Traktor/myenv/Lib/site-packages/torch/sparse/semi_structured.py

519 lines
21 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
import warnings
from collections import namedtuple
from typing import Any, Optional, Tuple, List, Callable, Dict
import torch
from torch.sparse._semi_structured_conversions import (
sparse_semi_structured_from_dense_cutlass,
sparse_semi_structured_to_dense_cutlass,
)
from torch.sparse._semi_structured_ops import (
fallback_dispatcher,
semi_sparse_values,
semi_sparse_indices,
semi_sparse_detach,
semi_sparse_t,
semi_sparse_view,
semi_sparse_mm,
semi_sparse_addmm,
semi_sparse_linear,
)
__all__ = [
"SparseSemiStructuredTensor",
"SparseSemiStructuredTensorCUTLASS",
"SparseSemiStructuredTensorCUSPARSELT",
"to_sparse_semi_structured",
]
_SEMI_STRUCTURED_SPARSE_CONFIG = namedtuple(
"_SEMI_STRUCTURED_SPARSE_CONFIG",
"sparse_min_rows sparse_min_cols dense_min_rows dense_min_cols",
)
class SparseSemiStructuredTensor(torch.Tensor):
"""
This class implementes semi-structured sparsity as a Tensor subclass.
Semi-structured sparsity describes a sparsity pattern where n in every 2n elements are sparse,
depending on the datatype. It is also referred to as 2:4 sparsity or fine-grained
structured sparsity.
There are two backends available for semi_structred sparsity, either cuSPARSELt or CUTLASS.
This class is meant to serve as a base class for both implementations. SparseSemiStructuredCUTLASS
and SparseSemiStructuredCUSPARSELT both inherit from this class and define three backend-specific items.
Note that as such, this class cannot be insantiated directly.
-`_DTYPE_SHAPE_CONSTRAINTS` - A dictionary holding backend specific dense/sparse min shape constraints
- `def from_dense()` - backend specific compression routines
- `def _mm()` - backend specifc mm op (either torch._cslt_sparse_mm or torch._sparse_semi_structured_linear)
"""
_DEFAULT_ALG_ID: int = 0
_DTYPE_SHAPE_CONSTRAINTS: Dict[torch.dtype, _SEMI_STRUCTURED_SPARSE_CONFIG]
_FORCE_CUTLASS: bool = True
_FUSE_TRANSPOSE: bool = False
_PROTOTYPE_WARNING_SHOWN: bool = False
SPARSE_DISPATCH: Dict[Callable, Callable]
packed: Optional[torch.Tensor]
meta: Optional[torch.Tensor]
packed_t: Optional[torch.Tensor]
meta_t: Optional[torch.Tensor]
threads_masks: Optional[torch.Tensor]
fuse_transpose_cusparselt: bool
alg_id_cusparselt: int
__slots__ = ["packed", "meta", "packed_t", "meta_t", "threads_masks"]
@staticmethod
def __new__( # noqa: PYI034
cls,
shape: torch.Size,
packed: Optional[torch.Tensor],
meta: Optional[torch.Tensor],
packed_t: Optional[torch.Tensor],
meta_t: Optional[torch.Tensor],
threads_masks: Optional[torch.Tensor],
fuse_transpose_cusparselt: bool = False,
alg_id_cusparselt: int = 0,
requires_grad: bool = False,
):
"""
Create a new instance of the tensor subclass from the compressed sparse representation.
We have the option to create the subclass with the compressed representations of both X and X', for training.
For inference, we only need a single representation (either X or X'), while the corresponding other set will be None.
Depending on the backend selected, certain fields will be set to None. (CUSPARSELT vs CUTLASS)
Args:
shape: The shape of the original dense tensor
packed: The compressed representation of the original dense tensor
meta: The metadata of the original dense tensor, if it is stored separately
packed_t: The compressed representation of the transposed original dense tensor
meta_t: The metadata of the transposed original dense tensor, if it is stored separately
threads_masks: The masks used by the CUTLASS backend to determine which threads should participate in the computation.
Used for pointwise ops.
fuse_transpose_cusparselt: When running with cuSPARSELt, we have the option to fuse a transposition
with a matmul, which is useful in the case of 2:4 sparse training.
alg_id_cusparselt: The algorithm id to use when using cuSPARSELT, will have effect on performance
Returns:
torch.Tensor: A torch.Tensor wrapper subclass.
Raises:
ValueError: If all of the tensor arguments are None.
"""
if not cls._PROTOTYPE_WARNING_SHOWN:
warnings.warn(
(
"The PyTorch API of SparseSemiStructuredTensor is in prototype stage "
"and will change in the near future. Please open a Github issue "
"for features requests and see our documentation on the torch.sparse "
"module for further information about the project."
),
UserWarning,
)
cls._PROTOTYPE_WARNING_SHOWN = True
# Because this only runs onces, we also load the dispatch table here as well.
# We can't define the dispatch table explicitly because of torch.ops import errors, so we do this instead
# But this is useful since it allows users to overload the dispatch table for debugging / testing.
cls._load_dispatch_table()
if packed is not None:
previous_tensor = packed
elif packed_t is not None:
previous_tensor = packed_t
else:
raise ValueError("At least one of packed or packed_t must be provided")
kwargs = {
"device": previous_tensor.device,
"dtype": previous_tensor.dtype,
"layout": previous_tensor.layout,
"requires_grad": requires_grad,
}
tensor = torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs) # type: ignore[attr-defined]
tensor.packed = packed
tensor.meta = meta
tensor.packed_t = packed_t
tensor.meta_t = meta_t
tensor.threads_masks = threads_masks
tensor.fuse_transpose_cusparselt = fuse_transpose_cusparselt
tensor.alg_id_cusparselt = alg_id_cusparselt
return tensor
def __repr__(self) -> str: # type: ignore[override]
assert hasattr(self, "shape")
return f"{self.__class__.__name__}(shape={self.shape})"
def __tensor_flatten__(
self,
) -> Tuple[List[str], Tuple[torch.Size, bool, int, bool]]:
inner_tensors = list(
filter(lambda x: getattr(self, x) is not None, self.__slots__)
)
tensor_meta = (
self.shape,
self.fuse_transpose_cusparselt,
self.alg_id_cusparselt,
self.requires_grad,
)
return inner_tensors, tensor_meta
@classmethod
def __tensor_unflatten__(
cls,
inner_tensors,
tensor_meta : Tuple[torch.Size, bool, int, bool],
outer_size,
outer_stride,
) -> torch.Tensor:
shape, fuse_transpose_cusparselt, alg_id_cusparselt, requires_grad = tensor_meta
return cls(
shape=shape,
packed=inner_tensors.get("packed", None),
meta=inner_tensors.get("meta", None),
packed_t=inner_tensors.get("packed_t", None),
meta_t=inner_tensors.get("meta_t", None),
threads_masks=inner_tensors.get("threads_masks", None),
fuse_transpose_cusparselt=fuse_transpose_cusparselt,
alg_id_cusparselt=alg_id_cusparselt,
requires_grad=requires_grad,
)
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs) -> Any:
if func._overloadpacket not in cls.SPARSE_DISPATCH:
raise NotImplementedError(
f"{cls.__name__} only supports a specific set of operations, "
f"can't perform requested op ({func.__name__})"
)
return cls.SPARSE_DISPATCH[func._overloadpacket](func, types, args, kwargs)
@classmethod
def _load_dispatch_table(cls, custom_dispatch_table=None) -> None:
"""
Loads the op overload sparse dispatch table for the current class.
"""
if getattr(cls, "SPARSE_DISPATCH", None) is None:
cls.SPARSE_DISPATCH = {
torch.ops.aten.values: semi_sparse_values,
torch.ops.aten.indices: semi_sparse_indices,
torch.ops.aten.is_same_size: fallback_dispatcher,
torch.ops.aten.detach_: fallback_dispatcher,
torch.ops.aten.detach: semi_sparse_detach,
torch.ops.aten.t: semi_sparse_t,
torch.ops.aten.view: semi_sparse_view,
torch.ops.aten.mm: semi_sparse_mm,
torch.ops.aten.matmul: semi_sparse_mm,
torch.ops.aten.addmm: semi_sparse_addmm,
torch.ops.aten.linear: semi_sparse_linear,
}
if custom_dispatch_table is not None:
cls.SPARSE_DISPATCH.update(custom_dispatch_table)
@classmethod
def _validate_device_dim_dtype_shape(cls, original_tensor : torch.Tensor) -> None:
"""
Assert that the given tensor is valid for semi-structured sparse compression.
"""
# check device
if not original_tensor.is_cuda:
raise RuntimeError(
f"Error original_tensor.device= {original_tensor.device} is not supported! "
"Only CUDA tensors are currently supported."
)
# check dim
if original_tensor.dim() != 2:
raise RuntimeError(
f"Error original_tensor.dim = {original_tensor.dim()} is not supported! "
"Only 2d tensors are currently supported."
)
# check contiguous
if not original_tensor.is_contiguous():
raise RuntimeError(
"Error original_tensor is not contiguous!"
"Only contiguous tensors are currently supported."
)
# check dtype
if original_tensor.dtype not in cls._DTYPE_SHAPE_CONSTRAINTS:
raise RuntimeError(
f"Error original_tensor.dtype {original_tensor.dtype} is not a supported dtype! "
"dtype must be one of: {cls._DTYPE_SHAPE_CONSTRAINTS}"
)
# check shape
m, n = original_tensor.shape
min_rows = cls._DTYPE_SHAPE_CONSTRAINTS[original_tensor.dtype].sparse_min_rows
min_cols = cls._DTYPE_SHAPE_CONSTRAINTS[original_tensor.dtype].sparse_min_cols
if m < min_rows or m % min_rows or n < min_cols or n % min_cols:
# TODO in the future we can add in padding to support sparse dimensions that aren't perfect multiples
raise RuntimeError(
f"Error original_tensor.shape {original_tensor.shape} is not supported! "
f"Both dimensions must be larger or equal than and a multiple of ({min_rows}, {min_cols})"
)
@classmethod
def _pad_dense_input(cls, dense_input: torch.Tensor) -> torch.Tensor:
"""
Calculates padding for dense tensor and pads tensor if necessary.
If padding is not required, this function returns the original tensor.
"""
# only 2d matmul
assert dense_input.dim() == 2
# check shape
m, n = dense_input.shape
min_rows = cls._DTYPE_SHAPE_CONSTRAINTS[dense_input.dtype].dense_min_rows
min_cols = cls._DTYPE_SHAPE_CONSTRAINTS[dense_input.dtype].dense_min_cols
# calculate padding
to_pad_m = -m % min_rows if m < min_rows or m % min_rows else 0
to_pad_n = -n % min_cols if n < min_cols or n % min_rows else 0
if to_pad_m or to_pad_n:
return torch.nn.functional.pad(dense_input, (0, to_pad_n, 0, to_pad_m))
else:
return dense_input
def to_dense(self):
col = self.shape[-1]
return torch.mm(self, torch.eye(col, dtype=self.dtype, device=self.device))
@classmethod
def from_dense(cls, original_tensor : torch.Tensor) -> "SparseSemiStructuredTensor":
raise NotImplementedError
def _mm(
self,
B: torch.Tensor,
*,
bias: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
raise NotImplementedError
def to_sparse_semi_structured(
original_tensor: torch.Tensor,
transposed: bool = False,
) -> SparseSemiStructuredTensor:
"""
This function converts a dense tensor into a sparse semi-structured tensor.
It will return a SparseSemiStructuredTensor, a subclass of torch.Tensor.
This function will check to ensure the dense tensor has the right dtype, size, dims, and device.
We currently only support semi-structured sparse tensors for 2d CUDA tensors.
Additionally, your tensor must be a positive multiple of the mininum sparse block size, given in
`_DTYPE_TO_SHAPE_CONSTRAINTS` for each dtype (float32, float16, bfloat16, int8).
Args:
original_tensor (Tensor): the dense tensor to convert
transposed (bool, optional): deprecated arg to be removed in another release. Do not use.
Returns:
SparseSemiStructuredTensor: A sparse semi-structured tensor created from the given original_tensor
Raises:
None
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> A = torch.Tensor([0, 0, 1, 1]).tile((128, 32)).half().cuda()
tensor([[0., 0., 1., ..., 0., 1., 1.],
[0., 0., 1., ..., 0., 1., 1.],
[0., 0., 1., ..., 0., 1., 1.],
...,
[0., 0., 1., ..., 0., 1., 1.],
[0., 0., 1., ..., 0., 1., 1.],
[0., 0., 1., ..., 0., 1., 1.]], device='cuda:0', dtype=torch.float16)
>>> A_sparse = to_sparse_semi_structured(A)
SparseSemiStructuredTensor(shape=torch.Size([128, 128]))
>>> A_sparse.values()
tensor([[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
...,
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 1., 1.]], device='cuda:0', dtype=torch.float16),
>>> A_sparse.indices()
tensor([[-4370, -4370, -4370, ..., -4370, -4370, -4370],
[-4370, -4370, -4370, ..., -4370, -4370, -4370],
[-4370, -4370, -4370, ..., -4370, -4370, -4370],
...,
[-4370, -4370, -4370, ..., -4370, -4370, -4370],
[-4370, -4370, -4370, ..., -4370, -4370, -4370],
[-4370, -4370, -4370, ..., -4370, -4370, -4370]], device='cuda:0', dtype=torch.int16))
"""
if transposed:
raise DeprecationWarning(
"Setting transpose from to_sparse_semi_structured is deprecated and will be removed in a future release."
"SparseSemiStructuredTensor only support contiguous input tensors. "
)
sparse_subclass = (
torch.sparse.SparseSemiStructuredTensorCUTLASS
if SparseSemiStructuredTensor._FORCE_CUTLASS
else torch.sparse.SparseSemiStructuredTensorCUSPARSELT
)
return sparse_subclass.from_dense(original_tensor)
class SparseSemiStructuredTensorCUTLASS(SparseSemiStructuredTensor):
"""
This class implements semi-structured sparsity for the CUTLASS backend.
In this implementation, the specified elements and metadata are stored seprately,
in packed and meta respectively.
When _FORCE_CUTLASS is set, or when cuSPARSELt is not available, this subclass calls into _sparse_semi_structured_linear
and sparse_semi_structured_from_dense for conversion to the compressed format.
"""
_DTYPE_SHAPE_CONSTRAINTS = {
torch.int8: _SEMI_STRUCTURED_SPARSE_CONFIG(16, 128, 16, 16),
torch.float16: _SEMI_STRUCTURED_SPARSE_CONFIG(32, 64, 8, 8),
torch.bfloat16: _SEMI_STRUCTURED_SPARSE_CONFIG(32, 64, 8, 8),
torch.float32: _SEMI_STRUCTURED_SPARSE_CONFIG(32, 32, 4, 4),
}
@classmethod
def from_dense(
cls, original_tensor: torch.Tensor
) -> "SparseSemiStructuredTensorCUTLASS":
cls._validate_device_dim_dtype_shape(original_tensor)
(
sparse_tensor_cutlass,
meta_tensor_cutlass,
) = sparse_semi_structured_from_dense_cutlass(original_tensor)
return cls(
original_tensor.shape,
packed=sparse_tensor_cutlass,
meta=meta_tensor_cutlass,
packed_t=None,
meta_t=None,
threads_masks=None,
requires_grad=original_tensor.requires_grad,
)
def to_dense(self):
assert self.meta is not None and self.packed is not None
return (
sparse_semi_structured_to_dense_cutlass(
self.packed,
self.meta,
)
if self.meta.ndim == 2
else super().to_dense()
)
def _mm(
self,
B: torch.Tensor,
*,
bias: Optional[torch.Tensor] = None,
**kwargs
) -> torch.Tensor:
if isinstance(B, SparseSemiStructuredTensor):
raise ValueError(
"`SparseSemiStructuredTensor @ SparseSemiStructuredTensor` is not supported by the hardware"
)
cls_name = self.__class__.__name__
if self.ndim != 2 or B.ndim != 2:
raise NotImplementedError(
f"`{cls_name}` matmul: Broadcasting is not implemented"
)
if self.packed is None or self.meta is None:
raise NotImplementedError(
f"`{cls_name}` matmul: operation is not supported"
)
else:
res = torch._sparse_semi_structured_linear(
B.t(), self.packed, self.meta, bias=bias
).t()
return res[: self.shape[0]]
class SparseSemiStructuredTensorCUSPARSELT(SparseSemiStructuredTensor):
"""
The cuSPARSELt backend expects the specified elements and the metadata to be stored in a single tensor:
packed = [ specified elements of original tensor | metadata ]
For an original tensor of size (m, k) we expect the first m * k // 2 elements to be the kept elements
The rest of the tensor is metadata. Since there is only one tensor, we only use the packed and packed_t
attributes respectively.
cuSPARSELt also supports transposition fusion, which is necessary for performant 2:4 sparse training, as well
as specifying alg_id, a config that affects the performance of the matmul depending on matmul sizes.
"""
_DTYPE_SHAPE_CONSTRAINTS = {
torch.int8: _SEMI_STRUCTURED_SPARSE_CONFIG(32, 32, 16, 16),
torch.float16: _SEMI_STRUCTURED_SPARSE_CONFIG(16, 16, 8, 8),
torch.bfloat16: _SEMI_STRUCTURED_SPARSE_CONFIG(16, 16, 8, 8),
torch.float32: _SEMI_STRUCTURED_SPARSE_CONFIG(8, 8, 4, 4),
}
@classmethod
def from_dense(cls, original_tensor : torch.Tensor) -> "SparseSemiStructuredTensorCUSPARSELT":
cls._validate_device_dim_dtype_shape(original_tensor)
return cls(
shape=original_tensor.shape,
packed=torch._cslt_compress(original_tensor),
meta=None,
packed_t=None,
meta_t=None,
threads_masks=None,
fuse_transpose_cusparselt=SparseSemiStructuredTensor._FUSE_TRANSPOSE,
alg_id_cusparselt=SparseSemiStructuredTensor._DEFAULT_ALG_ID,
requires_grad=original_tensor.requires_grad,
)
def _mm(
self,
B: torch.Tensor,
*,
bias: Optional[torch.Tensor] = None,
**kwargs
) -> torch.Tensor:
if isinstance(B, SparseSemiStructuredTensor):
raise ValueError(
"`SparseSemiStructuredTensor @ SparseSemiStructuredTensor` is not supported by the hardware"
)
if self.ndim != 2 or B.ndim != 2:
raise NotImplementedError(
f"`{self.__class__.__name__}` matmul: Broadcasting is not implemented"
)
if B.dtype != self.dtype:
raise NotImplementedError(
f"`{self.__class__.__name__}` matmul: trying to do `A={tuple(self.shape)} @ B={tuple(B.shape)}`, "
f"with A.dtype={self.dtype} and B.dtype={B.dtype}. "
"This operation is only supported when A and B have the same data type."
)
if bias is not None and bias.dtype != self.dtype:
raise NotImplementedError(
f"`{self.__class__.__name__}` matmul: trying to do `A={tuple(self.shape)} @ B={tuple(B.shape)} + C`, "
"with A.dtype=B.dtype={self.dtype} and C.dtype={B.dtype}. "
"This operation is only supported when A, B and C have the same data type."
)
if self.packed is None:
raise NotImplementedError(
f"`{self.__class__.__name__}` matmul: operation is not supported"
)
else:
res = torch._cslt_sparse_mm(
self.packed,
B,
bias=bias,
transpose_result=self.fuse_transpose_cusparselt,
alg_id=self.alg_id_cusparselt,
)
return res.t() if self.fuse_transpose_cusparselt else res