1457 lines
61 KiB
Python
1457 lines
61 KiB
Python
|
import difflib
|
||
|
import os
|
||
|
import io
|
||
|
import shutil
|
||
|
import struct
|
||
|
import sys
|
||
|
import torch
|
||
|
import tarfile
|
||
|
import tempfile
|
||
|
import warnings
|
||
|
from contextlib import closing, contextmanager
|
||
|
from enum import Enum
|
||
|
from ._utils import _import_dotted_name
|
||
|
from torch._sources import get_source_lines_and_file
|
||
|
from torch.types import Storage
|
||
|
from torch.storage import _get_dtype_from_pickle_storage_type
|
||
|
from typing import Any, BinaryIO, Callable, cast, Dict, Optional, Type, Tuple, Union, IO, List
|
||
|
from typing_extensions import TypeAlias, TypeGuard # Python 3.10+
|
||
|
import copyreg
|
||
|
import pickle
|
||
|
import torch._weights_only_unpickler as _weights_only_unpickler
|
||
|
|
||
|
DEFAULT_PROTOCOL = 2
|
||
|
|
||
|
LONG_SIZE = struct.Struct('=l').size
|
||
|
INT_SIZE = struct.Struct('=i').size
|
||
|
SHORT_SIZE = struct.Struct('=h').size
|
||
|
|
||
|
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
|
||
|
PROTOCOL_VERSION = 1001
|
||
|
STORAGE_KEY_SEPARATOR = ','
|
||
|
|
||
|
FILE_LIKE: TypeAlias = Union[str, os.PathLike, BinaryIO, IO[bytes]]
|
||
|
MAP_LOCATION: TypeAlias = Optional[Union[Callable[[torch.Tensor, str], torch.Tensor], torch.device, str, Dict[str, str]]]
|
||
|
STORAGE: TypeAlias = Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage]
|
||
|
|
||
|
__all__ = [
|
||
|
'SourceChangeWarning',
|
||
|
'mkdtemp',
|
||
|
'register_package',
|
||
|
'check_module_version_greater_or_equal',
|
||
|
'validate_cuda_device',
|
||
|
'validate_hpu_device',
|
||
|
'location_tag',
|
||
|
'default_restore_location',
|
||
|
'normalize_storage_type',
|
||
|
'storage_to_tensor_type',
|
||
|
'save',
|
||
|
'load',
|
||
|
'StorageType',
|
||
|
'LoadEndianness',
|
||
|
'get_default_load_endianness',
|
||
|
'set_default_load_endianness',
|
||
|
]
|
||
|
|
||
|
|
||
|
class SourceChangeWarning(Warning):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def mkdtemp():
|
||
|
path = tempfile.mkdtemp()
|
||
|
try:
|
||
|
yield path
|
||
|
finally:
|
||
|
shutil.rmtree(path)
|
||
|
|
||
|
|
||
|
_package_registry: List[Tuple[int, Callable[[STORAGE], Optional[str]], Callable[[STORAGE, str], Optional[STORAGE]]]] = []
|
||
|
|
||
|
class LoadEndianness(Enum):
|
||
|
NATIVE = 1
|
||
|
LITTLE = 2
|
||
|
BIG = 3
|
||
|
|
||
|
_default_load_endian: Optional[LoadEndianness] = None
|
||
|
|
||
|
def get_default_load_endianness() -> Optional[LoadEndianness]:
|
||
|
'''
|
||
|
Get fallback byte order for loading files
|
||
|
|
||
|
If byteorder mark is not present in saved checkpoint,
|
||
|
this byte order is used as fallback.
|
||
|
By default, it's "native" byte order.
|
||
|
|
||
|
Returns:
|
||
|
default_load_endian: Optional[LoadEndianness]
|
||
|
'''
|
||
|
return _default_load_endian
|
||
|
|
||
|
def set_default_load_endianness(endianness):
|
||
|
'''
|
||
|
Set fallback byte order for loading files
|
||
|
|
||
|
If byteorder mark is not present in saved checkpoint,
|
||
|
this byte order is used as fallback.
|
||
|
By default, it's "native" byte order.
|
||
|
|
||
|
Args:
|
||
|
endianness: the new fallback byte order
|
||
|
'''
|
||
|
global _default_load_endian
|
||
|
if not isinstance(endianness, LoadEndianness) and endianness is not None:
|
||
|
raise TypeError("Invalid argument type in function set_default_load_endianness")
|
||
|
_default_load_endian = endianness
|
||
|
|
||
|
def _is_zipfile(f) -> bool:
|
||
|
# This is a stricter implementation than zipfile.is_zipfile().
|
||
|
# zipfile.is_zipfile() is True if the magic number appears anywhere in the
|
||
|
# binary. Since we expect the files here to be generated by torch.save or
|
||
|
# torch.jit.save, it's safe to only check the start bytes and avoid
|
||
|
# collisions and assume the zip has only 1 file.
|
||
|
# See bugs.python.org/issue28494.
|
||
|
|
||
|
start = f.tell()
|
||
|
# Read the first few bytes and match against the ZIP file signature
|
||
|
local_header_magic_number = b'PK\x03\x04'
|
||
|
read_bytes = f.read(len(local_header_magic_number))
|
||
|
f.seek(start)
|
||
|
return read_bytes == local_header_magic_number
|
||
|
|
||
|
|
||
|
def register_package(
|
||
|
priority: int,
|
||
|
tagger: Callable[[STORAGE], Optional[str]],
|
||
|
deserializer: Callable[[STORAGE, str], Optional[STORAGE]]
|
||
|
):
|
||
|
'''
|
||
|
Registers callables for tagging and deserializing storage objects with an associated priority.
|
||
|
Tagging associates a device with a storage object at save time while deserializing moves a
|
||
|
storage object to an appropriate device at load time. :attr:`tagger` and :attr:`deserializer`
|
||
|
are run in the order given by their :attr:`priority` until a tagger/deserializer returns a
|
||
|
value that is not `None`.
|
||
|
|
||
|
To override the deserialization behavior for a device in the global registry, one can register a
|
||
|
tagger with a higher priority than the existing tagger.
|
||
|
|
||
|
This function can also be used to register a tagger and deserializer for new devices.
|
||
|
|
||
|
Args:
|
||
|
priority: Indicates the priority associated with the tagger and deserializer, where a lower
|
||
|
value indicates higher priority.
|
||
|
tagger: Callable that takes in a storage object and returns its tagged device as a string
|
||
|
or None.
|
||
|
deserializer: Callable that takes in storage object and a device string and returns a storage
|
||
|
object on the appropriate device or None.
|
||
|
|
||
|
Returns:
|
||
|
`None`
|
||
|
|
||
|
Example:
|
||
|
>>> def ipu_tag(obj):
|
||
|
>>> if obj.device.type == 'ipu':
|
||
|
>>> return 'ipu'
|
||
|
>>> def ipu_deserialize(obj, location):
|
||
|
>>> if location.startswith('ipu'):
|
||
|
>>> ipu = getattr(torch, "ipu", None)
|
||
|
>>> assert ipu is not None, "IPU device module is not loaded"
|
||
|
>>> assert torch.ipu.is_available(), "ipu is not available"
|
||
|
>>> return obj.ipu(location)
|
||
|
>>> torch.serialization.register_package(11, ipu_tag, ipu_deserialize)
|
||
|
'''
|
||
|
queue_elem = (priority, tagger, deserializer)
|
||
|
_package_registry.append(queue_elem)
|
||
|
_package_registry.sort()
|
||
|
|
||
|
|
||
|
def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True):
|
||
|
'''
|
||
|
Check if a module's version satisfies requirements
|
||
|
|
||
|
Usually, a module's version string will be like 'x.y.z', which would be represented
|
||
|
as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version
|
||
|
string does not match the given tuple's format up to the length of the tuple, then
|
||
|
error and exit or emit a warning.
|
||
|
|
||
|
Args:
|
||
|
module: the module to check the version of
|
||
|
req_version_tuple: tuple (usually of ints) representing the required version
|
||
|
error_if_malformed: whether we should exit if module version string is malformed
|
||
|
|
||
|
Returns:
|
||
|
requirement_is_met: bool
|
||
|
'''
|
||
|
try:
|
||
|
version_strs = module.__version__.split('.')
|
||
|
# Cast module version fields to match the types of the required version
|
||
|
module_version = tuple(
|
||
|
type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple)
|
||
|
)
|
||
|
requirement_is_met = module_version >= req_version_tuple
|
||
|
|
||
|
except Exception as e:
|
||
|
message = (
|
||
|
f"'{module.__name__}' module version string is malformed '{module.__version__}' and cannot be compared"
|
||
|
f" with tuple {str(req_version_tuple)}"
|
||
|
)
|
||
|
if error_if_malformed:
|
||
|
raise RuntimeError(message) from e
|
||
|
else:
|
||
|
warnings.warn(message + ', but continuing assuming that requirement is met')
|
||
|
requirement_is_met = True
|
||
|
|
||
|
return requirement_is_met
|
||
|
|
||
|
|
||
|
def _cpu_tag(obj):
|
||
|
if obj.device.type == 'cpu':
|
||
|
return 'cpu'
|
||
|
|
||
|
|
||
|
def _cuda_tag(obj):
|
||
|
if obj.device.type == 'cuda':
|
||
|
return 'cuda:' + str(obj.device.index)
|
||
|
|
||
|
def _hpu_tag(obj):
|
||
|
if obj.device.type == 'hpu':
|
||
|
return 'hpu:' + str(obj.device.index)
|
||
|
|
||
|
def _mps_tag(obj):
|
||
|
if obj.device.type == 'mps':
|
||
|
return 'mps'
|
||
|
|
||
|
|
||
|
def _meta_tag(obj):
|
||
|
if obj.device.type == 'meta':
|
||
|
return 'meta'
|
||
|
|
||
|
|
||
|
def _privateuse1_tag(obj):
|
||
|
backend_name = torch._C._get_privateuse1_backend_name()
|
||
|
if obj.device.type == backend_name:
|
||
|
if obj.device.index is None:
|
||
|
return backend_name
|
||
|
else:
|
||
|
return backend_name + ':' + str(obj.device.index)
|
||
|
|
||
|
|
||
|
def _cpu_deserialize(obj, location):
|
||
|
if location == 'cpu':
|
||
|
return obj
|
||
|
|
||
|
|
||
|
def validate_cuda_device(location):
|
||
|
device = torch.cuda._utils._get_device_index(location, True)
|
||
|
|
||
|
if not torch.cuda.is_available():
|
||
|
raise RuntimeError('Attempting to deserialize object on a CUDA '
|
||
|
'device but torch.cuda.is_available() is False. '
|
||
|
'If you are running on a CPU-only machine, '
|
||
|
'please use torch.load with map_location=torch.device(\'cpu\') '
|
||
|
'to map your storages to the CPU.')
|
||
|
device_count = torch.cuda.device_count()
|
||
|
if device >= device_count:
|
||
|
raise RuntimeError('Attempting to deserialize object on CUDA device '
|
||
|
f'{device} but torch.cuda.device_count() is {device_count}. Please use '
|
||
|
'torch.load with map_location to map your storages '
|
||
|
'to an existing device.')
|
||
|
return device
|
||
|
|
||
|
|
||
|
def _cuda_deserialize(obj, location):
|
||
|
if location.startswith('cuda'):
|
||
|
device = validate_cuda_device(location)
|
||
|
if getattr(obj, "_torch_load_uninitialized", False):
|
||
|
with torch.cuda.device(device):
|
||
|
return torch.UntypedStorage(obj.nbytes(), device=torch.device(location))
|
||
|
else:
|
||
|
return obj.cuda(device)
|
||
|
|
||
|
|
||
|
def validate_hpu_device(location):
|
||
|
hpu = getattr(torch, "hpu", None)
|
||
|
assert hpu is not None, "HPU device module is not loaded"
|
||
|
device = hpu._utils._get_device_index(location, optional=True)
|
||
|
|
||
|
if not hpu.is_available():
|
||
|
raise RuntimeError('Attempting to deserialize object on a HPU '
|
||
|
'device but torch.hpu.is_available() is False. '
|
||
|
'If you are running on a CPU-only machine, '
|
||
|
'please use torch.load with map_location=torch.device(\'cpu\') '
|
||
|
'to map your storages to the CPU.')
|
||
|
device_count = hpu.device_count()
|
||
|
if device >= device_count:
|
||
|
raise RuntimeError('Attempting to deserialize object on HPU device '
|
||
|
f'{device} but torch.hpu.device_count() is {device_count}. Please use '
|
||
|
'torch.load with map_location to map your storages '
|
||
|
'to an existing device.')
|
||
|
return device
|
||
|
|
||
|
|
||
|
def _hpu_deserialize(obj, location):
|
||
|
if location.startswith('hpu'):
|
||
|
hpu = getattr(torch, "hpu", None)
|
||
|
assert hpu is not None, "HPU device module is not loaded"
|
||
|
device = validate_hpu_device(location)
|
||
|
if getattr(obj, "_torch_load_uninitialized", False):
|
||
|
with hpu.device(device):
|
||
|
return torch.UntypedStorage(obj.nbytes(), device=torch.device(location))
|
||
|
else:
|
||
|
return obj.hpu(device)
|
||
|
|
||
|
|
||
|
def _mps_deserialize(obj, location):
|
||
|
if location.startswith('mps'):
|
||
|
return obj.mps()
|
||
|
|
||
|
|
||
|
def _meta_deserialize(obj, location):
|
||
|
if location == 'meta':
|
||
|
return torch.UntypedStorage(obj.nbytes(), device='meta')
|
||
|
|
||
|
|
||
|
def _validate_privateuse1_device(location, backend_name):
|
||
|
'''
|
||
|
Check whether the device index of privateuse1 is valid
|
||
|
|
||
|
Register a device_module of privateuse1 by torch._register_device_module.
|
||
|
Implement the following methods in device_module like cuda:
|
||
|
device_module._utils._get_device_index(location, True),
|
||
|
device_module.device_count().
|
||
|
|
||
|
Args:
|
||
|
location: string of device
|
||
|
backend_name: the name of privateuse1, which can be renamed
|
||
|
|
||
|
Returns:
|
||
|
device_index: int
|
||
|
'''
|
||
|
if not hasattr(torch, backend_name):
|
||
|
raise RuntimeError(f'The {backend_name.upper()} device module is not registered. '
|
||
|
'If you are running on a CPU-only machine, '
|
||
|
'please use torch.load with map_location=torch.device(\'cpu\') '
|
||
|
'to map your storages to the CPU.')
|
||
|
device_module = getattr(torch, backend_name)
|
||
|
if hasattr(device_module, '_utils') and hasattr(device_module._utils, '_get_device_index'):
|
||
|
device_index = device_module._utils._get_device_index(location, True)
|
||
|
else:
|
||
|
device = torch.device(location)
|
||
|
device_index = device.index if device.index else 0
|
||
|
if hasattr(device_module, 'is_available') and not device_module.is_available():
|
||
|
raise RuntimeError(f'Attempting to deserialize object on a {backend_name.upper()} '
|
||
|
f'device but torch.{backend_name}.is_available() is False. '
|
||
|
'If you are running on a CPU-only machine, '
|
||
|
'please use torch.load with map_location=torch.device(\'cpu\') '
|
||
|
'to map your storages to the CPU.')
|
||
|
if hasattr(device_module, 'device_count'):
|
||
|
device_count = device_module.device_count()
|
||
|
if device_index >= device_count:
|
||
|
raise RuntimeError(f'Attempting to deserialize object on {backend_name.upper()} device '
|
||
|
f'{device_index} but torch.{backend_name}.device_count() is {device_count}. '
|
||
|
'Please use torch.load with map_location to map your storages '
|
||
|
'to an existing device.')
|
||
|
return device_index
|
||
|
|
||
|
|
||
|
def _privateuse1_deserialize(obj, location):
|
||
|
backend_name = torch._C._get_privateuse1_backend_name()
|
||
|
if location.startswith(backend_name):
|
||
|
if not hasattr(obj, backend_name):
|
||
|
raise RuntimeError(f'Attempting to load the storages to the {backend_name.upper()} device '
|
||
|
f'but torch.storage._StorageBase.{backend_name}() or '
|
||
|
f'torch.storage.TypedStorage.{backend_name}() is not generated. '
|
||
|
'Please use torch.utils.generate_methods_for_privateuse1_backend '
|
||
|
f'to generate storage.{backend_name}() method first.')
|
||
|
device_index = _validate_privateuse1_device(location, backend_name)
|
||
|
return getattr(obj, backend_name)(device_index)
|
||
|
|
||
|
|
||
|
register_package(10, _cpu_tag, _cpu_deserialize)
|
||
|
register_package(20, _cuda_tag, _cuda_deserialize)
|
||
|
register_package(21, _mps_tag, _mps_deserialize)
|
||
|
register_package(22, _meta_tag, _meta_deserialize)
|
||
|
register_package(23, _privateuse1_tag, _privateuse1_deserialize)
|
||
|
register_package(24, _hpu_tag, _hpu_deserialize)
|
||
|
|
||
|
|
||
|
def location_tag(storage: Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage]):
|
||
|
for _, tagger, _ in _package_registry:
|
||
|
location = tagger(storage)
|
||
|
if location:
|
||
|
return location
|
||
|
raise RuntimeError("don't know how to determine data location of "
|
||
|
+ torch.typename(storage))
|
||
|
|
||
|
|
||
|
def default_restore_location(storage, location):
|
||
|
for _, _, fn in _package_registry:
|
||
|
result = fn(storage, location)
|
||
|
if result is not None:
|
||
|
return result
|
||
|
raise RuntimeError("don't know how to restore data location of "
|
||
|
+ torch.typename(storage) + " (tagged with "
|
||
|
+ location + ")")
|
||
|
|
||
|
|
||
|
def normalize_storage_type(storage_type):
|
||
|
return getattr(torch, storage_type.__name__)
|
||
|
|
||
|
|
||
|
def storage_to_tensor_type(storage):
|
||
|
storage_type = type(storage)
|
||
|
module = _import_dotted_name(storage_type.__module__)
|
||
|
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
|
||
|
|
||
|
|
||
|
def _is_path(name_or_buffer) -> TypeGuard[Union[str, os.PathLike]]:
|
||
|
return isinstance(name_or_buffer, (str, os.PathLike))
|
||
|
|
||
|
|
||
|
class _opener:
|
||
|
def __init__(self, file_like):
|
||
|
self.file_like = file_like
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self.file_like
|
||
|
|
||
|
def __exit__(self, *args):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class _open_file(_opener):
|
||
|
def __init__(self, name, mode):
|
||
|
super().__init__(open(name, mode))
|
||
|
|
||
|
def __exit__(self, *args):
|
||
|
self.file_like.close()
|
||
|
|
||
|
|
||
|
class _open_buffer_reader(_opener):
|
||
|
def __init__(self, buffer):
|
||
|
super().__init__(buffer)
|
||
|
_check_seekable(buffer)
|
||
|
|
||
|
|
||
|
class _open_buffer_writer(_opener):
|
||
|
def __exit__(self, *args):
|
||
|
self.file_like.flush()
|
||
|
|
||
|
|
||
|
def _open_file_like(name_or_buffer, mode):
|
||
|
if _is_path(name_or_buffer):
|
||
|
return _open_file(name_or_buffer, mode)
|
||
|
else:
|
||
|
if 'w' in mode:
|
||
|
return _open_buffer_writer(name_or_buffer)
|
||
|
elif 'r' in mode:
|
||
|
return _open_buffer_reader(name_or_buffer)
|
||
|
else:
|
||
|
raise RuntimeError(f"Expected 'r' or 'w' in mode but got {mode}")
|
||
|
|
||
|
|
||
|
class _open_zipfile_reader(_opener):
|
||
|
def __init__(self, name_or_buffer) -> None:
|
||
|
super().__init__(torch._C.PyTorchFileReader(name_or_buffer))
|
||
|
|
||
|
|
||
|
class _open_zipfile_writer_file(_opener):
|
||
|
def __init__(self, name) -> None:
|
||
|
self.file_stream = None
|
||
|
self.name = str(name)
|
||
|
try:
|
||
|
self.name.encode('ascii')
|
||
|
except UnicodeEncodeError:
|
||
|
# PyTorchFileWriter only supports ascii filename.
|
||
|
# For filenames with non-ascii characters, we rely on Python
|
||
|
# for writing out the file.
|
||
|
self.file_stream = io.FileIO(self.name, mode='w')
|
||
|
super().__init__(torch._C.PyTorchFileWriter(self.file_stream))
|
||
|
else:
|
||
|
super().__init__(torch._C.PyTorchFileWriter(self.name))
|
||
|
|
||
|
def __exit__(self, *args) -> None:
|
||
|
self.file_like.write_end_of_file()
|
||
|
if self.file_stream is not None:
|
||
|
self.file_stream.close()
|
||
|
|
||
|
|
||
|
class _open_zipfile_writer_buffer(_opener):
|
||
|
def __init__(self, buffer) -> None:
|
||
|
if not callable(getattr(buffer, "write", None)):
|
||
|
msg = f"Buffer of {str(type(buffer)).strip('<>')} has no callable attribute 'write'"
|
||
|
if not hasattr(buffer, "write"):
|
||
|
raise AttributeError(msg)
|
||
|
raise TypeError(msg)
|
||
|
self.buffer = buffer
|
||
|
super().__init__(torch._C.PyTorchFileWriter(buffer))
|
||
|
|
||
|
def __exit__(self, *args) -> None:
|
||
|
self.file_like.write_end_of_file()
|
||
|
self.buffer.flush()
|
||
|
|
||
|
|
||
|
def _open_zipfile_writer(name_or_buffer):
|
||
|
container: Type[_opener]
|
||
|
if _is_path(name_or_buffer):
|
||
|
container = _open_zipfile_writer_file
|
||
|
else:
|
||
|
container = _open_zipfile_writer_buffer
|
||
|
return container(name_or_buffer)
|
||
|
|
||
|
|
||
|
def _is_compressed_file(f) -> bool:
|
||
|
compress_modules = ['gzip']
|
||
|
try:
|
||
|
return f.__module__ in compress_modules
|
||
|
except AttributeError:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _should_read_directly(f):
|
||
|
"""
|
||
|
Checks if f is a file that should be read directly. It should be read
|
||
|
directly if it is backed by a real file (has a fileno) and is not a
|
||
|
a compressed file (e.g. gzip)
|
||
|
"""
|
||
|
if _is_compressed_file(f):
|
||
|
return False
|
||
|
try:
|
||
|
return f.fileno() >= 0
|
||
|
except io.UnsupportedOperation:
|
||
|
return False
|
||
|
except AttributeError:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _check_seekable(f) -> bool:
|
||
|
|
||
|
def raise_err_msg(patterns, e):
|
||
|
for p in patterns:
|
||
|
if p in str(e):
|
||
|
msg = (str(e) + ". You can only torch.load from a file that is seekable."
|
||
|
+ " Please pre-load the data into a buffer like io.BytesIO and"
|
||
|
+ " try to load from it instead.")
|
||
|
raise type(e)(msg)
|
||
|
raise e
|
||
|
|
||
|
try:
|
||
|
f.seek(f.tell())
|
||
|
return True
|
||
|
except (io.UnsupportedOperation, AttributeError) as e:
|
||
|
raise_err_msg(["seek", "tell"], e)
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _check_dill_version(pickle_module) -> None:
|
||
|
'''Checks if using dill as the pickle module, and if so, checks if it is the correct version.
|
||
|
If dill version is lower than 0.3.1, a ValueError is raised.
|
||
|
|
||
|
Args:
|
||
|
pickle_module: module used for pickling metadata and objects
|
||
|
|
||
|
'''
|
||
|
if pickle_module is not None and pickle_module.__name__ == 'dill':
|
||
|
required_dill_version = (0, 3, 1)
|
||
|
if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False):
|
||
|
raise ValueError((
|
||
|
"'torch' supports dill >= {}, but you have dill {}."
|
||
|
" Please upgrade dill or switch to 'pickle'"
|
||
|
).format(
|
||
|
'.'.join([str(num) for num in required_dill_version]),
|
||
|
pickle_module.__version__
|
||
|
))
|
||
|
|
||
|
|
||
|
def _check_save_filelike(f):
|
||
|
if not _is_path(f) and not hasattr(f, 'write'):
|
||
|
raise AttributeError(
|
||
|
"expected 'f' to be string, path, or a file-like object with "
|
||
|
"a 'write' attribute")
|
||
|
|
||
|
|
||
|
def save(
|
||
|
obj: object,
|
||
|
f: FILE_LIKE,
|
||
|
pickle_module: Any = pickle,
|
||
|
pickle_protocol: int = DEFAULT_PROTOCOL,
|
||
|
_use_new_zipfile_serialization: bool = True,
|
||
|
_disable_byteorder_record: bool = False
|
||
|
) -> None:
|
||
|
# Reference: https://github.com/pytorch/pytorch/issues/54354
|
||
|
# The first line of this docstring overrides the one Sphinx generates for the
|
||
|
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
|
||
|
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
|
||
|
|
||
|
"""save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)
|
||
|
|
||
|
Saves an object to a disk file.
|
||
|
|
||
|
See also: :ref:`saving-loading-tensors`
|
||
|
|
||
|
Args:
|
||
|
obj: saved object
|
||
|
f: a file-like object (has to implement write and flush) or a string or
|
||
|
os.PathLike object containing a file name
|
||
|
pickle_module: module used for pickling metadata and objects
|
||
|
pickle_protocol: can be specified to override the default protocol
|
||
|
|
||
|
.. note::
|
||
|
A common PyTorch convention is to save tensors using .pt file extension.
|
||
|
|
||
|
.. note::
|
||
|
PyTorch preserves storage sharing across serialization. See
|
||
|
:ref:`preserve-storage-sharing` for more details.
|
||
|
|
||
|
.. note::
|
||
|
The 1.6 release of PyTorch switched ``torch.save`` to use a new
|
||
|
zipfile-based file format. ``torch.load`` still retains the ability to
|
||
|
load files in the old format. If for any reason you want ``torch.save``
|
||
|
to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("makes cwd dirty")
|
||
|
>>> # Save to file
|
||
|
>>> x = torch.tensor([0, 1, 2, 3, 4])
|
||
|
>>> torch.save(x, 'tensor.pt')
|
||
|
>>> # Save to io.BytesIO buffer
|
||
|
>>> buffer = io.BytesIO()
|
||
|
>>> torch.save(x, buffer)
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("torch.save")
|
||
|
_check_dill_version(pickle_module)
|
||
|
_check_save_filelike(f)
|
||
|
|
||
|
if _use_new_zipfile_serialization:
|
||
|
with _open_zipfile_writer(f) as opened_zipfile:
|
||
|
_save(obj, opened_zipfile, pickle_module, pickle_protocol, _disable_byteorder_record)
|
||
|
return
|
||
|
else:
|
||
|
with _open_file_like(f, 'wb') as opened_file:
|
||
|
_legacy_save(obj, opened_file, pickle_module, pickle_protocol)
|
||
|
|
||
|
|
||
|
def _legacy_save(obj, f, pickle_module, pickle_protocol) -> None:
|
||
|
import torch.nn as nn
|
||
|
serialized_container_types = {}
|
||
|
serialized_storages = {}
|
||
|
|
||
|
# Since loading storages that view the same data with different dtypes is
|
||
|
# not supported, we need to keep track of the dtype associated with each
|
||
|
# storage data_ptr and throw an error if the dtype is ever different.
|
||
|
# TODO: This feature could be added in the future
|
||
|
storage_dtypes: Dict[int, torch.dtype] = {}
|
||
|
|
||
|
def persistent_id(obj: Any) -> Optional[Tuple]:
|
||
|
# FIXME: the docs say that persistent_id should only return a string
|
||
|
# but torch store returns tuples. This works only in the binary protocol
|
||
|
# see
|
||
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
||
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
||
|
if isinstance(obj, type) and issubclass(obj, nn.Module):
|
||
|
if obj in serialized_container_types:
|
||
|
return None
|
||
|
serialized_container_types[obj] = True
|
||
|
source_file = source = None
|
||
|
try:
|
||
|
source_lines, _, source_file = get_source_lines_and_file(obj)
|
||
|
source = ''.join(source_lines)
|
||
|
except Exception: # saving the source is optional, so we can ignore any errors
|
||
|
warnings.warn("Couldn't retrieve source code for container of "
|
||
|
"type " + obj.__name__ + ". It won't be checked "
|
||
|
"for correctness upon loading.")
|
||
|
return ('module', obj, source_file, source)
|
||
|
|
||
|
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
|
||
|
storage: torch.UntypedStorage
|
||
|
|
||
|
if isinstance(obj, torch.storage.TypedStorage):
|
||
|
# TODO: Once we decide to break serialization FC, this case
|
||
|
# can be deleted
|
||
|
storage = obj._untyped_storage
|
||
|
storage_dtype = obj.dtype
|
||
|
storage_type_str = obj._pickle_storage_type()
|
||
|
storage_type = getattr(torch, storage_type_str)
|
||
|
dtype = obj.dtype
|
||
|
storage_numel = obj._size()
|
||
|
|
||
|
elif isinstance(obj, torch.UntypedStorage):
|
||
|
storage = obj
|
||
|
storage_dtype = torch.uint8
|
||
|
storage_type = normalize_storage_type(type(obj))
|
||
|
dtype = torch.uint8
|
||
|
storage_numel = storage.nbytes()
|
||
|
else:
|
||
|
raise TypeError(f'type not recognized: {type(obj)}')
|
||
|
|
||
|
# If storage is allocated, ensure that any other saved storages
|
||
|
# pointing to the same data all have the same dtype. If storage is
|
||
|
# not allocated, don't perform this check
|
||
|
if storage.data_ptr() != 0:
|
||
|
if storage.data_ptr() in storage_dtypes:
|
||
|
if storage_dtype != storage_dtypes[storage.data_ptr()]:
|
||
|
raise RuntimeError(
|
||
|
'Cannot save multiple tensors or storages that '
|
||
|
'view the same data as different types')
|
||
|
else:
|
||
|
storage_dtypes[storage.data_ptr()] = storage_dtype
|
||
|
|
||
|
view_metadata: Optional[Tuple[str, int, int]]
|
||
|
|
||
|
# Offset is always 0, but we keep it for backwards compatibility
|
||
|
# with the old serialization format (which supported storage views)
|
||
|
offset = 0
|
||
|
storage_key = str(storage._cdata)
|
||
|
location = location_tag(storage)
|
||
|
|
||
|
# TODO: There's an issue here with FC. It might be impossible to
|
||
|
# solve, but it's worth noting. Imagine we save a list `[storage,
|
||
|
# tensor]`, where `tensor.storage()` is the same as `storage`, and
|
||
|
# `tensor.element_size() > 1`. Let's say that `tensor.dtype ==
|
||
|
# torch.float`. The storage will be serialized with element size
|
||
|
# of 1, since we're choosing to serialize the first occurance of
|
||
|
# a duplicate storage. Since this legacy serialization format saves
|
||
|
# the numel of the storage, rather than nbytes directly, we'll be
|
||
|
# effectively saving nbytes in this case. We'll be able to load it
|
||
|
# and the tensor back up with no problems in _this_ and future
|
||
|
# versions of pytorch, but in older versions, here's the problem:
|
||
|
# the storage will be loaded up as a UntypedStorage, and then the
|
||
|
# FloatTensor will loaded and the UntypedStorage will be assigned to
|
||
|
# it. Since the storage dtype does not match the tensor dtype, this
|
||
|
# will cause an error. If we reverse the list, like `[tensor,
|
||
|
# storage]`, then we will save the `tensor.storage()` as a faked
|
||
|
# `FloatStorage`, and the saved size will be the correct
|
||
|
# dtype-specific numel count that old versions expect. `tensor`
|
||
|
# will be able to load up properly in old versions, pointing to
|
||
|
# a FloatStorage. However, `storage` is still being translated to
|
||
|
# a UntypedStorage, and it will try to resolve to the same
|
||
|
# FloatStorage that `tensor` contains. This will also cause an
|
||
|
# error. It doesn't seem like there's any way around this.
|
||
|
# Probably, we just cannot maintain FC for the legacy format if the
|
||
|
# saved list contains both a tensor and a storage that point to the
|
||
|
# same data. We should still be able to maintain FC for lists of
|
||
|
# just tensors, as long as all views share the same dtype as the
|
||
|
# tensor they are viewing.
|
||
|
|
||
|
if storage_key not in serialized_storages:
|
||
|
serialized_storages[storage_key] = (storage, dtype)
|
||
|
is_view = storage._cdata != storage._cdata
|
||
|
if is_view:
|
||
|
view_metadata = (str(storage._cdata), offset, storage.nbytes())
|
||
|
else:
|
||
|
view_metadata = None
|
||
|
|
||
|
res = ('storage',
|
||
|
storage_type,
|
||
|
storage_key,
|
||
|
location,
|
||
|
storage_numel,
|
||
|
view_metadata)
|
||
|
return res
|
||
|
return None
|
||
|
|
||
|
sys_info = dict(
|
||
|
protocol_version=PROTOCOL_VERSION,
|
||
|
little_endian=sys.byteorder == 'little',
|
||
|
type_sizes=dict(
|
||
|
short=SHORT_SIZE,
|
||
|
int=INT_SIZE,
|
||
|
long=LONG_SIZE,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
|
||
|
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
|
||
|
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
|
||
|
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
|
||
|
pickler.persistent_id = persistent_id
|
||
|
pickler.dump(obj)
|
||
|
|
||
|
serialized_storage_keys = sorted(serialized_storages.keys())
|
||
|
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
|
||
|
f.flush()
|
||
|
for key in serialized_storage_keys:
|
||
|
storage, dtype = serialized_storages[key]
|
||
|
storage._write_file(f, _should_read_directly(f), True, torch._utils._element_size(dtype))
|
||
|
|
||
|
|
||
|
def _save(obj, zip_file, pickle_module, pickle_protocol, _disable_byteorder_record):
|
||
|
serialized_storages = {}
|
||
|
id_map: Dict[int, str] = {}
|
||
|
|
||
|
# Since loading storages that view the same data with different dtypes is
|
||
|
# not supported, we need to keep track of the dtype associated with each
|
||
|
# storage data_ptr and throw an error if the dtype is ever different.
|
||
|
# TODO: This feature could be added in the future
|
||
|
storage_dtypes: Dict[int, torch.dtype] = {}
|
||
|
|
||
|
def persistent_id(obj):
|
||
|
# FIXME: the docs say that persistent_id should only return a string
|
||
|
# but torch store returns tuples. This works only in the binary protocol
|
||
|
# see
|
||
|
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
|
||
|
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
|
||
|
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
|
||
|
|
||
|
if isinstance(obj, torch.storage.TypedStorage):
|
||
|
# TODO: Once we decide to break serialization FC, this case
|
||
|
# can be deleted
|
||
|
storage = obj._untyped_storage
|
||
|
storage_dtype = obj.dtype
|
||
|
storage_type_str = obj._pickle_storage_type()
|
||
|
storage_type = getattr(torch, storage_type_str)
|
||
|
storage_numel = obj._size()
|
||
|
|
||
|
else:
|
||
|
storage = obj
|
||
|
storage_dtype = torch.uint8
|
||
|
storage_type = normalize_storage_type(type(obj))
|
||
|
storage_numel = storage.nbytes()
|
||
|
|
||
|
# If storage is allocated, ensure that any other saved storages
|
||
|
# pointing to the same data all have the same dtype. If storage is
|
||
|
# not allocated, don't perform this check
|
||
|
if storage.data_ptr() != 0:
|
||
|
if storage.data_ptr() in storage_dtypes:
|
||
|
if storage_dtype != storage_dtypes[storage.data_ptr()]:
|
||
|
raise RuntimeError(
|
||
|
'Cannot save multiple tensors or storages that '
|
||
|
'view the same data as different types')
|
||
|
else:
|
||
|
storage_dtypes[storage.data_ptr()] = storage_dtype
|
||
|
|
||
|
storage_key = id_map.setdefault(storage._cdata, str(len(id_map)))
|
||
|
location = location_tag(storage)
|
||
|
serialized_storages[storage_key] = storage
|
||
|
|
||
|
return ('storage',
|
||
|
storage_type,
|
||
|
storage_key,
|
||
|
location,
|
||
|
storage_numel)
|
||
|
|
||
|
return None
|
||
|
|
||
|
# Write the pickle data for `obj`
|
||
|
data_buf = io.BytesIO()
|
||
|
pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol)
|
||
|
pickler.persistent_id = persistent_id
|
||
|
pickler.dump(obj)
|
||
|
data_value = data_buf.getvalue()
|
||
|
zip_file.write_record('data.pkl', data_value, len(data_value))
|
||
|
|
||
|
# Write byte order marker
|
||
|
if not _disable_byteorder_record:
|
||
|
if sys.byteorder not in ['little', 'big']:
|
||
|
raise ValueError('Unknown endianness type: ' + sys.byteorder)
|
||
|
|
||
|
zip_file.write_record('byteorder', sys.byteorder, len(sys.byteorder))
|
||
|
|
||
|
# Write each tensor to a file named tensor/the_tensor_key in the zip archive
|
||
|
for key in sorted(serialized_storages.keys()):
|
||
|
name = f'data/{key}'
|
||
|
storage = serialized_storages[key]
|
||
|
# given that we copy things around anyway, we might use storage.cpu()
|
||
|
# this means to that to get tensors serialized, you need to implement
|
||
|
# .cpu() on the underlying Storage
|
||
|
if storage.device.type != 'cpu':
|
||
|
storage = storage.cpu()
|
||
|
# Now that it is on the CPU we can directly copy it into the zip file
|
||
|
num_bytes = storage.nbytes()
|
||
|
zip_file.write_record(name, storage, num_bytes)
|
||
|
|
||
|
|
||
|
def load(
|
||
|
f: FILE_LIKE,
|
||
|
map_location: MAP_LOCATION = None,
|
||
|
pickle_module: Any = None,
|
||
|
*,
|
||
|
weights_only: bool = False,
|
||
|
mmap: Optional[bool] = None,
|
||
|
**pickle_load_args: Any
|
||
|
) -> Any:
|
||
|
# Reference: https://github.com/pytorch/pytorch/issues/54354
|
||
|
# The first line of this docstring overrides the one Sphinx generates for the
|
||
|
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
|
||
|
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
|
||
|
|
||
|
"""load(f, map_location=None, pickle_module=pickle, *, weights_only=False, mmap=None, **pickle_load_args)
|
||
|
|
||
|
Loads an object saved with :func:`torch.save` from a file.
|
||
|
|
||
|
:func:`torch.load` uses Python's unpickling facilities but treats storages,
|
||
|
which underlie tensors, specially. They are first deserialized on the
|
||
|
CPU and are then moved to the device they were saved from. If this fails
|
||
|
(e.g. because the run time system doesn't have certain devices), an exception
|
||
|
is raised. However, storages can be dynamically remapped to an alternative
|
||
|
set of devices using the :attr:`map_location` argument.
|
||
|
|
||
|
If :attr:`map_location` is a callable, it will be called once for each serialized
|
||
|
storage with two arguments: storage and location. The storage argument
|
||
|
will be the initial deserialization of the storage, residing on the CPU.
|
||
|
Each serialized storage has a location tag associated with it which
|
||
|
identifies the device it was saved from, and this tag is the second
|
||
|
argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
|
||
|
for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
|
||
|
:attr:`map_location` should return either ``None`` or a storage. If
|
||
|
:attr:`map_location` returns a storage, it will be used as the final deserialized
|
||
|
object, already moved to the right device. Otherwise, :func:`torch.load` will
|
||
|
fall back to the default behavior, as if :attr:`map_location` wasn't specified.
|
||
|
|
||
|
If :attr:`map_location` is a :class:`torch.device` object or a string containing
|
||
|
a device tag, it indicates the location where all tensors should be loaded.
|
||
|
|
||
|
Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
|
||
|
appearing in the file (keys), to ones that specify where to put the
|
||
|
storages (values).
|
||
|
|
||
|
User extensions can register their own location tags and tagging and
|
||
|
deserialization methods using :func:`torch.serialization.register_package`.
|
||
|
|
||
|
Args:
|
||
|
f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`),
|
||
|
or a string or os.PathLike object containing a file name
|
||
|
map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
|
||
|
locations
|
||
|
pickle_module: module used for unpickling metadata and objects (has to
|
||
|
match the :attr:`pickle_module` used to serialize file)
|
||
|
weights_only: Indicates whether unpickler should be restricted to
|
||
|
loading only tensors, primitive types and dictionaries
|
||
|
mmap: Indicates whether the file should be mmaped rather than loading all the storages into memory.
|
||
|
Typically, tensor storages in the file will first be moved from disk to CPU memory, after which they
|
||
|
are moved to the location that they were tagged with when saving, or specified by ``map_location``. This
|
||
|
second step is a no-op if the final location is CPU. When the ``mmap`` flag is set, instead of copying the
|
||
|
tensor storages from disk to CPU memory in the first step, ``f`` is mmaped.
|
||
|
pickle_load_args: (Python 3 only) optional keyword arguments passed over to
|
||
|
:func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
|
||
|
:attr:`errors=...`.
|
||
|
|
||
|
.. warning::
|
||
|
:func:`torch.load()` unless `weights_only` parameter is set to `True`,
|
||
|
uses ``pickle`` module implicitly, which is known to be insecure.
|
||
|
It is possible to construct malicious pickle data which will execute arbitrary code
|
||
|
during unpickling. Never load data that could have come from an untrusted
|
||
|
source in an unsafe mode, or that could have been tampered with. **Only load data you trust**.
|
||
|
|
||
|
.. note::
|
||
|
When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
|
||
|
will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
|
||
|
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
|
||
|
|
||
|
.. note::
|
||
|
By default, we decode byte strings as ``utf-8``. This is to avoid a common error
|
||
|
case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
|
||
|
when loading files saved by Python 2 in Python 3. If this default
|
||
|
is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
|
||
|
these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
|
||
|
to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
|
||
|
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("undefined filepaths")
|
||
|
>>> torch.load('tensors.pt', weights_only=True)
|
||
|
# Load all tensors onto the CPU
|
||
|
>>> torch.load('tensors.pt', map_location=torch.device('cpu'), weights_only=True)
|
||
|
# Load all tensors onto the CPU, using a function
|
||
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage, weights_only=True)
|
||
|
# Load all tensors onto GPU 1
|
||
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1), weights_only=True)
|
||
|
# Map tensors from GPU 1 to GPU 0
|
||
|
>>> torch.load('tensors.pt', map_location={'cuda:1': 'cuda:0'}, weights_only=True)
|
||
|
# Load tensor from io.BytesIO object
|
||
|
# Loading from a buffer setting weights_only=False, warning this can be unsafe
|
||
|
>>> with open('tensor.pt', 'rb') as f:
|
||
|
... buffer = io.BytesIO(f.read())
|
||
|
>>> torch.load(buffer, weights_only=False)
|
||
|
# Load a module with 'ascii' encoding for unpickling
|
||
|
# Loading from a module setting weights_only=False, warning this can be unsafe
|
||
|
>>> torch.load('module.pt', encoding='ascii', weights_only=False)
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("torch.load")
|
||
|
UNSAFE_MESSAGE = (
|
||
|
"Weights only load failed. Re-running `torch.load` with `weights_only` set to `False`"
|
||
|
" will likely succeed, but it can result in arbitrary code execution."
|
||
|
"Do it only if you get the file from a trusted source. WeightsUnpickler error: "
|
||
|
)
|
||
|
# Add ability to force safe only weight loads via environment variable
|
||
|
if os.getenv("TORCH_FORCE_WEIGHTS_ONLY_LOAD", "0").lower() in ['1', 'y', 'yes', 'true']:
|
||
|
weights_only = True
|
||
|
|
||
|
if weights_only:
|
||
|
if pickle_module is not None:
|
||
|
raise RuntimeError("Can not safely load weights when explicit pickle_module is specified")
|
||
|
else:
|
||
|
if pickle_module is None:
|
||
|
pickle_module = pickle
|
||
|
|
||
|
# make flipping default BC-compatible
|
||
|
if mmap is None:
|
||
|
mmap = False
|
||
|
|
||
|
_check_dill_version(pickle_module)
|
||
|
|
||
|
if 'encoding' not in pickle_load_args.keys():
|
||
|
pickle_load_args['encoding'] = 'utf-8'
|
||
|
|
||
|
with _open_file_like(f, 'rb') as opened_file:
|
||
|
if _is_zipfile(opened_file):
|
||
|
# The zipfile reader is going to advance the current file position.
|
||
|
# If we want to actually tail call to torch.jit.load, we need to
|
||
|
# reset back to the original position.
|
||
|
orig_position = opened_file.tell()
|
||
|
overall_storage = None
|
||
|
with _open_zipfile_reader(opened_file) as opened_zipfile:
|
||
|
if _is_torchscript_zip(opened_zipfile):
|
||
|
warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive"
|
||
|
" dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
|
||
|
" silence this warning)", UserWarning)
|
||
|
opened_file.seek(orig_position)
|
||
|
return torch.jit.load(opened_file, map_location=map_location)
|
||
|
if mmap:
|
||
|
if not _is_path(f):
|
||
|
raise ValueError("f must be a file path in order to use the mmap argument")
|
||
|
size = os.path.getsize(f)
|
||
|
overall_storage = torch.UntypedStorage.from_file(os.fspath(f), False, size)
|
||
|
if weights_only:
|
||
|
try:
|
||
|
return _load(opened_zipfile,
|
||
|
map_location,
|
||
|
_weights_only_unpickler,
|
||
|
overall_storage=overall_storage,
|
||
|
**pickle_load_args)
|
||
|
except RuntimeError as e:
|
||
|
raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
|
||
|
return _load(opened_zipfile,
|
||
|
map_location,
|
||
|
pickle_module,
|
||
|
overall_storage=overall_storage,
|
||
|
**pickle_load_args)
|
||
|
if mmap:
|
||
|
f_name = "" if not isinstance(f, str) else f"{f}, "
|
||
|
raise RuntimeError("mmap can only be used with files saved with "
|
||
|
f"`torch.save({f_name}_use_new_zipfile_serialization=True), "
|
||
|
"please torch.save your checkpoint with this option in order to use mmap.")
|
||
|
if weights_only:
|
||
|
try:
|
||
|
return _legacy_load(opened_file, map_location, _weights_only_unpickler, **pickle_load_args)
|
||
|
except RuntimeError as e:
|
||
|
raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
|
||
|
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
|
||
|
|
||
|
|
||
|
# Register pickling support for layout instances such as
|
||
|
# torch.sparse_coo, etc
|
||
|
def _get_layout(name):
|
||
|
"""Get layout extension object from its string representation.
|
||
|
"""
|
||
|
cache = _get_layout.cache # type: ignore[attr-defined]
|
||
|
if not cache:
|
||
|
for v in torch.__dict__.values():
|
||
|
if isinstance(v, torch.layout):
|
||
|
cache[str(v)] = v
|
||
|
return cache[name]
|
||
|
|
||
|
# There are yet not good way to type annotate function attributes https://github.com/python/mypy/issues/2087
|
||
|
_get_layout.cache = {} # type: ignore[attr-defined]
|
||
|
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))
|
||
|
|
||
|
|
||
|
def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
|
||
|
deserialized_objects: Dict[int, Any] = {}
|
||
|
|
||
|
restore_location = _get_restore_location(map_location)
|
||
|
|
||
|
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
|
||
|
|
||
|
def find_class(self, mod_name, name):
|
||
|
if type(name) is str and 'Storage' in name:
|
||
|
try:
|
||
|
return StorageType(name)
|
||
|
except KeyError:
|
||
|
pass
|
||
|
return super().find_class(mod_name, name)
|
||
|
|
||
|
def _check_container_source(container_type, source_file, original_source):
|
||
|
try:
|
||
|
current_source = ''.join(get_source_lines_and_file(container_type)[0])
|
||
|
except Exception: # saving the source is optional, so we can ignore any errors
|
||
|
warnings.warn("Couldn't retrieve source code for container of "
|
||
|
"type " + container_type.__name__ + ". It won't be checked "
|
||
|
"for correctness upon loading.")
|
||
|
return
|
||
|
if original_source != current_source:
|
||
|
if container_type.dump_patches:
|
||
|
file_name = container_type.__name__ + '.patch'
|
||
|
diff = difflib.unified_diff(current_source.split('\n'),
|
||
|
original_source.split('\n'),
|
||
|
source_file,
|
||
|
source_file, lineterm="")
|
||
|
lines = '\n'.join(diff)
|
||
|
try:
|
||
|
with open(file_name, 'a+') as f:
|
||
|
file_size = f.seek(0, 2)
|
||
|
f.seek(0)
|
||
|
if file_size == 0:
|
||
|
f.write(lines)
|
||
|
elif file_size != len(lines) or f.read() != lines:
|
||
|
raise OSError
|
||
|
msg = ("Saved a reverse patch to " + file_name + ". "
|
||
|
"Run `patch -p0 < " + file_name + "` to revert your "
|
||
|
"changes.")
|
||
|
except OSError:
|
||
|
msg = ("Tried to save a patch, but couldn't create a "
|
||
|
"writable file " + file_name + ". Make sure it "
|
||
|
"doesn't exist and your working directory is "
|
||
|
"writable.")
|
||
|
else:
|
||
|
msg = ("you can retrieve the original source code by "
|
||
|
"accessing the object's source attribute or set "
|
||
|
"`torch.nn.Module.dump_patches = True` and use the "
|
||
|
"patch tool to revert the changes.")
|
||
|
msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}"
|
||
|
warnings.warn(msg, SourceChangeWarning)
|
||
|
|
||
|
def legacy_load(f):
|
||
|
deserialized_objects: Dict[int, Any] = {}
|
||
|
|
||
|
def persistent_load(saved_id):
|
||
|
if isinstance(saved_id, tuple):
|
||
|
# Ignore containers that don't have any sources saved
|
||
|
if all(saved_id[1:]):
|
||
|
_check_container_source(*saved_id)
|
||
|
return saved_id[0]
|
||
|
return deserialized_objects[int(saved_id)]
|
||
|
|
||
|
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
|
||
|
mkdtemp() as tmpdir:
|
||
|
|
||
|
tar.extract('storages', path=tmpdir)
|
||
|
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
|
||
|
num_storages = pickle_module.load(f, **pickle_load_args)
|
||
|
for i in range(num_storages):
|
||
|
args = pickle_module.load(f, **pickle_load_args)
|
||
|
key, location, storage_type = args
|
||
|
dtype = storage_type._dtype
|
||
|
obj = cast(Storage, torch.UntypedStorage)._new_with_file(f, torch._utils._element_size(dtype))
|
||
|
obj = restore_location(obj, location)
|
||
|
# TODO: Once we decide to break serialization FC, we can
|
||
|
# stop wrapping with TypedStorage
|
||
|
deserialized_objects[key] = torch.storage.TypedStorage(
|
||
|
wrap_storage=obj,
|
||
|
dtype=dtype,
|
||
|
_internal=True)
|
||
|
|
||
|
storage_views = pickle_module.load(f, **pickle_load_args)
|
||
|
for target_cdata, root_cdata, offset, numel in storage_views:
|
||
|
root = deserialized_objects[root_cdata]
|
||
|
element_size = torch._utils._element_size(root.dtype)
|
||
|
offset_bytes = offset * element_size
|
||
|
# TODO: Once we decide to break serialization FC, we can
|
||
|
# stop wrapping with TypedStorage
|
||
|
deserialized_objects[target_cdata] = torch.storage.TypedStorage(
|
||
|
wrap_storage=root._untyped_storage[offset_bytes:offset_bytes + numel * element_size],
|
||
|
dtype=root.dtype,
|
||
|
_internal=True)
|
||
|
|
||
|
tar.extract('tensors', path=tmpdir)
|
||
|
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
|
||
|
num_tensors = pickle_module.load(f, **pickle_load_args)
|
||
|
for _ in range(num_tensors):
|
||
|
args = pickle_module.load(f, **pickle_load_args)
|
||
|
key, storage_id, original_tensor_type = args
|
||
|
storage = deserialized_objects[storage_id]
|
||
|
ndim, = struct.unpack('<i', f.read(4))
|
||
|
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
|
||
|
f.read(4)
|
||
|
numel = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
|
||
|
stride = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
|
||
|
storage_offset, = struct.unpack('<q', f.read(8))
|
||
|
tensor = torch.empty((0,), dtype=storage.dtype).set_(
|
||
|
storage._untyped_storage, storage_offset, numel, stride)
|
||
|
deserialized_objects[key] = tensor
|
||
|
|
||
|
pickle_file = tar.extractfile('pickle')
|
||
|
unpickler = UnpicklerWrapper(pickle_file, **pickle_load_args)
|
||
|
unpickler.persistent_load = persistent_load
|
||
|
result = unpickler.load()
|
||
|
return result
|
||
|
|
||
|
deserialized_objects = {}
|
||
|
|
||
|
def persistent_load(saved_id):
|
||
|
assert isinstance(saved_id, tuple)
|
||
|
typename = _maybe_decode_ascii(saved_id[0])
|
||
|
data = saved_id[1:]
|
||
|
|
||
|
if typename == 'module':
|
||
|
# Ignore containers that don't have any sources saved
|
||
|
if all(data[1:]):
|
||
|
_check_container_source(*data)
|
||
|
return data[0]
|
||
|
elif typename == 'storage':
|
||
|
storage_type, root_key, location, numel, view_metadata = data
|
||
|
location = _maybe_decode_ascii(location)
|
||
|
dtype = storage_type.dtype
|
||
|
|
||
|
nbytes = numel * torch._utils._element_size(dtype)
|
||
|
|
||
|
if root_key not in deserialized_objects:
|
||
|
if torch._guards.active_fake_mode() is not None:
|
||
|
obj = cast(Storage, torch.UntypedStorage(nbytes, device='meta'))
|
||
|
else:
|
||
|
obj = cast(Storage, torch.UntypedStorage(nbytes))
|
||
|
obj._torch_load_uninitialized = True
|
||
|
obj = restore_location(obj, location)
|
||
|
# TODO: Once we decide to break serialization FC, we can
|
||
|
# stop wrapping with TypedStorage
|
||
|
typed_storage = torch.storage.TypedStorage(
|
||
|
wrap_storage=obj,
|
||
|
dtype=dtype,
|
||
|
_internal=True)
|
||
|
deserialized_objects[root_key] = typed_storage
|
||
|
else:
|
||
|
typed_storage = deserialized_objects[root_key]
|
||
|
if typed_storage._data_ptr() == 0:
|
||
|
typed_storage = torch.storage.TypedStorage(
|
||
|
device=typed_storage._untyped_storage.device,
|
||
|
dtype=dtype,
|
||
|
_internal=True)
|
||
|
|
||
|
if view_metadata is not None:
|
||
|
view_key, offset, view_size = view_metadata
|
||
|
offset_bytes = offset * torch._utils._element_size(dtype)
|
||
|
view_size_bytes = view_size * torch._utils._element_size(dtype)
|
||
|
if view_key not in deserialized_objects:
|
||
|
# TODO: Once we decide to break serialization FC, we can
|
||
|
# stop wrapping with TypedStorage
|
||
|
deserialized_objects[view_key] = torch.storage.TypedStorage(
|
||
|
wrap_storage=typed_storage._untyped_storage[offset_bytes:offset_bytes + view_size_bytes],
|
||
|
dtype=dtype,
|
||
|
_internal=True)
|
||
|
res = deserialized_objects[view_key]
|
||
|
|
||
|
else:
|
||
|
res = typed_storage
|
||
|
return res
|
||
|
else:
|
||
|
raise RuntimeError(f"Unknown saved id type: {saved_id[0]}")
|
||
|
|
||
|
_check_seekable(f)
|
||
|
f_should_read_directly = _should_read_directly(f)
|
||
|
|
||
|
if f_should_read_directly and f.tell() == 0:
|
||
|
# legacy_load requires that f has fileno()
|
||
|
# only if offset is zero we can attempt the legacy tar file loader
|
||
|
try:
|
||
|
return legacy_load(f)
|
||
|
except tarfile.TarError:
|
||
|
if _is_zipfile(f):
|
||
|
# .zip is used for torch.jit.save and will throw an un-pickling error here
|
||
|
raise RuntimeError(
|
||
|
f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)") from None
|
||
|
# if not a tarfile, reset file offset and proceed
|
||
|
f.seek(0)
|
||
|
|
||
|
if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
|
||
|
raise RuntimeError(
|
||
|
"torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
|
||
|
f"Received object of type \"{type(f)}\". Please update to Python 3.8.2 or newer to restore this "
|
||
|
"functionality.")
|
||
|
|
||
|
magic_number = pickle_module.load(f, **pickle_load_args)
|
||
|
if magic_number != MAGIC_NUMBER:
|
||
|
raise RuntimeError("Invalid magic number; corrupt file?")
|
||
|
protocol_version = pickle_module.load(f, **pickle_load_args)
|
||
|
if protocol_version != PROTOCOL_VERSION:
|
||
|
raise RuntimeError(f"Invalid protocol version: {protocol_version}")
|
||
|
|
||
|
_sys_info = pickle_module.load(f, **pickle_load_args)
|
||
|
unpickler = UnpicklerWrapper(f, **pickle_load_args)
|
||
|
unpickler.persistent_load = persistent_load
|
||
|
result = unpickler.load()
|
||
|
|
||
|
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
|
||
|
|
||
|
if torch._guards.active_fake_mode() is None:
|
||
|
offset = f.tell() if f_should_read_directly else None
|
||
|
for key in deserialized_storage_keys:
|
||
|
assert key in deserialized_objects
|
||
|
typed_storage = deserialized_objects[key]
|
||
|
typed_storage._untyped_storage._set_from_file(
|
||
|
f, offset, f_should_read_directly,
|
||
|
torch._utils._element_size(typed_storage.dtype))
|
||
|
if offset is not None:
|
||
|
offset = f.tell()
|
||
|
|
||
|
torch._utils._validate_loaded_sparse_tensors()
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _maybe_decode_ascii(bytes_str: Union[bytes, str]) -> str:
|
||
|
# When using encoding='bytes' in Py3, some **internal** keys stored as
|
||
|
# strings in Py2 are loaded as bytes. This function decodes them with
|
||
|
# ascii encoding, one that Py3 uses by default.
|
||
|
#
|
||
|
# NOTE: This should only be used on internal keys (e.g., `typename` and
|
||
|
# `location` in `persistent_load` below!
|
||
|
if isinstance(bytes_str, bytes):
|
||
|
return bytes_str.decode('ascii')
|
||
|
return bytes_str
|
||
|
|
||
|
|
||
|
def _get_restore_location(map_location):
|
||
|
if map_location is None:
|
||
|
restore_location = default_restore_location
|
||
|
elif isinstance(map_location, dict):
|
||
|
def restore_location(storage, location):
|
||
|
location = map_location.get(location, location)
|
||
|
return default_restore_location(storage, location)
|
||
|
elif isinstance(map_location, (str, bytes)):
|
||
|
def restore_location(storage, location):
|
||
|
return default_restore_location(storage, map_location)
|
||
|
elif isinstance(map_location, torch.device):
|
||
|
def restore_location(storage, location):
|
||
|
return default_restore_location(storage, str(map_location))
|
||
|
else:
|
||
|
def restore_location(storage, location):
|
||
|
result = map_location(storage, location)
|
||
|
if result is None:
|
||
|
result = default_restore_location(storage, location)
|
||
|
return result
|
||
|
return restore_location
|
||
|
|
||
|
|
||
|
class StorageType:
|
||
|
def __init__(self, name):
|
||
|
self._dtype = _get_dtype_from_pickle_storage_type(name)
|
||
|
|
||
|
@property
|
||
|
def dtype(self):
|
||
|
return self._dtype
|
||
|
|
||
|
def __str__(self):
|
||
|
return f'StorageType(dtype={self.dtype})'
|
||
|
|
||
|
|
||
|
def _load(zip_file, map_location, pickle_module, pickle_file='data.pkl', overall_storage=None, **pickle_load_args):
|
||
|
restore_location = _get_restore_location(map_location)
|
||
|
|
||
|
loaded_storages = {}
|
||
|
|
||
|
# check if byteswapping is needed
|
||
|
byteordername = 'byteorder'
|
||
|
byteorderdata = None
|
||
|
if zip_file.has_record(byteordername):
|
||
|
byteorderdata = zip_file.get_record(byteordername)
|
||
|
if byteorderdata not in [b'little', b'big']:
|
||
|
raise ValueError('Unknown endianness type: ' + byteorderdata.decode())
|
||
|
elif get_default_load_endianness() == LoadEndianness.LITTLE or \
|
||
|
get_default_load_endianness() is None:
|
||
|
byteorderdata = b'little'
|
||
|
elif get_default_load_endianness() == LoadEndianness.BIG:
|
||
|
byteorderdata = b'big'
|
||
|
elif get_default_load_endianness() == LoadEndianness.NATIVE:
|
||
|
pass
|
||
|
else:
|
||
|
raise ValueError('Invalid load endianness type')
|
||
|
|
||
|
if not zip_file.has_record(byteordername) and \
|
||
|
get_default_load_endianness() is None and \
|
||
|
sys.byteorder == 'big':
|
||
|
# Default behaviour was changed
|
||
|
# See https://github.com/pytorch/pytorch/issues/101688
|
||
|
warnings.warn("The default load endianness for checkpoints without a byteorder mark "
|
||
|
"on big endian machines was changed from 'native' to 'little' endian, "
|
||
|
"to avoid this behavior please use "
|
||
|
"torch.serialization.set_default_load_endianness to set "
|
||
|
"the desired default load endianness",
|
||
|
UserWarning)
|
||
|
|
||
|
def load_tensor(dtype, numel, key, location):
|
||
|
name = f'data/{key}'
|
||
|
if torch._guards.detect_fake_mode(None) is not None:
|
||
|
nbytes = numel * torch._utils._element_size(dtype)
|
||
|
storage = torch.UntypedStorage(nbytes, device='meta')
|
||
|
elif overall_storage is not None:
|
||
|
storage_offset = zip_file.get_record_offset(name)
|
||
|
storage = overall_storage[storage_offset:storage_offset + numel]
|
||
|
else:
|
||
|
storage = zip_file.get_storage_from_record(name, numel, torch.UntypedStorage)._typed_storage()._untyped_storage
|
||
|
# swap here if byteswapping is needed
|
||
|
if byteorderdata is not None:
|
||
|
if byteorderdata.decode() != sys.byteorder:
|
||
|
storage.byteswap(dtype)
|
||
|
|
||
|
# TODO: Once we decide to break serialization FC, we can
|
||
|
# stop wrapping with TypedStorage
|
||
|
typed_storage = torch.storage.TypedStorage(
|
||
|
wrap_storage=restore_location(storage, location),
|
||
|
dtype=dtype,
|
||
|
_internal=True)
|
||
|
|
||
|
if typed_storage._data_ptr() != 0:
|
||
|
loaded_storages[key] = typed_storage
|
||
|
|
||
|
return typed_storage
|
||
|
|
||
|
def persistent_load(saved_id):
|
||
|
assert isinstance(saved_id, tuple)
|
||
|
typename = _maybe_decode_ascii(saved_id[0])
|
||
|
data = saved_id[1:]
|
||
|
|
||
|
assert typename == 'storage', \
|
||
|
f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
|
||
|
storage_type, key, location, numel = data
|
||
|
if storage_type is torch.UntypedStorage:
|
||
|
dtype = torch.uint8
|
||
|
else:
|
||
|
dtype = storage_type.dtype
|
||
|
|
||
|
if key in loaded_storages:
|
||
|
typed_storage = loaded_storages[key]
|
||
|
else:
|
||
|
nbytes = numel * torch._utils._element_size(dtype)
|
||
|
typed_storage = load_tensor(dtype, nbytes, key, _maybe_decode_ascii(location))
|
||
|
|
||
|
return typed_storage
|
||
|
|
||
|
load_module_mapping: Dict[str, str] = {
|
||
|
# See https://github.com/pytorch/pytorch/pull/51633
|
||
|
'torch.tensor': 'torch._tensor'
|
||
|
}
|
||
|
|
||
|
# Need to subclass Unpickler instead of directly monkey-patching the find_class method
|
||
|
# because it's marked readonly in pickle.
|
||
|
# The type: ignore is because mypy can't statically determine the type of this class.
|
||
|
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
|
||
|
# from https://stackoverflow.com/questions/13398462/unpickling-python-objects-with-a-changed-module-path/13405732
|
||
|
# Lets us override the imports that pickle uses when unpickling an object.
|
||
|
# This is useful for maintaining BC if we change a module path that tensor instantiation relies on.
|
||
|
def find_class(self, mod_name, name):
|
||
|
if type(name) is str and 'Storage' in name:
|
||
|
try:
|
||
|
return StorageType(name)
|
||
|
except KeyError:
|
||
|
pass
|
||
|
mod_name = load_module_mapping.get(mod_name, mod_name)
|
||
|
return super().find_class(mod_name, name)
|
||
|
|
||
|
# Load the data (which may in turn use `persistent_load` to load tensors)
|
||
|
data_file = io.BytesIO(zip_file.get_record(pickle_file))
|
||
|
|
||
|
unpickler = UnpicklerWrapper(data_file, **pickle_load_args)
|
||
|
unpickler.persistent_load = persistent_load
|
||
|
result = unpickler.load()
|
||
|
|
||
|
torch._utils._validate_loaded_sparse_tensors()
|
||
|
torch._C._log_api_usage_metadata(
|
||
|
"torch.load.metadata", {"serialization_id": zip_file.serialization_id()}
|
||
|
)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _is_torchscript_zip(zip_file):
|
||
|
return 'constants.pkl' in zip_file.get_all_records()
|