', '_schedulers')}
|
||
|
state_dict['_schedulers'] = [None] * len(self._schedulers)
|
||
|
|
||
|
for idx, s in enumerate(self._schedulers):
|
||
|
state_dict['_schedulers'][idx] = s.state_dict()
|
||
|
|
||
|
return state_dict
|
||
|
|
||
|
def load_state_dict(self, state_dict):
|
||
|
"""Loads the schedulers state.
|
||
|
|
||
|
Args:
|
||
|
state_dict (dict): scheduler state. Should be an object returned
|
||
|
from a call to :meth:`state_dict`.
|
||
|
"""
|
||
|
_schedulers = state_dict.pop('_schedulers')
|
||
|
self.__dict__.update(state_dict)
|
||
|
# Restore state_dict keys in order to prevent side effects
|
||
|
# https://github.com/pytorch/pytorch/issues/32756
|
||
|
state_dict['_schedulers'] = _schedulers
|
||
|
|
||
|
for idx, s in enumerate(_schedulers):
|
||
|
self._schedulers[idx].load_state_dict(s)
|
||
|
|
||
|
|
||
|
class ReduceLROnPlateau(LRScheduler):
|
||
|
"""Reduce learning rate when a metric has stopped improving.
|
||
|
Models often benefit from reducing the learning rate by a factor
|
||
|
of 2-10 once learning stagnates. This scheduler reads a metrics
|
||
|
quantity and if no improvement is seen for a 'patience' number
|
||
|
of epochs, the learning rate is reduced.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
mode (str): One of `min`, `max`. In `min` mode, lr will
|
||
|
be reduced when the quantity monitored has stopped
|
||
|
decreasing; in `max` mode it will be reduced when the
|
||
|
quantity monitored has stopped increasing. Default: 'min'.
|
||
|
factor (float): Factor by which the learning rate will be
|
||
|
reduced. new_lr = lr * factor. Default: 0.1.
|
||
|
patience (int): The number of allowed epochs with no improvement after
|
||
|
which the learning rate will be reduced.
|
||
|
For example, consider the case of having no patience (`patience = 0`).
|
||
|
In the first epoch, a baseline is established and is always considered good as there's no previous baseline.
|
||
|
In the second epoch, if the performance is worse than the baseline,
|
||
|
we have what is considered an intolerable epoch.
|
||
|
Since the count of intolerable epochs (1) is greater than the patience level (0),
|
||
|
the learning rate is reduced at the end of this epoch.
|
||
|
From the third epoch onwards, the learning rate continues to be reduced at the end of each epoch
|
||
|
if the performance is worse than the baseline. If the performance improves or remains the same,
|
||
|
the learning rate is not adjusted.
|
||
|
Default: 10.
|
||
|
threshold (float): Threshold for measuring the new optimum,
|
||
|
to only focus on significant changes. Default: 1e-4.
|
||
|
threshold_mode (str): One of `rel`, `abs`. In `rel` mode,
|
||
|
dynamic_threshold = best * ( 1 + threshold ) in 'max'
|
||
|
mode or best * ( 1 - threshold ) in `min` mode.
|
||
|
In `abs` mode, dynamic_threshold = best + threshold in
|
||
|
`max` mode or best - threshold in `min` mode. Default: 'rel'.
|
||
|
cooldown (int): Number of epochs to wait before resuming
|
||
|
normal operation after lr has been reduced. Default: 0.
|
||
|
min_lr (float or list): A scalar or a list of scalars. A
|
||
|
lower bound on the learning rate of all param groups
|
||
|
or each group respectively. Default: 0.
|
||
|
eps (float): Minimal decay applied to lr. If the difference
|
||
|
between new and old lr is smaller than eps, the update is
|
||
|
ignored. Default: 1e-8.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
|
||
|
>>> scheduler = ReduceLROnPlateau(optimizer, 'min')
|
||
|
>>> for epoch in range(10):
|
||
|
>>> train(...)
|
||
|
>>> val_loss = validate(...)
|
||
|
>>> # Note that step should be called after validate()
|
||
|
>>> scheduler.step(val_loss)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, mode='min', factor=0.1, patience=10,
|
||
|
threshold=1e-4, threshold_mode='rel', cooldown=0,
|
||
|
min_lr=0, eps=1e-8, verbose="deprecated"):
|
||
|
|
||
|
if factor >= 1.0:
|
||
|
raise ValueError('Factor should be < 1.0.')
|
||
|
self.factor = factor
|
||
|
|
||
|
# Attach optimizer
|
||
|
if not isinstance(optimizer, Optimizer):
|
||
|
raise TypeError(f'{type(optimizer).__name__} is not an Optimizer')
|
||
|
self.optimizer = optimizer
|
||
|
|
||
|
if isinstance(min_lr, (list, tuple)):
|
||
|
if len(min_lr) != len(optimizer.param_groups):
|
||
|
raise ValueError(f"expected {len(optimizer.param_groups)} min_lrs, got {len(min_lr)}")
|
||
|
self.min_lrs = list(min_lr)
|
||
|
else:
|
||
|
self.min_lrs = [min_lr] * len(optimizer.param_groups)
|
||
|
|
||
|
self.patience = patience
|
||
|
|
||
|
self.verbose = _check_verbose_deprecated_warning(verbose)
|
||
|
self.cooldown = cooldown
|
||
|
self.cooldown_counter = 0
|
||
|
self.mode = mode
|
||
|
self.threshold = threshold
|
||
|
self.threshold_mode = threshold_mode
|
||
|
self.best = None
|
||
|
self.num_bad_epochs = None
|
||
|
self.mode_worse = None # the worse value for the chosen mode
|
||
|
self.eps = eps
|
||
|
self.last_epoch = 0
|
||
|
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
|
||
|
self._init_is_better(mode=mode, threshold=threshold,
|
||
|
threshold_mode=threshold_mode)
|
||
|
self._reset()
|
||
|
|
||
|
def _reset(self):
|
||
|
"""Resets num_bad_epochs counter and cooldown counter."""
|
||
|
self.best = self.mode_worse
|
||
|
self.cooldown_counter = 0
|
||
|
self.num_bad_epochs = 0
|
||
|
|
||
|
def step(self, metrics, epoch=None):
|
||
|
# convert `metrics` to float, in case it's a zero-dim Tensor
|
||
|
current = float(metrics)
|
||
|
if epoch is None:
|
||
|
epoch = self.last_epoch + 1
|
||
|
else:
|
||
|
warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
|
||
|
self.last_epoch = epoch
|
||
|
|
||
|
if self.is_better(current, self.best):
|
||
|
self.best = current
|
||
|
self.num_bad_epochs = 0
|
||
|
else:
|
||
|
self.num_bad_epochs += 1
|
||
|
|
||
|
if self.in_cooldown:
|
||
|
self.cooldown_counter -= 1
|
||
|
self.num_bad_epochs = 0 # ignore any bad epochs in cooldown
|
||
|
|
||
|
if self.num_bad_epochs > self.patience:
|
||
|
self._reduce_lr(epoch)
|
||
|
self.cooldown_counter = self.cooldown
|
||
|
self.num_bad_epochs = 0
|
||
|
|
||
|
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
|
||
|
|
||
|
def _reduce_lr(self, epoch):
|
||
|
for i, param_group in enumerate(self.optimizer.param_groups):
|
||
|
old_lr = float(param_group['lr'])
|
||
|
new_lr = max(old_lr * self.factor, self.min_lrs[i])
|
||
|
if old_lr - new_lr > self.eps:
|
||
|
param_group['lr'] = new_lr
|
||
|
|
||
|
@property
|
||
|
def in_cooldown(self):
|
||
|
return self.cooldown_counter > 0
|
||
|
|
||
|
def is_better(self, a, best):
|
||
|
if self.mode == 'min' and self.threshold_mode == 'rel':
|
||
|
rel_epsilon = 1. - self.threshold
|
||
|
return a < best * rel_epsilon
|
||
|
|
||
|
elif self.mode == 'min' and self.threshold_mode == 'abs':
|
||
|
return a < best - self.threshold
|
||
|
|
||
|
elif self.mode == 'max' and self.threshold_mode == 'rel':
|
||
|
rel_epsilon = self.threshold + 1.
|
||
|
return a > best * rel_epsilon
|
||
|
|
||
|
else: # mode == 'max' and epsilon_mode == 'abs':
|
||
|
return a > best + self.threshold
|
||
|
|
||
|
def _init_is_better(self, mode, threshold, threshold_mode):
|
||
|
if mode not in {'min', 'max'}:
|
||
|
raise ValueError('mode ' + mode + ' is unknown!')
|
||
|
if threshold_mode not in {'rel', 'abs'}:
|
||
|
raise ValueError('threshold mode ' + threshold_mode + ' is unknown!')
|
||
|
|
||
|
if mode == 'min':
|
||
|
self.mode_worse = inf
|
||
|
else: # mode == 'max':
|
||
|
self.mode_worse = -inf
|
||
|
|
||
|
self.mode = mode
|
||
|
self.threshold = threshold
|
||
|
self.threshold_mode = threshold_mode
|
||
|
|
||
|
def state_dict(self):
|
||
|
return {key: value for key, value in self.__dict__.items() if key != 'optimizer'}
|
||
|
|
||
|
def load_state_dict(self, state_dict):
|
||
|
self.__dict__.update(state_dict)
|
||
|
self._init_is_better(mode=self.mode, threshold=self.threshold, threshold_mode=self.threshold_mode)
|
||
|
|
||
|
|
||
|
class CyclicLR(LRScheduler):
|
||
|
r"""Sets the learning rate of each parameter group according to
|
||
|
cyclical learning rate policy (CLR). The policy cycles the learning
|
||
|
rate between two boundaries with a constant frequency, as detailed in
|
||
|
the paper `Cyclical Learning Rates for Training Neural Networks`_.
|
||
|
The distance between the two boundaries can be scaled on a per-iteration
|
||
|
or per-cycle basis.
|
||
|
|
||
|
Cyclical learning rate policy changes the learning rate after every batch.
|
||
|
`step` should be called after a batch has been used for training.
|
||
|
|
||
|
This class has three built-in policies, as put forth in the paper:
|
||
|
|
||
|
* "triangular": A basic triangular cycle without amplitude scaling.
|
||
|
* "triangular2": A basic triangular cycle that scales initial amplitude by half each cycle.
|
||
|
* "exp_range": A cycle that scales initial amplitude by :math:`\text{gamma}^{\text{cycle iterations}}`
|
||
|
at each cycle iteration.
|
||
|
|
||
|
This implementation was adapted from the github repo: `bckenstler/CLR`_
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
base_lr (float or list): Initial learning rate which is the
|
||
|
lower boundary in the cycle for each parameter group.
|
||
|
max_lr (float or list): Upper learning rate boundaries in the cycle
|
||
|
for each parameter group. Functionally,
|
||
|
it defines the cycle amplitude (max_lr - base_lr).
|
||
|
The lr at any cycle is the sum of base_lr
|
||
|
and some scaling of the amplitude; therefore
|
||
|
max_lr may not actually be reached depending on
|
||
|
scaling function.
|
||
|
step_size_up (int): Number of training iterations in the
|
||
|
increasing half of a cycle. Default: 2000
|
||
|
step_size_down (int): Number of training iterations in the
|
||
|
decreasing half of a cycle. If step_size_down is None,
|
||
|
it is set to step_size_up. Default: None
|
||
|
mode (str): One of {triangular, triangular2, exp_range}.
|
||
|
Values correspond to policies detailed above.
|
||
|
If scale_fn is not None, this argument is ignored.
|
||
|
Default: 'triangular'
|
||
|
gamma (float): Constant in 'exp_range' scaling function:
|
||
|
gamma**(cycle iterations)
|
||
|
Default: 1.0
|
||
|
scale_fn (function): Custom scaling policy defined by a single
|
||
|
argument lambda function, where
|
||
|
0 <= scale_fn(x) <= 1 for all x >= 0.
|
||
|
If specified, then 'mode' is ignored.
|
||
|
Default: None
|
||
|
scale_mode (str): {'cycle', 'iterations'}.
|
||
|
Defines whether scale_fn is evaluated on
|
||
|
cycle number or cycle iterations (training
|
||
|
iterations since start of cycle).
|
||
|
Default: 'cycle'
|
||
|
cycle_momentum (bool): If ``True``, momentum is cycled inversely
|
||
|
to learning rate between 'base_momentum' and 'max_momentum'.
|
||
|
Default: True
|
||
|
base_momentum (float or list): Lower momentum boundaries in the cycle
|
||
|
for each parameter group. Note that momentum is cycled inversely
|
||
|
to learning rate; at the peak of a cycle, momentum is
|
||
|
'base_momentum' and learning rate is 'max_lr'.
|
||
|
Default: 0.8
|
||
|
max_momentum (float or list): Upper momentum boundaries in the cycle
|
||
|
for each parameter group. Functionally,
|
||
|
it defines the cycle amplitude (max_momentum - base_momentum).
|
||
|
The momentum at any cycle is the difference of max_momentum
|
||
|
and some scaling of the amplitude; therefore
|
||
|
base_momentum may not actually be reached depending on
|
||
|
scaling function. Note that momentum is cycled inversely
|
||
|
to learning rate; at the start of a cycle, momentum is 'max_momentum'
|
||
|
and learning rate is 'base_lr'
|
||
|
Default: 0.9
|
||
|
last_epoch (int): The index of the last batch. This parameter is used when
|
||
|
resuming a training job. Since `step()` should be invoked after each
|
||
|
batch instead of after each epoch, this number represents the total
|
||
|
number of *batches* computed, not the total number of epochs computed.
|
||
|
When last_epoch=-1, the schedule is started from the beginning.
|
||
|
Default: -1
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
|
||
|
>>> scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.01, max_lr=0.1)
|
||
|
>>> data_loader = torch.utils.data.DataLoader(...)
|
||
|
>>> for epoch in range(10):
|
||
|
>>> for batch in data_loader:
|
||
|
>>> train_batch(...)
|
||
|
>>> scheduler.step()
|
||
|
|
||
|
|
||
|
.. _Cyclical Learning Rates for Training Neural Networks: https://arxiv.org/abs/1506.01186
|
||
|
.. _bckenstler/CLR: https://github.com/bckenstler/CLR
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
optimizer,
|
||
|
base_lr,
|
||
|
max_lr,
|
||
|
step_size_up=2000,
|
||
|
step_size_down=None,
|
||
|
mode='triangular',
|
||
|
gamma=1.,
|
||
|
scale_fn=None,
|
||
|
scale_mode='cycle',
|
||
|
cycle_momentum=True,
|
||
|
base_momentum=0.8,
|
||
|
max_momentum=0.9,
|
||
|
last_epoch=-1,
|
||
|
verbose="deprecated"):
|
||
|
|
||
|
# Attach optimizer
|
||
|
if not isinstance(optimizer, Optimizer):
|
||
|
raise TypeError(f'{type(optimizer).__name__} is not an Optimizer')
|
||
|
self.optimizer = optimizer
|
||
|
|
||
|
base_lrs = self._format_param('base_lr', optimizer, base_lr)
|
||
|
if last_epoch == -1:
|
||
|
for lr, group in zip(base_lrs, optimizer.param_groups):
|
||
|
group['lr'] = lr
|
||
|
|
||
|
self.max_lrs = self._format_param('max_lr', optimizer, max_lr)
|
||
|
|
||
|
step_size_up = float(step_size_up)
|
||
|
step_size_down = float(step_size_down) if step_size_down is not None else step_size_up
|
||
|
self.total_size = step_size_up + step_size_down
|
||
|
self.step_ratio = step_size_up / self.total_size
|
||
|
|
||
|
if mode not in ['triangular', 'triangular2', 'exp_range'] \
|
||
|
and scale_fn is None:
|
||
|
raise ValueError('mode is invalid and scale_fn is None')
|
||
|
|
||
|
self.mode = mode
|
||
|
self.gamma = gamma
|
||
|
|
||
|
self._scale_fn_ref = None
|
||
|
self._scale_fn_custom = scale_fn
|
||
|
self.scale_mode = scale_mode
|
||
|
self._init_scale_fn()
|
||
|
|
||
|
self.cycle_momentum = cycle_momentum
|
||
|
if cycle_momentum:
|
||
|
if 'momentum' not in optimizer.defaults and 'betas' not in optimizer.defaults:
|
||
|
raise ValueError('optimizer must support momentum or beta1 with `cycle_momentum` option enabled')
|
||
|
|
||
|
self.use_beta1 = 'betas' in self.optimizer.defaults
|
||
|
self.base_momentums = self._format_param('base_momentum', optimizer, base_momentum)
|
||
|
self.max_momentums = self._format_param('max_momentum', optimizer, max_momentum)
|
||
|
if last_epoch == -1:
|
||
|
for m_momentum, b_momentum, group in zip(self.max_momentums, self.base_momentums, optimizer.param_groups):
|
||
|
if self.use_beta1:
|
||
|
group['betas'] = (m_momentum, *group['betas'][1:])
|
||
|
else:
|
||
|
group['momentum'] = m_momentum
|
||
|
group['max_momentum'] = m_momentum
|
||
|
group['base_momentum'] = b_momentum
|
||
|
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
self.base_lrs = base_lrs
|
||
|
|
||
|
def _init_scale_fn(self):
|
||
|
if self._scale_fn_custom is not None:
|
||
|
return
|
||
|
if self.mode == 'triangular':
|
||
|
self._scale_fn_ref = self._triangular_scale_fn
|
||
|
self.scale_mode = 'cycle'
|
||
|
elif self.mode == 'triangular2':
|
||
|
self._scale_fn_ref = self._triangular2_scale_fn
|
||
|
self.scale_mode = 'cycle'
|
||
|
elif self.mode == 'exp_range':
|
||
|
self._scale_fn_ref = partial(self._exp_range_scale_fn, self.gamma)
|
||
|
self.scale_mode = 'iterations'
|
||
|
|
||
|
def _format_param(self, name, optimizer, param):
|
||
|
"""Return correctly formatted lr/momentum for each param group."""
|
||
|
if isinstance(param, (list, tuple)):
|
||
|
if len(param) != len(optimizer.param_groups):
|
||
|
raise ValueError(f"expected {len(optimizer.param_groups)} values for {name}, got {len(param)}")
|
||
|
return param
|
||
|
else:
|
||
|
return [param] * len(optimizer.param_groups)
|
||
|
|
||
|
def scale_fn(self, x):
|
||
|
if self._scale_fn_custom is not None:
|
||
|
return self._scale_fn_custom(x)
|
||
|
else:
|
||
|
return self._scale_fn_ref(x) # static method
|
||
|
|
||
|
@staticmethod
|
||
|
def _triangular_scale_fn(x):
|
||
|
return 1.
|
||
|
|
||
|
@staticmethod
|
||
|
def _triangular2_scale_fn(x):
|
||
|
return 1 / (2. ** (x - 1))
|
||
|
|
||
|
@staticmethod
|
||
|
def _exp_range_scale_fn(gamma, x):
|
||
|
return gamma ** x
|
||
|
|
||
|
def get_lr(self):
|
||
|
"""Calculates the learning rate at batch index. This function treats
|
||
|
`self.last_epoch` as the last batch index.
|
||
|
|
||
|
If `self.cycle_momentum` is ``True``, this function has a side effect of
|
||
|
updating the optimizer's momentum.
|
||
|
"""
|
||
|
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
cycle = math.floor(1 + self.last_epoch / self.total_size)
|
||
|
x = 1. + self.last_epoch / self.total_size - cycle
|
||
|
if x <= self.step_ratio:
|
||
|
scale_factor = x / self.step_ratio
|
||
|
else:
|
||
|
scale_factor = (x - 1) / (self.step_ratio - 1)
|
||
|
|
||
|
lrs = []
|
||
|
for base_lr, max_lr in zip(self.base_lrs, self.max_lrs):
|
||
|
base_height = (max_lr - base_lr) * scale_factor
|
||
|
if self.scale_mode == 'cycle':
|
||
|
lr = base_lr + base_height * self.scale_fn(cycle)
|
||
|
else:
|
||
|
lr = base_lr + base_height * self.scale_fn(self.last_epoch)
|
||
|
lrs.append(lr)
|
||
|
|
||
|
if self.cycle_momentum:
|
||
|
momentums = []
|
||
|
for base_momentum, max_momentum in zip(self.base_momentums, self.max_momentums):
|
||
|
base_height = (max_momentum - base_momentum) * scale_factor
|
||
|
if self.scale_mode == 'cycle':
|
||
|
momentum = max_momentum - base_height * self.scale_fn(cycle)
|
||
|
else:
|
||
|
momentum = max_momentum - base_height * self.scale_fn(self.last_epoch)
|
||
|
momentums.append(momentum)
|
||
|
for param_group, momentum in zip(self.optimizer.param_groups, momentums):
|
||
|
if self.use_beta1:
|
||
|
param_group['betas'] = (momentum, *param_group['betas'][1:])
|
||
|
else:
|
||
|
param_group['momentum'] = momentum
|
||
|
|
||
|
return lrs
|
||
|
|
||
|
def state_dict(self):
|
||
|
state = super().state_dict()
|
||
|
# We are dropping the `_scale_fn_ref` attribute because it is a
|
||
|
# `weakref.WeakMethod` and can't be pickled.
|
||
|
state.pop('_scale_fn_ref')
|
||
|
fn = state.pop('_scale_fn_custom')
|
||
|
state['_scale_fn_custom'] = None
|
||
|
if fn is not None and not isinstance(fn, types.FunctionType):
|
||
|
# The _scale_fn_custom will only be saved if it is a callable object
|
||
|
# and not if it is a function or lambda.
|
||
|
state['_scale_fn_custom'] = fn.__dict__.copy()
|
||
|
|
||
|
return state
|
||
|
|
||
|
def load_state_dict(self, state_dict):
|
||
|
fn = state_dict.pop('_scale_fn_custom')
|
||
|
super().load_state_dict(state_dict)
|
||
|
if fn is not None:
|
||
|
self._scale_fn_custom.__dict__.update(fn)
|
||
|
self._init_scale_fn()
|
||
|
|
||
|
|
||
|
class CosineAnnealingWarmRestarts(LRScheduler):
|
||
|
r"""Set the learning rate of each parameter group using a cosine annealing
|
||
|
schedule, where :math:`\eta_{max}` is set to the initial lr, :math:`T_{cur}`
|
||
|
is the number of epochs since the last restart and :math:`T_{i}` is the number
|
||
|
of epochs between two warm restarts in SGDR:
|
||
|
|
||
|
.. math::
|
||
|
\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 +
|
||
|
\cos\left(\frac{T_{cur}}{T_{i}}\pi\right)\right)
|
||
|
|
||
|
When :math:`T_{cur}=T_{i}`, set :math:`\eta_t = \eta_{min}`.
|
||
|
When :math:`T_{cur}=0` after restart, set :math:`\eta_t=\eta_{max}`.
|
||
|
|
||
|
It has been proposed in
|
||
|
`SGDR: Stochastic Gradient Descent with Warm Restarts`_.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
T_0 (int): Number of iterations for the first restart.
|
||
|
T_mult (int, optional): A factor increases :math:`T_{i}` after a restart. Default: 1.
|
||
|
eta_min (float, optional): Minimum learning rate. Default: 0.
|
||
|
last_epoch (int, optional): The index of last epoch. Default: -1.
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
.. _SGDR\: Stochastic Gradient Descent with Warm Restarts:
|
||
|
https://arxiv.org/abs/1608.03983
|
||
|
"""
|
||
|
|
||
|
def __init__(self, optimizer, T_0, T_mult=1, eta_min=0, last_epoch=-1, verbose="deprecated"):
|
||
|
if T_0 <= 0 or not isinstance(T_0, int):
|
||
|
raise ValueError(f"Expected positive integer T_0, but got {T_0}")
|
||
|
if T_mult < 1 or not isinstance(T_mult, int):
|
||
|
raise ValueError(f"Expected integer T_mult >= 1, but got {T_mult}")
|
||
|
if not isinstance(eta_min, (float, int)):
|
||
|
raise ValueError(f"Expected float or int eta_min, but got {eta_min} of type {type(eta_min)}")
|
||
|
self.T_0 = T_0
|
||
|
self.T_i = T_0
|
||
|
self.T_mult = T_mult
|
||
|
self.eta_min = eta_min
|
||
|
self.T_cur = last_epoch
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * self.T_cur / self.T_i)) / 2
|
||
|
for base_lr in self.base_lrs]
|
||
|
|
||
|
def step(self, epoch=None):
|
||
|
"""Step could be called after every batch update
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("Undefined vars")
|
||
|
>>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult)
|
||
|
>>> iters = len(dataloader)
|
||
|
>>> for epoch in range(20):
|
||
|
>>> for i, sample in enumerate(dataloader):
|
||
|
>>> inputs, labels = sample['inputs'], sample['labels']
|
||
|
>>> optimizer.zero_grad()
|
||
|
>>> outputs = net(inputs)
|
||
|
>>> loss = criterion(outputs, labels)
|
||
|
>>> loss.backward()
|
||
|
>>> optimizer.step()
|
||
|
>>> scheduler.step(epoch + i / iters)
|
||
|
|
||
|
This function can be called in an interleaved way.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("Undefined vars")
|
||
|
>>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult)
|
||
|
>>> for epoch in range(20):
|
||
|
>>> scheduler.step()
|
||
|
>>> scheduler.step(26)
|
||
|
>>> scheduler.step() # scheduler.step(27), instead of scheduler(20)
|
||
|
"""
|
||
|
|
||
|
if epoch is None and self.last_epoch < 0:
|
||
|
epoch = 0
|
||
|
|
||
|
if epoch is None:
|
||
|
epoch = self.last_epoch + 1
|
||
|
self.T_cur = self.T_cur + 1
|
||
|
if self.T_cur >= self.T_i:
|
||
|
self.T_cur = self.T_cur - self.T_i
|
||
|
self.T_i = self.T_i * self.T_mult
|
||
|
else:
|
||
|
if epoch < 0:
|
||
|
raise ValueError(f"Expected non-negative epoch, but got {epoch}")
|
||
|
if epoch >= self.T_0:
|
||
|
if self.T_mult == 1:
|
||
|
self.T_cur = epoch % self.T_0
|
||
|
else:
|
||
|
n = int(math.log((epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult))
|
||
|
self.T_cur = epoch - self.T_0 * (self.T_mult ** n - 1) / (self.T_mult - 1)
|
||
|
self.T_i = self.T_0 * self.T_mult ** (n)
|
||
|
else:
|
||
|
self.T_i = self.T_0
|
||
|
self.T_cur = epoch
|
||
|
self.last_epoch = math.floor(epoch)
|
||
|
|
||
|
class _enable_get_lr_call:
|
||
|
|
||
|
def __init__(self, o):
|
||
|
self.o = o
|
||
|
|
||
|
def __enter__(self):
|
||
|
self.o._get_lr_called_within_step = True
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, type, value, traceback):
|
||
|
self.o._get_lr_called_within_step = False
|
||
|
return self
|
||
|
|
||
|
with _enable_get_lr_call(self):
|
||
|
for i, data in enumerate(zip(self.optimizer.param_groups, self.get_lr())):
|
||
|
param_group, lr = data
|
||
|
param_group['lr'] = lr
|
||
|
|
||
|
self._last_lr = [group['lr'] for group in self.optimizer.param_groups]
|
||
|
|
||
|
|
||
|
class OneCycleLR(LRScheduler):
|
||
|
r"""Sets the learning rate of each parameter group according to the
|
||
|
1cycle learning rate policy. The 1cycle policy anneals the learning
|
||
|
rate from an initial learning rate to some maximum learning rate and then
|
||
|
from that maximum learning rate to some minimum learning rate much lower
|
||
|
than the initial learning rate.
|
||
|
This policy was initially described in the paper `Super-Convergence:
|
||
|
Very Fast Training of Neural Networks Using Large Learning Rates`_.
|
||
|
|
||
|
The 1cycle learning rate policy changes the learning rate after every batch.
|
||
|
`step` should be called after a batch has been used for training.
|
||
|
|
||
|
This scheduler is not chainable.
|
||
|
|
||
|
Note also that the total number of steps in the cycle can be determined in one
|
||
|
of two ways (listed in order of precedence):
|
||
|
|
||
|
#. A value for total_steps is explicitly provided.
|
||
|
#. A number of epochs (epochs) and a number of steps per epoch
|
||
|
(steps_per_epoch) are provided.
|
||
|
In this case, the number of total steps is inferred by
|
||
|
total_steps = epochs * steps_per_epoch
|
||
|
|
||
|
You must either provide a value for total_steps or provide a value for both
|
||
|
epochs and steps_per_epoch.
|
||
|
|
||
|
The default behaviour of this scheduler follows the fastai implementation of 1cycle, which
|
||
|
claims that "unpublished work has shown even better results by using only two phases". To
|
||
|
mimic the behaviour of the original paper instead, set ``three_phase=True``.
|
||
|
|
||
|
Args:
|
||
|
optimizer (Optimizer): Wrapped optimizer.
|
||
|
max_lr (float or list): Upper learning rate boundaries in the cycle
|
||
|
for each parameter group.
|
||
|
total_steps (int): The total number of steps in the cycle. Note that
|
||
|
if a value is not provided here, then it must be inferred by providing
|
||
|
a value for epochs and steps_per_epoch.
|
||
|
Default: None
|
||
|
epochs (int): The number of epochs to train for. This is used along
|
||
|
with steps_per_epoch in order to infer the total number of steps in the cycle
|
||
|
if a value for total_steps is not provided.
|
||
|
Default: None
|
||
|
steps_per_epoch (int): The number of steps per epoch to train for. This is
|
||
|
used along with epochs in order to infer the total number of steps in the
|
||
|
cycle if a value for total_steps is not provided.
|
||
|
Default: None
|
||
|
pct_start (float): The percentage of the cycle (in number of steps) spent
|
||
|
increasing the learning rate.
|
||
|
Default: 0.3
|
||
|
anneal_strategy (str): {'cos', 'linear'}
|
||
|
Specifies the annealing strategy: "cos" for cosine annealing, "linear" for
|
||
|
linear annealing.
|
||
|
Default: 'cos'
|
||
|
cycle_momentum (bool): If ``True``, momentum is cycled inversely
|
||
|
to learning rate between 'base_momentum' and 'max_momentum'.
|
||
|
Default: True
|
||
|
base_momentum (float or list): Lower momentum boundaries in the cycle
|
||
|
for each parameter group. Note that momentum is cycled inversely
|
||
|
to learning rate; at the peak of a cycle, momentum is
|
||
|
'base_momentum' and learning rate is 'max_lr'.
|
||
|
Default: 0.85
|
||
|
max_momentum (float or list): Upper momentum boundaries in the cycle
|
||
|
for each parameter group. Functionally,
|
||
|
it defines the cycle amplitude (max_momentum - base_momentum).
|
||
|
Note that momentum is cycled inversely
|
||
|
to learning rate; at the start of a cycle, momentum is 'max_momentum'
|
||
|
and learning rate is 'base_lr'
|
||
|
Default: 0.95
|
||
|
div_factor (float): Determines the initial learning rate via
|
||
|
initial_lr = max_lr/div_factor
|
||
|
Default: 25
|
||
|
final_div_factor (float): Determines the minimum learning rate via
|
||
|
min_lr = initial_lr/final_div_factor
|
||
|
Default: 1e4
|
||
|
three_phase (bool): If ``True``, use a third phase of the schedule to annihilate the
|
||
|
learning rate according to 'final_div_factor' instead of modifying the second
|
||
|
phase (the first two phases will be symmetrical about the step indicated by
|
||
|
'pct_start').
|
||
|
last_epoch (int): The index of the last batch. This parameter is used when
|
||
|
resuming a training job. Since `step()` should be invoked after each
|
||
|
batch instead of after each epoch, this number represents the total
|
||
|
number of *batches* computed, not the total number of epochs computed.
|
||
|
When last_epoch=-1, the schedule is started from the beginning.
|
||
|
Default: -1
|
||
|
verbose (bool): If ``True``, prints a message to stdout for
|
||
|
each update. Default: ``False``.
|
||
|
|
||
|
.. deprecated:: 2.2
|
||
|
``verbose`` is deprecated. Please use ``get_last_lr()`` to access the
|
||
|
learning rate.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> data_loader = torch.utils.data.DataLoader(...)
|
||
|
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
|
||
|
>>> scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=len(data_loader), epochs=10)
|
||
|
>>> for epoch in range(10):
|
||
|
>>> for batch in data_loader:
|
||
|
>>> train_batch(...)
|
||
|
>>> optimizer.step()
|
||
|
>>> scheduler.step()
|
||
|
|
||
|
|
||
|
.. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates:
|
||
|
https://arxiv.org/abs/1708.07120
|
||
|
"""
|
||
|
def __init__(self,
|
||
|
optimizer,
|
||
|
max_lr,
|
||
|
total_steps=None,
|
||
|
epochs=None,
|
||
|
steps_per_epoch=None,
|
||
|
pct_start=0.3,
|
||
|
anneal_strategy='cos',
|
||
|
cycle_momentum=True,
|
||
|
base_momentum=0.85,
|
||
|
max_momentum=0.95,
|
||
|
div_factor=25.,
|
||
|
final_div_factor=1e4,
|
||
|
three_phase=False,
|
||
|
last_epoch=-1,
|
||
|
verbose="deprecated"):
|
||
|
|
||
|
# Validate optimizer
|
||
|
if not isinstance(optimizer, Optimizer):
|
||
|
raise TypeError(f'{type(optimizer).__name__} is not an Optimizer')
|
||
|
self.optimizer = optimizer
|
||
|
|
||
|
# Validate total_steps
|
||
|
if total_steps is None and epochs is None and steps_per_epoch is None:
|
||
|
raise ValueError("You must define either total_steps OR (epochs AND steps_per_epoch)")
|
||
|
elif total_steps is not None:
|
||
|
if total_steps <= 0 or not isinstance(total_steps, int):
|
||
|
raise ValueError(f"Expected positive integer total_steps, but got {total_steps}")
|
||
|
self.total_steps = total_steps
|
||
|
else:
|
||
|
if epochs <= 0 or not isinstance(epochs, int):
|
||
|
raise ValueError(f"Expected positive integer epochs, but got {epochs}")
|
||
|
if steps_per_epoch <= 0 or not isinstance(steps_per_epoch, int):
|
||
|
raise ValueError(f"Expected positive integer steps_per_epoch, but got {steps_per_epoch}")
|
||
|
self.total_steps = epochs * steps_per_epoch
|
||
|
|
||
|
if three_phase:
|
||
|
self._schedule_phases = [
|
||
|
{
|
||
|
'end_step': float(pct_start * self.total_steps) - 1,
|
||
|
'start_lr': 'initial_lr',
|
||
|
'end_lr': 'max_lr',
|
||
|
'start_momentum': 'max_momentum',
|
||
|
'end_momentum': 'base_momentum',
|
||
|
},
|
||
|
{
|
||
|
'end_step': float(2 * pct_start * self.total_steps) - 2,
|
||
|
'start_lr': 'max_lr',
|
||
|
'end_lr': 'initial_lr',
|
||
|
'start_momentum': 'base_momentum',
|
||
|
'end_momentum': 'max_momentum',
|
||
|
},
|
||
|
{
|
||
|
'end_step': self.total_steps - 1,
|
||
|
'start_lr': 'initial_lr',
|
||
|
'end_lr': 'min_lr',
|
||
|
'start_momentum': 'max_momentum',
|
||
|
'end_momentum': 'max_momentum',
|
||
|
},
|
||
|
]
|
||
|
else:
|
||
|
self._schedule_phases = [
|
||
|
{
|
||
|
'end_step': float(pct_start * self.total_steps) - 1,
|
||
|
'start_lr': 'initial_lr',
|
||
|
'end_lr': 'max_lr',
|
||
|
'start_momentum': 'max_momentum',
|
||
|
'end_momentum': 'base_momentum',
|
||
|
},
|
||
|
{
|
||
|
'end_step': self.total_steps - 1,
|
||
|
'start_lr': 'max_lr',
|
||
|
'end_lr': 'min_lr',
|
||
|
'start_momentum': 'base_momentum',
|
||
|
'end_momentum': 'max_momentum',
|
||
|
},
|
||
|
]
|
||
|
|
||
|
# Validate pct_start
|
||
|
if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float):
|
||
|
raise ValueError(f"Expected float between 0 and 1 pct_start, but got {pct_start}")
|
||
|
|
||
|
# Validate anneal_strategy
|
||
|
if anneal_strategy not in ['cos', 'linear']:
|
||
|
raise ValueError(f"anneal_strategy must by one of 'cos' or 'linear', instead got {anneal_strategy}")
|
||
|
elif anneal_strategy == 'cos':
|
||
|
self.anneal_func = self._annealing_cos
|
||
|
elif anneal_strategy == 'linear':
|
||
|
self.anneal_func = self._annealing_linear
|
||
|
|
||
|
# Initialize learning rate variables
|
||
|
max_lrs = self._format_param('max_lr', self.optimizer, max_lr)
|
||
|
if last_epoch == -1:
|
||
|
for idx, group in enumerate(self.optimizer.param_groups):
|
||
|
group['initial_lr'] = max_lrs[idx] / div_factor
|
||
|
group['max_lr'] = max_lrs[idx]
|
||
|
group['min_lr'] = group['initial_lr'] / final_div_factor
|
||
|
|
||
|
# Initialize momentum variables
|
||
|
self.cycle_momentum = cycle_momentum
|
||
|
if self.cycle_momentum:
|
||
|
if 'momentum' not in self.optimizer.defaults and 'betas' not in self.optimizer.defaults:
|
||
|
raise ValueError('optimizer must support momentum or beta1 with `cycle_momentum` option enabled')
|
||
|
self.use_beta1 = 'betas' in self.optimizer.defaults
|
||
|
max_momentums = self._format_param('max_momentum', optimizer, max_momentum)
|
||
|
base_momentums = self._format_param('base_momentum', optimizer, base_momentum)
|
||
|
if last_epoch == -1:
|
||
|
for m_momentum, b_momentum, group in zip(max_momentums, base_momentums, optimizer.param_groups):
|
||
|
if self.use_beta1:
|
||
|
group['betas'] = (m_momentum, *group['betas'][1:])
|
||
|
else:
|
||
|
group['momentum'] = m_momentum
|
||
|
group['max_momentum'] = m_momentum
|
||
|
group['base_momentum'] = b_momentum
|
||
|
|
||
|
super().__init__(optimizer, last_epoch, verbose)
|
||
|
|
||
|
def _format_param(self, name, optimizer, param):
|
||
|
"""Return correctly formatted lr/momentum for each param group."""
|
||
|
if isinstance(param, (list, tuple)):
|
||
|
if len(param) != len(optimizer.param_groups):
|
||
|
raise ValueError(f"expected {len(optimizer.param_groups)} values for {name}, got {len(param)}")
|
||
|
return param
|
||
|
else:
|
||
|
return [param] * len(optimizer.param_groups)
|
||
|
|
||
|
@staticmethod
|
||
|
def _annealing_cos(start, end, pct):
|
||
|
"Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0."
|
||
|
cos_out = math.cos(math.pi * pct) + 1
|
||
|
return end + (start - end) / 2.0 * cos_out
|
||
|
|
||
|
@staticmethod
|
||
|
def _annealing_linear(start, end, pct):
|
||
|
"Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0."
|
||
|
return (end - start) * pct + start
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
|
||
|
lrs = []
|
||
|
step_num = self.last_epoch
|
||
|
|
||
|
if step_num > self.total_steps:
|
||
|
raise ValueError("Tried to step {} times. The specified number of total steps is {}"
|
||
|
.format(step_num, self.total_steps))
|
||
|
|
||
|
for group in self.optimizer.param_groups:
|
||
|
start_step = 0
|
||
|
for i, phase in enumerate(self._schedule_phases):
|
||
|
end_step = phase['end_step']
|
||
|
if step_num <= end_step or i == len(self._schedule_phases) - 1:
|
||
|
pct = (step_num - start_step) / (end_step - start_step)
|
||
|
computed_lr = self.anneal_func(group[phase['start_lr']], group[phase['end_lr']], pct)
|
||
|
if self.cycle_momentum:
|
||
|
computed_momentum = self.anneal_func(group[phase['start_momentum']], group[phase['end_momentum']], pct)
|
||
|
break
|
||
|
start_step = phase['end_step']
|
||
|
|
||
|
lrs.append(computed_lr)
|
||
|
if self.cycle_momentum:
|
||
|
if self.use_beta1:
|
||
|
group['betas'] = (computed_momentum, *group['betas'][1:])
|
||
|
else:
|
||
|
group['momentum'] = computed_momentum
|
||
|
|
||
|
return lrs
|