378 lines
16 KiB
Python
378 lines
16 KiB
Python
|
import itertools
|
||
|
import math
|
||
|
from copy import deepcopy
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
from torch.nn import Module
|
||
|
from torch.optim.lr_scheduler import LRScheduler
|
||
|
from torch.utils._foreach_utils import _get_foreach_kernels_supported_devices
|
||
|
|
||
|
__all__ = [
|
||
|
'AveragedModel',
|
||
|
'update_bn',
|
||
|
'SWALR',
|
||
|
'get_ema_multi_avg_fn',
|
||
|
'get_swa_multi_avg_fn',
|
||
|
'get_ema_avg_fn',
|
||
|
'get_swa_avg_fn'
|
||
|
]
|
||
|
|
||
|
from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype
|
||
|
|
||
|
|
||
|
def get_ema_multi_avg_fn(decay=0.999):
|
||
|
@torch.no_grad()
|
||
|
def ema_update(ema_param_list, current_param_list, _):
|
||
|
# foreach lerp only handles float and complex
|
||
|
if torch.is_floating_point(ema_param_list[0]) or torch.is_complex(ema_param_list[0]):
|
||
|
torch._foreach_lerp_(ema_param_list, current_param_list, 1 - decay)
|
||
|
else:
|
||
|
for p_ema, p_model in zip(ema_param_list, current_param_list):
|
||
|
p_ema.copy_(p_ema * decay + p_model * (1 - decay))
|
||
|
|
||
|
return ema_update
|
||
|
|
||
|
|
||
|
def get_swa_multi_avg_fn():
|
||
|
@torch.no_grad()
|
||
|
def swa_update(averaged_param_list, current_param_list, num_averaged):
|
||
|
# foreach lerp only handles float and complex
|
||
|
if torch.is_floating_point(averaged_param_list[0]) or torch.is_complex(averaged_param_list[0]):
|
||
|
torch._foreach_lerp_(averaged_param_list, current_param_list, 1 / (num_averaged + 1))
|
||
|
else:
|
||
|
diffs = torch._foreach_sub(current_param_list, averaged_param_list)
|
||
|
torch._foreach_addcdiv_(averaged_param_list, diffs, [num_averaged + 1] * len(averaged_param_list))
|
||
|
|
||
|
return swa_update
|
||
|
|
||
|
|
||
|
def get_ema_avg_fn(decay=0.999):
|
||
|
@torch.no_grad()
|
||
|
def ema_update(ema_param, current_param, num_averaged):
|
||
|
return decay * ema_param + (1 - decay) * current_param
|
||
|
|
||
|
return ema_update
|
||
|
|
||
|
|
||
|
def get_swa_avg_fn():
|
||
|
@torch.no_grad()
|
||
|
def swa_update(averaged_param, current_param, num_averaged):
|
||
|
return averaged_param + (current_param - averaged_param) / (num_averaged + 1)
|
||
|
|
||
|
return swa_update
|
||
|
|
||
|
|
||
|
class AveragedModel(Module):
|
||
|
r"""Implements averaged model for Stochastic Weight Averaging (SWA) and
|
||
|
Exponential Moving Average (EMA).
|
||
|
|
||
|
Stochastic Weight Averaging was proposed in `Averaging Weights Leads to
|
||
|
Wider Optima and Better Generalization`_ by Pavel Izmailov, Dmitrii
|
||
|
Podoprikhin, Timur Garipov, Dmitry Vetrov and Andrew Gordon Wilson
|
||
|
(UAI 2018).
|
||
|
|
||
|
Exponential Moving Average is a variation of `Polyak averaging`_,
|
||
|
but using exponential weights instead of equal weights across iterations.
|
||
|
|
||
|
AveragedModel class creates a copy of the provided module :attr:`model`
|
||
|
on the device :attr:`device` and allows to compute running averages of the
|
||
|
parameters of the :attr:`model`.
|
||
|
|
||
|
Args:
|
||
|
model (torch.nn.Module): model to use with SWA/EMA
|
||
|
device (torch.device, optional): if provided, the averaged model will be
|
||
|
stored on the :attr:`device`
|
||
|
avg_fn (function, optional): the averaging function used to update
|
||
|
parameters; the function must take in the current value of the
|
||
|
:class:`AveragedModel` parameter, the current value of :attr:`model`
|
||
|
parameter, and the number of models already averaged; if None,
|
||
|
an equally weighted average is used (default: None)
|
||
|
multi_avg_fn (function, optional): the averaging function used to update
|
||
|
parameters inplace; the function must take in the current values of the
|
||
|
:class:`AveragedModel` parameters as a list, the current values of :attr:`model`
|
||
|
parameters as a list, and the number of models already averaged; if None,
|
||
|
an equally weighted average is used (default: None)
|
||
|
use_buffers (bool): if ``True``, it will compute running averages for
|
||
|
both the parameters and the buffers of the model. (default: ``False``)
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("undefined variables")
|
||
|
>>> loader, optimizer, model, loss_fn = ...
|
||
|
>>> swa_model = torch.optim.swa_utils.AveragedModel(model)
|
||
|
>>> scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
|
||
|
>>> T_max=300)
|
||
|
>>> swa_start = 160
|
||
|
>>> swa_scheduler = SWALR(optimizer, swa_lr=0.05)
|
||
|
>>> for i in range(300):
|
||
|
>>> for input, target in loader:
|
||
|
>>> optimizer.zero_grad()
|
||
|
>>> loss_fn(model(input), target).backward()
|
||
|
>>> optimizer.step()
|
||
|
>>> if i > swa_start:
|
||
|
>>> swa_model.update_parameters(model)
|
||
|
>>> swa_scheduler.step()
|
||
|
>>> else:
|
||
|
>>> scheduler.step()
|
||
|
>>>
|
||
|
>>> # Update bn statistics for the swa_model at the end
|
||
|
>>> torch.optim.swa_utils.update_bn(loader, swa_model)
|
||
|
|
||
|
You can also use custom averaging functions with the `avg_fn` or `multi_avg_fn` parameters.
|
||
|
If no averaging function is provided, the default is to compute
|
||
|
equally-weighted average of the weights (SWA).
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("undefined variables")
|
||
|
>>> # Compute exponential moving averages of the weights and buffers
|
||
|
>>> ema_model = torch.optim.swa_utils.AveragedModel(model,
|
||
|
>>> torch.optim.swa_utils.get_ema_multi_avg_fn(0.9), use_buffers=True)
|
||
|
|
||
|
.. note::
|
||
|
When using SWA/EMA with models containing Batch Normalization you may
|
||
|
need to update the activation statistics for Batch Normalization.
|
||
|
This can be done either by using the :meth:`torch.optim.swa_utils.update_bn`
|
||
|
or by setting :attr:`use_buffers` to `True`. The first approach updates the
|
||
|
statistics in a post-training step by passing data through the model. The
|
||
|
second does it during the parameter update phase by averaging all buffers.
|
||
|
Empirical evidence has shown that updating the statistics in normalization
|
||
|
layers increases accuracy, but you may wish to empirically test which
|
||
|
approach yields the best results in your problem.
|
||
|
|
||
|
.. note::
|
||
|
:attr:`avg_fn` and `multi_avg_fn` are not saved in the :meth:`state_dict` of the model.
|
||
|
|
||
|
.. note::
|
||
|
When :meth:`update_parameters` is called for the first time (i.e.
|
||
|
:attr:`n_averaged` is `0`) the parameters of `model` are copied
|
||
|
to the parameters of :class:`AveragedModel`. For every subsequent
|
||
|
call of :meth:`update_parameters` the function `avg_fn` is used
|
||
|
to update the parameters.
|
||
|
|
||
|
.. _Averaging Weights Leads to Wider Optima and Better Generalization:
|
||
|
https://arxiv.org/abs/1803.05407
|
||
|
.. _There Are Many Consistent Explanations of Unlabeled Data: Why You Should
|
||
|
Average:
|
||
|
https://arxiv.org/abs/1806.05594
|
||
|
.. _SWALP: Stochastic Weight Averaging in Low-Precision Training:
|
||
|
https://arxiv.org/abs/1904.11943
|
||
|
.. _Stochastic Weight Averaging in Parallel: Large-Batch Training That
|
||
|
Generalizes Well:
|
||
|
https://arxiv.org/abs/2001.02312
|
||
|
.. _Polyak averaging:
|
||
|
https://paperswithcode.com/method/polyak-averaging
|
||
|
"""
|
||
|
def __init__(self, model, device=None, avg_fn=None, multi_avg_fn=None, use_buffers=False):
|
||
|
super().__init__()
|
||
|
assert avg_fn is None or multi_avg_fn is None, 'Only one of avg_fn and multi_avg_fn should be provided'
|
||
|
self.module = deepcopy(model)
|
||
|
if device is not None:
|
||
|
self.module = self.module.to(device)
|
||
|
self.register_buffer('n_averaged',
|
||
|
torch.tensor(0, dtype=torch.long, device=device))
|
||
|
self.avg_fn = avg_fn
|
||
|
self.multi_avg_fn = multi_avg_fn
|
||
|
self.use_buffers = use_buffers
|
||
|
|
||
|
def forward(self, *args, **kwargs):
|
||
|
return self.module(*args, **kwargs)
|
||
|
|
||
|
def update_parameters(self, model):
|
||
|
self_param = (
|
||
|
itertools.chain(self.module.parameters(), self.module.buffers())
|
||
|
if self.use_buffers else self.parameters()
|
||
|
)
|
||
|
model_param = (
|
||
|
itertools.chain(model.parameters(), model.buffers())
|
||
|
if self.use_buffers else model.parameters()
|
||
|
)
|
||
|
self_param_detached = []
|
||
|
model_param_detached = []
|
||
|
for p_averaged, p_model in zip(self_param, model_param):
|
||
|
p_model_ = p_model.detach().to(p_averaged.device)
|
||
|
self_param_detached.append(p_averaged.detach())
|
||
|
model_param_detached.append(p_model_)
|
||
|
if self.n_averaged == 0:
|
||
|
p_averaged.detach().copy_(p_model_)
|
||
|
|
||
|
if self.n_averaged > 0:
|
||
|
if self.multi_avg_fn is not None or self.avg_fn is None:
|
||
|
grouped_tensors = _group_tensors_by_device_and_dtype([self_param_detached, model_param_detached])
|
||
|
for ((device, _), ([self_params, model_params], _)) in grouped_tensors.items():
|
||
|
if self.multi_avg_fn:
|
||
|
self.multi_avg_fn(self_params, model_params, self.n_averaged.to(device))
|
||
|
elif device.type in _get_foreach_kernels_supported_devices():
|
||
|
multi_avg_fn = get_swa_multi_avg_fn()
|
||
|
multi_avg_fn(self_params, model_params, self.n_averaged.to(device))
|
||
|
else:
|
||
|
avg_fn = get_swa_avg_fn()
|
||
|
n_averaged = self.n_averaged.to(device)
|
||
|
for p_averaged, p_model in zip(self_params, model_params):
|
||
|
p_averaged.copy_(avg_fn(p_averaged, p_model, n_averaged))
|
||
|
else:
|
||
|
for p_averaged, p_model in zip(self_param_detached, model_param_detached):
|
||
|
n_averaged = self.n_averaged.to(p_averaged.device)
|
||
|
p_averaged.detach().copy_(self.avg_fn(p_averaged.detach(), p_model, n_averaged))
|
||
|
|
||
|
if not self.use_buffers:
|
||
|
# If not apply running averages to the buffers,
|
||
|
# keep the buffers in sync with the source model.
|
||
|
for b_swa, b_model in zip(self.module.buffers(), model.buffers()):
|
||
|
b_swa.detach().copy_(b_model.detach().to(b_swa.device))
|
||
|
self.n_averaged += 1
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def update_bn(loader, model, device=None):
|
||
|
r"""Updates BatchNorm running_mean, running_var buffers in the model.
|
||
|
|
||
|
It performs one pass over data in `loader` to estimate the activation
|
||
|
statistics for BatchNorm layers in the model.
|
||
|
Args:
|
||
|
loader (torch.utils.data.DataLoader): dataset loader to compute the
|
||
|
activation statistics on. Each data batch should be either a
|
||
|
tensor, or a list/tuple whose first element is a tensor
|
||
|
containing data.
|
||
|
model (torch.nn.Module): model for which we seek to update BatchNorm
|
||
|
statistics.
|
||
|
device (torch.device, optional): If set, data will be transferred to
|
||
|
:attr:`device` before being passed into :attr:`model`.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("Undefined variables")
|
||
|
>>> loader, model = ...
|
||
|
>>> torch.optim.swa_utils.update_bn(loader, model)
|
||
|
|
||
|
.. note::
|
||
|
The `update_bn` utility assumes that each data batch in :attr:`loader`
|
||
|
is either a tensor or a list or tuple of tensors; in the latter case it
|
||
|
is assumed that :meth:`model.forward()` should be called on the first
|
||
|
element of the list or tuple corresponding to the data batch.
|
||
|
"""
|
||
|
momenta = {}
|
||
|
for module in model.modules():
|
||
|
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
|
||
|
module.reset_running_stats()
|
||
|
momenta[module] = module.momentum
|
||
|
|
||
|
if not momenta:
|
||
|
return
|
||
|
|
||
|
was_training = model.training
|
||
|
model.train()
|
||
|
for module in momenta.keys():
|
||
|
module.momentum = None
|
||
|
|
||
|
for input in loader:
|
||
|
if isinstance(input, (list, tuple)):
|
||
|
input = input[0]
|
||
|
if device is not None:
|
||
|
input = input.to(device)
|
||
|
|
||
|
model(input)
|
||
|
|
||
|
for bn_module in momenta.keys():
|
||
|
bn_module.momentum = momenta[bn_module]
|
||
|
model.train(was_training)
|
||
|
|
||
|
|
||
|
class SWALR(LRScheduler):
|
||
|
r"""Anneals the learning rate in each parameter group to a fixed value.
|
||
|
|
||
|
This learning rate scheduler is meant to be used with Stochastic Weight
|
||
|
Averaging (SWA) method (see `torch.optim.swa_utils.AveragedModel`).
|
||
|
|
||
|
Args:
|
||
|
optimizer (torch.optim.Optimizer): wrapped optimizer
|
||
|
swa_lrs (float or list): the learning rate value for all param groups
|
||
|
together or separately for each group.
|
||
|
annealing_epochs (int): number of epochs in the annealing phase
|
||
|
(default: 10)
|
||
|
annealing_strategy (str): "cos" or "linear"; specifies the annealing
|
||
|
strategy: "cos" for cosine annealing, "linear" for linear annealing
|
||
|
(default: "cos")
|
||
|
last_epoch (int): the index of the last epoch (default: -1)
|
||
|
|
||
|
The :class:`SWALR` scheduler can be used together with other
|
||
|
schedulers to switch to a constant learning rate late in the training
|
||
|
as in the example below.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("Undefined variables")
|
||
|
>>> loader, optimizer, model = ...
|
||
|
>>> lr_lambda = lambda epoch: 0.9
|
||
|
>>> scheduler = torch.optim.lr_scheduler.MultiplicativeLR(optimizer,
|
||
|
>>> lr_lambda=lr_lambda)
|
||
|
>>> swa_scheduler = torch.optim.swa_utils.SWALR(optimizer,
|
||
|
>>> anneal_strategy="linear", anneal_epochs=20, swa_lr=0.05)
|
||
|
>>> swa_start = 160
|
||
|
>>> for i in range(300):
|
||
|
>>> for input, target in loader:
|
||
|
>>> optimizer.zero_grad()
|
||
|
>>> loss_fn(model(input), target).backward()
|
||
|
>>> optimizer.step()
|
||
|
>>> if i > swa_start:
|
||
|
>>> swa_scheduler.step()
|
||
|
>>> else:
|
||
|
>>> scheduler.step()
|
||
|
|
||
|
.. _Averaging Weights Leads to Wider Optima and Better Generalization:
|
||
|
https://arxiv.org/abs/1803.05407
|
||
|
"""
|
||
|
def __init__(self, optimizer, swa_lr, anneal_epochs=10, anneal_strategy='cos', last_epoch=-1):
|
||
|
swa_lrs = self._format_param(optimizer, swa_lr)
|
||
|
for swa_lr, group in zip(swa_lrs, optimizer.param_groups):
|
||
|
group['swa_lr'] = swa_lr
|
||
|
if anneal_strategy not in ['cos', 'linear']:
|
||
|
raise ValueError("anneal_strategy must by one of 'cos' or 'linear', "
|
||
|
f"instead got {anneal_strategy}")
|
||
|
elif anneal_strategy == 'cos':
|
||
|
self.anneal_func = self._cosine_anneal
|
||
|
elif anneal_strategy == 'linear':
|
||
|
self.anneal_func = self._linear_anneal
|
||
|
if not isinstance(anneal_epochs, int) or anneal_epochs < 0:
|
||
|
raise ValueError(f"anneal_epochs must be equal or greater than 0, got {anneal_epochs}")
|
||
|
self.anneal_epochs = anneal_epochs
|
||
|
super().__init__(optimizer, last_epoch)
|
||
|
|
||
|
@staticmethod
|
||
|
def _format_param(optimizer, swa_lrs):
|
||
|
if isinstance(swa_lrs, (list, tuple)):
|
||
|
if len(swa_lrs) != len(optimizer.param_groups):
|
||
|
raise ValueError("swa_lr must have the same length as "
|
||
|
f"optimizer.param_groups: swa_lr has {len(swa_lrs)}, "
|
||
|
f"optimizer.param_groups has {len(optimizer.param_groups)}")
|
||
|
return swa_lrs
|
||
|
else:
|
||
|
return [swa_lrs] * len(optimizer.param_groups)
|
||
|
|
||
|
@staticmethod
|
||
|
def _linear_anneal(t):
|
||
|
return t
|
||
|
|
||
|
@staticmethod
|
||
|
def _cosine_anneal(t):
|
||
|
return (1 - math.cos(math.pi * t)) / 2
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_initial_lr(lr, swa_lr, alpha):
|
||
|
if alpha == 1:
|
||
|
return swa_lr
|
||
|
return (lr - alpha * swa_lr) / (1 - alpha)
|
||
|
|
||
|
def get_lr(self):
|
||
|
if not self._get_lr_called_within_step:
|
||
|
warnings.warn("To get the last learning rate computed by the scheduler, "
|
||
|
"please use `get_last_lr()`.", UserWarning)
|
||
|
step = self._step_count - 1
|
||
|
if self.anneal_epochs == 0:
|
||
|
step = max(1, step)
|
||
|
prev_t = max(0, min(1, (step - 1) / max(1, self.anneal_epochs)))
|
||
|
prev_alpha = self.anneal_func(prev_t)
|
||
|
prev_lrs = [self._get_initial_lr(group['lr'], group['swa_lr'], prev_alpha)
|
||
|
for group in self.optimizer.param_groups]
|
||
|
t = max(0, min(1, step / max(1, self.anneal_epochs)))
|
||
|
alpha = self.anneal_func(t)
|
||
|
return [group['swa_lr'] * alpha + lr * (1 - alpha)
|
||
|
for group, lr in zip(self.optimizer.param_groups, prev_lrs)]
|